2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

Design and Implementation of a Heterogeneous
High-performance Computing Framework using
Dynamic and Partial Reconfigurable FPGAs

Xingjun Zhang, Yanfei Ding, Yiyuan Huang and Xiaoshe Dong
School of Electronic and Information Engineering
Xi’an Jiaotong University, Xi’an 710049, China
Email: {xjzhang, xsdong}@mail.xjtu.edu.cn

Abstract—Integrating reconfigurable computing with high-
performance computing, exploiting reconfigurable hardware with
their advantages to make up for the inadequacy of the existing
high-performance computers had gradually become the high-
performance computing solutions and trends. Based on compre-
hensively investigating the reconfigurable technologies, the paper
presented a high-performance computing scheme in which the
general-purpose processing nodes are connected to the dynamic
partial reconfigurable computing nodes through the high-speed
network. Using module-based partial reconfiguration design
method, a FPGA based dynamic and partial reconfigurable com-
puting node is designed. This node has the ability to do dynamic
and partial reconfiguration and can load different computing
units according to the different requirements. Dynamic partial re-
configurable computing node integrated microprocessor, memory,
network interface, reconfigurable computing module, interface
module are designed and implemented. The experimental results
show that the system can achieve more functions with fewer
resources; and the reconfigurable computing node can nicely
complete the task and the system performance is effectively
improved.

I. INTRODUCTION

With the high performance computing application expand-
ing, the traditional computing mode using the general purpose
processors can not meet the challenges of high availability.
The multi-framework integrated heterogeneous computing be-
comes a choice. Reconfigurable computing based on FPGA
(Field Programmable Gate Array) can accelerate the high
performance computing [1][2], those systems have the po-
tential to exploit coarse-grain functional parallelism through
conventional parallel processing, while exploiting fine-grain
parallelism through direct hardware execution on the FPGA.
And also, due to the hardware programmability, which allows
changing the hardware to fit the underlying problem, HPRC
(High-Performance Reconfigurable Computers) systems have
shown orders of magnitude improvement in performance,
power, size and cost over conventional High-Performance
Computers (HPCs) [3]. However, the HPRC systems [4][5]
have not yet been universally used; they are still the costly
devices for the most users. Integrating FPGA-based dynamic
and partial reconfigurable computing with the traditional high-
performance computing nodes to construct the high perfor-
mance computing framework is the effective method to resolve
this problem.

978-0-7695-4108-2/10 $26.00 © 2010 IEEE
DOI 10.1109/CIT.2010.401

2329

Usually a familiar high-performance reconfigurable comput-
ing system is a dynamic and global reconfigurable computing
system, aim at one or several integrated reconfigurable logic
devices each time, configuration file need to cover entire logic
devices, it cost a lot of time, moreover, it need peripheral
equipment to control the execution of reconfiguration, increase
the complicacy of control. This paper designs dynamic par-
tial reconfigurable computing nodes that can integrate with
the traditional high-performance computing nodes, based on
FPGA and reconfigurable computing technology. The dynamic
partial reconfigurable computing nodes have ability of dy-
namic partial reconfiguration, which is for partial logic, the
configuration file is small, the time of reconfiguration is short,
moreover, it’s self-reconfigurable, it need not the control of
peripheral equipment. Reconfigurable computing nodes that is
designed integrate many function modules as microprocessor,
memory, network interface, partial reconfigurable computing
module, reconfigurable computing module interface and so on,
it can be used to do the general-purpose processing, as well
as load different computing units according to the different
requirements.

II. SYSTEM ARCHITECTURE

The system consists of general-purpose processing nodes
and dynamic partial reconfigurable nodes, which communi-
cate with each other through the high speed interconnection
network and support cooperative work with the master-slave
mode. General-purpose processing nodes which mainly pro-
cess some tasks that are not suitable for reconfigurable hard-
ware dealing with, assign computing tasks on dynamic par-
tial reconfigurable nodes. And dynamic partial reconfigurable
nodes can dynamic load different hardware configuration data
to change the hardware structure on the basic of different com-
puting needs of general-purpose processing nodes to mainly
provide dynamic allocation. Its main idea is to use the same
hardware resources to provide different computing functions
under the time-sharing; it develops advantage of hardware
acceleration well while makes full use of limited hardware
resources.

General-purpose processing nodes are connected with re-
configurable computing nodes through the high-speed in-
terconnection network, visit reconfigurable computing nodes

@) CO‘ pute
1(!) I
& SOCIety

through remote access interface library, and distribute tasks
to reconfigurable computing nodes. Reconfigurable computing
nodes perform calculations and return results. Remote Access
Interface library provide uniform access interface for the
application, including the request of computing tasks, the
sending of the calculated data, the reception of computing
result and so on. Basic system function module is shown in
figure 1.

General purpose processing node

Applications Remote access interface

A

Reconfigurable computing node
N
commion]
communication
o 4
C -
omput.mg

controlling .

Reconfiguratio Devices

n controlling monitor

Software layer

Protocol stack

juswdgeur Yse],

Hardware layer

A A

Partial
Micro- MEM Reconfiguration | | reconfigurable | | Network
processor controlor computing interface
functions
Fig. 1. System function module architecture

In reconfigurable computing nodes, partial reconfiguration
computing (PRC) is one of the main functions provided by the
system, and different computing services can be dynamically
configured according to application requirements. This process
is mainly realized by hardware logic so that the speed of exe-
cution is very high. Moreover, reconfigurable computing nodes
must also have some capacity to complete the general process-
ing operations, such as task management, task monitoring,
network communications, computing control, reconfigurable
control and so on. Therefore, the PRC nodes need also provide
some devices including micro-processing, memory, network
interface etc to run some simple software applications. The
task management module responds in terms of the computing
tasks delivered by the network communication module and
monitors the local configuration of the computing function,
then determines whether or not to call the reconfigurable
module to update the configure.

III. GENERAL PROCESSING NODE SOFTWARE

System software consists of two parts: first, the recon-
figuration and control service programs which are running
in the reconfigurable computing nodes provide computing
services for the general-purpose processing nodes; second,
the application running on the general processing nodes call
the library of interface, through which application can ac-
cess to the reconfigurable computing nodes. If you want to
achieve hardware acceleration for some calculation function
in application, only need to use a particular function call,

2330

which completes calculating function accelerated by accessing
reconfigurable computing nodes based on the remote access
interface library.

The general-purpose processing nodes can access the recon-
figurable computing nodes through the remote access interface
library which mainly transforms the user’s specific computing
tasks into the tasks that can be computed in reconfigurable
computing node and interacts with reconfigurable computing
nodes through the network, interface library modules.

Access library provides uniform access interfaces for the
user application program which can call the computing func-
tions from the uniform access interface by the instructions and
the necessary parameters. For example, the following library
function is for the fixed-point matrix multiplication:

int mmm_fiz(int dimension, void * addr_a, void x
addr_b, void x addr_c)

The first parameter is the number of matrix dimensions,
the rest three parameters are the addresses of the two original
matrixes and the address of the result matrix respectively.

IV. RECONFIGURABLE COMPUTING NODE DESIGN
A. Hardware Structure of the Reconfigurable Computing Node

Module-based partial configurable design method [6] is
used in the paper, and the hardware structure of the dynamic
reconfigurable computing node need to solve five problems:
partitioning the system static and dynamic module, selecting
the static module function units, designing the reconfigurable
interface module, designing the basic structure of the system,
and designing the reconfigurable computing unit. Reconfig-
urable computing node function modules partition is shown in
figure 2.

Micro- Multi reconfigurable
@ computing areas
A
Memory P “:V; PRRA
Unit
Debug g <> [PRRB
interface
< »| PIb2PRR
-Bridge
Flash > rag P PRRC
MAC =P
el
Iandh <—p PRRD
System bus

Fig. 2. Reconfigurable computing node function modules

Static logic part does not change during the execution
of the mission and is used to implement the uninterrupted
task. It is usually non-core and controls larger computing
tasks which is not suitable for hardware implementation, such
as network communication, task scheduling, etc. Therefore
the hardware mainly include: 1) microprocessor unit, used
to implement reconfigurable computing nodes which needed
for a variety of software. The function of the software is
protocol processing and various procedures controlling; 2)

Network Media Access Control (MAC) units, providing net-
work communication interface, dealing with general-purpose
computing nodes of the communication;3) memory cell, used
the on-chip BRAM to achieve high-speed storage and on-
board SDRAM, Flash memory cell, stored code execution,
data and configuration files; 4) reconfiguration control unit can
be embedded with the FPGA’s internal configuration access
port (ICAP) to achieve access to Virtex family chips, and
access configuration memory of reconfigurable logic device
through the ICAP.

Reconfigurable logic parts, also the dynamic part, can im-
plement different computing functions for different hardware
architecture according to computing different configurations
of mission request. A variety of computing functions require
the user to achieve independent design. This part is one
of the main bodies of design and implementation of the
node. Bus and reconfigurable computing unit bridge (e.g.
PIb2PRR_Bridge) achieve the communication of static logic
and reconfigurable logic also is one of the main bodies of
node design. It mainly includes bus communication interface,
device control logic, and user interface logic of three parts.

B. Reconfigurable Computing Node Software

Node software consists of two parts: the first one is the
service program designed and runs on the reconfigurable
computing nodes to provide computing services for general-
purpose processing nodes. The second one is the interface
library that runs on general-purpose processing nodes and pro-
vides the way that the application accesses to reconfigurable
computing nodes. Both communicate each other through high
speed network and are the client/server mode. Reconfigurable
computing nodes are as service-side and general processing
nodes as client-side. The design of on-chip system software
on the reconfigurable computing nodes has two ways. The one
way uses a real-time operating system and the other doesn’t
use any operating system. The former can provide multi-
task scheduling, memory management, interrupt management,
file systems, system functions and can be used to implement
complex designs, however, it need a more intensive system
resources. The latter is designed simply and uses fewer re-
sources. In order to save the on-chip resources, this design
features a non-operating mode [7]. In this mode, the system
software on the reconfigurable computing nodes mainly con-
sists of board support packages (BSP) and service procedures.
The software hierarchy is shown in Figure 7. Board Support
Package is located at the lowest level of software systems
and provides support for the service program. Service program
making use of the communication protocol stack and various
functions provided by the board support package achieves
specific functions, including the main control module, task
monitoring and management module, configuration module
and calculation control module.

BSP contains the necessary support system software, includ-
ing boot code, device drivers and processor-related support
library. Boot code guides the implementation of the applica-
tion, device driver code includes various devices on the system

2331

operation functions and interrupt handler.

C. Implementation of Dynamic Partial Reconfiguration

Dynamic partial reconfigurable computing nodes can dy-
namically configure the computing functions according to the
different computing demands. We designed three computing
functions, namely AES (Advanced Encryption Standard) En-
cryption, AES decryption, and fixed-point matrix multiplica-
tion. We choose AES algorithm as an example to introduce
the design and implementation of calculating function below.

AES is the Symmetric Key Block Cipher Algorithm Stan-
dard adopted by NIST. Belgium research achievement Rijndael
is selected as implementation basis for AES in October 2000.
The algorithm is so simple that it is easy to implement. The
packet length and the key length for block cipher is alterable,
the length of both a packet and a key can be independently
set to 128 bits or 192 bits or 256 bits. In this paper, the
packet and key length for AES are set 128-bit, and the 128-bit
plaintext is divided into 16-byte packets which are organized
into a 4x4 matrix by order. This matrix is called state, based
on which running the AES. The AES algorithm is formed
with iteratively transformation, each transformation includes
four different basic operations in the composition, namely the
byte substitution (SubByte), line shift (ShiftRows), the column
confused (MixColumns), round keys plus (AddRoundKey).

We have adopted a modular design approach to divide
the calculating functions into several sub-modules, and the
basic module structure of the basic Encryption calculation
module unit is shown in figure 8. Memory access module
achieve access control logic of system memory by encryption
calculation function units; cache module achieve local high-
speed memory space of computing function unit, and pro-
vide high-speed cache for calculation module; and encryption
calculation modules achieve encryption calculation. Master
control module control the entire computing process and turn
a large number of encryption calculations into multiple basic
encryption calculations.

The master control module controls the implementation of
the entire encryption calculation tasks through three basic
functions, one is to control memory access module reading and
writing system memory, the second is to control encryption
calculation module implementing encryption calculation and
the last one is to control interrupt handling.

The encryption calculation sub-module of the encryption
computing function unit can finish 512 pieces of operand at
most at once. The specific operand is controlled by the signal
C2P_N, so the main working of the master control module is
dividing a mass of encryption calculation assignment to several
encryption calculation assignment which is 512 pieces and
controlling the computing process of the encryption calcula-
tion module, at the same time, reading and writing in memory
before and after computing, reading the calculation data into
cache and writing the calculation results back to memory.

The basic structure of decryption calculation function mod-
ule is similar to encryption calculation function module; the
different is key expansion and the scheduling unit. Because

of the key that needed in first round decrypting is the key
that created in the last round by key expansion unit, so it
required executing key expansion in advance and it save the
key into register. Then executing decryption computing after
all the keys is created.

The hardware implementation of reconfigurable computing
nodes includes the implementation of top-level module, gen-
eration of partial reconfigurable configurable data and save
of partial reconfigurable configurable data. We use PlanA-
head development platform to generate partial reconfigurable
configurable data, including the following four steps: the
introduction of netlist files, the layout, and the detection of
design rules and the generation of configurable data.

The system can enter the implementation phase after the
layout and test of design rules and the system logic mod-
ule and partial reconfigurable module need to implement
respectively then generate corresponding. Used file and . Ncd
file. The static logic module needs to be implemented first,
and then each reconfigurable module can be implemented.
The system can integrate to generate the global and partial
.ncd file as well as the corresponding configurable data file
(.bit) when the static module and all reconfigurable modules
have been implemented. The global configurable data file
named static_full.bit and three partial configurable data files
named partial_plb_prr_enrypt, partial_plb_prr_decrypt,
partial_plb_prr_mmm are generated respectively for en-
cryption, decryption, and matrix multiplication operation. The
FPGA function mapping design view is shown in figure 9,
partial reconfigurable area is framed by a box.

V. EXPERIMENT AND ANALYSIS
A. Analysis of On-chip Resource Utilization

We analyze the impact that the partial reconfiguration
bring to the on-chip resource utilization through the sta-
tistical analysis of the on-chip resource utilization which
is used by partial reconfigurable computing module plb_prr
and interface module plb2prr_bridge. Programmable on-chip
resources include programmable logic block, block storage
unit, high-speed DSP processors, input and output interfaces,
connections, etc. Programmable logic block composed mainly
by the slice is the basic programming unit, and the use of
block storage units and high-speed DSP processor can save a
lot of programmable logic blocks. Therefore we identify the
on-chip resource utilization through them.

We divide reconfigurable area in hardware logic to imple-
ment a variety of computing functions time-sharing. Reconfig-
urable area is the plb_prr physical block which is divided when
the partial data generate, and each reconfigurable computing
is time-loaded into the reconfigurable area. The resource
utilization of reconfigurable area is showed in figure 3.

From Figure 3 we can see that on-chip resources possessed
by reconfigurable area are greater than the resources that
each reconfigurable computing function need, therefore we can
time-load the reconfigurable computing functions to reconfig-
urable area. However, the total resources that all reconfigurable
computing functions need are far greater than the resources

Resource using ratio of the reconfigurable moudle

Oslice M@rams Odsp

encrypt

decrypt mmm

reconfigurable
area

Fig. 3. Used resource rates of partial reconfigurable computing

which are possessed by reconfigurable area, thus the on-chip
resource utilization is greatly increased. At the same time
all resources inside the reconfigurable area belong to the
reconfigurable module in partial reconfigurable design, but
not all resources will be effectively used, for example DSP
in reconfigurable area in this paper only can be used in the
matrix multiplication unit, and the utilization is low.

B. System Performance Analysis

We analyze execution time of three basic computing func-
tions provided by reconfigurable computing nodes, reconfig-
urable computing nodes are based on the Virtex-4 Develop-
ment Board of Avnet in test environment, the clock frequency
of function unit is 100MHz, general-purpose processing nodes
use the Core 2 Duo 1.83GHz processor computer, and general-
purpose processing nodes are interconnected with reconfig-
urable computing nodes through 100M Ethernet.

In the following results:

Speedup ratio of computing unit = software execution time
of computing function / hardware execution time of computing
unit.

Speedup ratio of partial reconfiguration mode = Software
execution time of applications / execution time based on
reconfiguration mode.

In those formulae, software execution time of computing
function is that the accelerated computing functions execute
with software mode on the general-purpose processing nodes.
Hardware execution time of computing unit is that that the
accelerated computing functions execute with hardware mode
on the reconfigurable computing nodes. Software execution
time of applications is that applications execute with software
mode on the general-purpose processing nodes. Execution time
based on reconfigurable mode is that applications execute on
the general-purpose processing nodes and applications execute
accessing the reconfigurable computing nodes through network
realize the accelerated computing functions.

Figure 4, 5 show the Speedup ratio of encryption comput-
ing unit with partial reconfiguration computing way. From
Figure 4, the speedup ratio of FPGA encryption computing
is larger with the software executing way and keeps stable
with the large computing scale. The reason is that complexity

2332

SRR

)

=

ZRRES

1024 2048 4096 8192 16384

32768

Fig. 4. Speedup ratio of encryption computing unit

= (=] [**] e
[P R L]

= I
(=TS

4096

1024 2048 8192 16384 32748

Fig. 5. Whole speedup ratio of encryption computing

of Hardware processing logic may increase as the scale of
encryption computing increase. From Figure 5, the speedup
ratio of encryption computing on the partial reconfiguration
computing way is smaller and increases as the increase of
computing scale. There is part which cannot be accelerated
in the applications, the network communication overhead and
Hardware-accelerated execution time is relatively small.

142 - — - -
1024 2048 4096 5192 16334 32768

Fig. 6. Speedup ratio of decryption computing unit

Figure 6, 7 show Speedup ratio of decryption computing
with partial reconfiguration computing way. From Figure 6, the
speedup ratio of FPGA decryption computing is larger with
the software executing way and keeps stable with the large
computing scale. The reason is that complexity of Hardware
processing logic may increase as the scale of encryption
computing increase. From Figure 7, the speedup ratio of
encryption computing on the partial reconfiguration computing

2333

=]

6 -
j -
st
3 -
2 L
1 -
0
1024 2048 4096 8192 16384 32768
Fig. 7. Whole speedup ratio of decryption computing

way is smaller and increases as the increase of computing
scale. The reason is same with the reason of the encryption
operations.

L

128 236 312 1024 2048

Fig. 8. Speedup ratio of matrix multiplication

128 236 j12 1024 2048

Fig. 9. Whole speedup ratio of matrix multiplication

Figure 8, 9 shows the Matrix operation performance with
partial reconfiguration computing way. From Figure 8§, the
speedup ratio of FPGA matrix multiplication is larger with
software executing way and the increase is apparent with
large computing scale. The rules of matrix operations are
simple, that is different With encryption and decryption,
and complexity of hardware processing logic keeps stable
as the scale of matrix operations increase. From Figure 9,
the speedup ratio of matrix multiplication is relatively small
with partial reconfiguration computing mode. The reason is
same with the reason of the encryption operations. But the
speedup ratio increase as the increase of computing scale.
The speedup ratio increase obviously with the larger matrix

scale. Compared with the matrix application of encryption and
decryption computation, the part which cannot be accelerated
and the network communication overhead is relatively small.

From the analysis of speed-up ratio we can see:

1) About the computing speed, the hardware unit calculating
way is fastest, followed by the calculating method of partial
reconfiguration, the software implementation is the slowest.
From above analysis, the main reason of speed difference is
that the hardware calculating unit is parallel and unreconfigu-
ration, it doesn’t has the problem of declining of the memory
access performance, so running speed is faster. The method of
partial reconfiguration calculation, the execution time is not
only including execution time of hardware computing unit,
but also including the related I/O time, reconfigurable control
time, so the calculation speed is relatively slow compared
with the simple hardware, but computing model of the partial
reconfiguration are more flexible than the hardware unit and
utilizes fewer on-chip resource.

2) On the software computing mode, as the computing
scale increasing, the speed-up ratio increases and the rate
may be less than 1. Compared with this mode, on the partial
reconfiguration mode, there is fixed part in the computing time,
that’s called Treconfig. It doesn’t change as the computing
scale changes. Therefore, when the computing scale is smaller,
the time of software computation will be far less than the
time of reconfiguration computation and the speed-up ratio
is less than 1. While the computing scale is bigger, I/O
time and computing time will increase and the percentage of
reconfiguration time will reduce, then the speedup rate will
increase. When the computing scale reaches the size of a
certain level, then I/O time and computing time will be far
more than the time of reconfiguration computation, the speed-
up ratio will be basic stability of the same.

3) Compared with AES algorithm, matrix speed-up ratio
was big while the matrix scale was large and increased signif-
icantly with the matrix size. There are mainly two reasons. The
first, the computing time on the mode of partial reconfiguration
computation included three parts: I/O time, reconfigurable
time, computing time. AES computing complexity is O(N), the
calculation time were basically linear time of calculating scale,
matrix multiplication complexity is O (N3), the computing
time was expressed by the O(N3) of the computation scale. So
as the increase of computing scale, the proportion of the com-
puting time in the matrix multiplication calculation increased
rapidly in the total time of the mode of partial reconfiguration
computation. The second, when the scale of matrix calculation
is large, on the mode of software computing, the rate of cache
miss maybe increase and memory access performance maybe
degrade, then ,the computing time will become longer. But on
the mode of hardware unit computation, it doesn’t have the
problem of declining of memory access performance.

VI. CONCLUSION

We design a high-performance computing scheme in which
the general-purpose processing nodes are connected to the
dynamic partial reconfigurable computing nodes through the

2334

high-speed network. Using module-based partial reconfigu-
ration design method, a FPGA-based dynamic and partial
reconfigurable computing node is designed. This node has
the ability to do dynamic and partial reconfiguration and
can load different computing units according to the different
requirements. System uses the module-based partial recon-
figurable design method, divided the hardware system static
and dynamic module, and the static and dynamic module
of communication module unit bus to partial reconfigurable
unit bridge, reconfigurable computing modules, as well as
the general-purpose processing nodes and partial reconfig-
urable computing communication mode are designed. Based
on the Virtex-4 Avnet development board, completed the basic
hardware structure and the dynamic partial reconfigurable
computing nodes in the hardware prototype implementation,
on this basis, the global configuration data file is generated and
each functional unit corresponds to a calculation of the part
configuration data files to achieve the software system of the
dynamic partial reconfigurable computing nodes and remote
access interface library. Achieving results show that the design
of resources to achieve more functions, the dynamic partial
reconfigurable computing nodes to complete computing tasks
primely, and can effectively improve the system performance.

ACKNOWLEDGMENT

This work was supported by the National High Technology
Research and Development Program (863 Program) of China
under grant No. 2009AA01Z2108, No.2006AA01A109 and No.
2009AA01A135. Part of the work was supported by the XJTU
multi-disciplinary project under grant No.2009xjtujc30.

REFERENCES

[1] M. C. Herbordt, T. V. Court, Y. Gu, B. Sukhwani, A. Conti, J. Model, and
D. DiSabello, “Achieving high performance with fpga-based computing,”
Computer, vol. 40, pp. 50-57, 2007.

J. L. Rice, K. H. Abed, and G. R. Morris, “Design heuristics for mapping
floating-point scientific computational kernels onto high performance
reconfigurable computers,” Journal of Computers, vol. 4, pp. 542-553,
2009.

T. El-Ghazawi, D. Bennett, D. Poznanovic, A. Cantle, K. Under-
wood, R. Pennington, D. Buell, A. George, and V. Kindratenko, “Is
high-performance reconfigurable computing the next supercomputing
paradigm?” in Proceedings of the 2006 ACM/IEEE conference on Su-
percomputing, 2006.

R. e. a. Baxter, “High-performance reconfigurable computing ¢ the view
from edinburgh,” in Proceedings of the second NASA/ESA Conference on
Adaptive Hardware and Systems, 2007.

T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and
D. Buell, “The promise of high-performance reconfigurable computing,”
IEEE Computer, vol. 41, pp. 69-76, 2008.

P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular
dynamic reconfiguration in virtex fpgas,” IEE Proc.-Comput. Digit. Tech.,
vol. 153, pp. 157-164, 2006.

Xilinx, “Standalone board support package.” [Online].
http://www.xilinx.com/support/documentation/index.htm.

(2]

Available:

