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 Abstract - The LRU-like algorithm was proposed for the 
block management to enhance the direct-mapped cache scheme. 
Base on the LRU-like algorithm, the Least-Recently-Used Block 
Filtering cache (LBF cache), which can filter LRU blocks, is 
designed. From the point of cache usage rate, the LBF cache uses 
LRU-like algorithm to allocate and replace blocks, and evicts the 
blocks whose usage shows the least efficiency. After the 
simulation, the performance of LBF cache shows better 
performance than typical cache schemes with similar 
architecture (such as victim cache and assist cache). Comparison 
also shows, with the same block size of 32 bytes, 9KB LBF cache 
reduces 26% in average miss rate over the traditional 16KB 
direct-mapped cache and 53% over the 8KB 2-way set-
associative cache. 
 
 Index Terms – Cache, miss rate, LRU algorithm 
 

I.  INTRODUCTION 

 Memory access latencies have been the bottleneck of high 
performance microprocessors. While the microprocessor 
industry tries to design higher performance superscalar and 
VLIW processors, the problem becomes more prominent. The 
growing disparity between processor and memory perform- 
ance will take cache misses increasingly expensive. Therefore, 
cache memory is of increasingly great importance in modern 
computer systems to reduce memory access penalty and power 
consumption, and eventually improve the overall system 
performance. At the same time, as the available chip area 
grows, it makes sense to spend more resources to allow 
intelligent control over the on-chip cache management, in 
order to adapt the caching decisions to the dynamic accessing 
behavior.  
 Historically, hit time has been a concern on many caches. 
This is because the cache read path is of critical importance 
and often is the most critical speed-path on many micro- 
processors. Direct-mapped caches (DM caches) are sometimes 
preferred due to the less complicated organization enables 
reduced hit time. Furthermore, a direct-mapped cache 
organization is more conducive to reducing design cycle 
times, as well as enables a variety of cache size configurations 
in a relatively easy fashion. However, direct-mapped caches 
suffer a fundamental drawback in that conflict misses 
generally become a significant contributor to the total misses, 
when compared to an n-way (n>1) set-associative cache, 
especially for small sizes such as 0.5k.  
 For the performance improvement of microprocessor, 
access time and hit rate of cache are of the same importance to 
designers. Therefore, two paths to access data in many cache 
schemes do help to enhance the performance: one fast path to 

satisfy most CPU accesses, at the same time a slower path to 
be utilized to decrease the miss cost. Caches designed based 
on the method could be classified into four types: decoupled 
cache, multiple-access cache, augmented cache and multilevel 
cache [1]. Augmented cache architecture includes two parts, 
one direct-mapped cache and a much smaller fully-associative 
cache. Both caches are accessed in parallel with almost the 
same access latency because of the small capacity of the fully-
associative cache.  
 Gary Tyson et al. [2] showed through application code 
profiling that a very small number of load/store instructions 
are responsible for a large percentage of cache misses. 
Therefore, selective caching could be an important direction 
for cache management research, especially for data cache 
management. Most selective caching schemes for optimiza- 
tion were based on the reuse of data in order to hold the 
reusable data recently in the on-chip cache as long as possible. 
However, the reusability of the data blocks is difficult to be 
distinguished for the randomness and uncertainty of 
application programs.  
 When cache miss occurs and if the associativity of cache 
is more than one, the replacement algorithm may be utilized to 
help decide which block should be replaced to assure the 
efficiency of cache. Various replacement algorithms have 
been proposed, in which the Least Recently Used (LRU) 
algorithm was the most approximate to OPT algorithm. But 
exact LRU algorithm consumes much hardware resource on 
chip, and increases the hardware complexity.  
 In this paper, the LRU-like algorithm is proposed for the 
augmented cache structure. A new cache structure based on 
the LRU-like algorithm is presented and simulated also.  

II.  RELATED WORK 

 Victim cache [3] improves the performance of direct 
mapping caches through the addition of a small, full 
associative cache between the L1 cache and the next level in 
the hierarchy. When access misses occur, the replaced blocks 
are transferred into the fully-associative cache. When one hit 
occurs in the fully-associative cache, the block will be 
swapped with the block of the same set in the DM cache.  
 Assist cache [4] seeks to separate the data stream into 
dynamic temporal and dynamic nontemporal data. Temporal 
blocks, possessing high reuse probability during a cache 
lifetime, are given the highest priority for residency in the 
cache. In order to reduce the effect of nontemporal conflicts, 
nontemporal data is excluded from the cache as far as 
possible.  
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 The NTS (non-temporal streaming) cache [5] and the PCS 
(program counter selective) cache [6] are both proposed by J. 
A. Rivers et al to improve the performance of the direct-
mapped cache with the help of some hardware applications. 
The former is a location-sensitive cache management scheme 
and the latter adopts its replacement based on the PC of 
memory instruction causing the current miss. The NTS cache 
scheme separates the reference stream into temporal (T) and 
non-temporal (NT) block references. Blocks are treated as 
non-temporal until they become temporal in the main cache. 
Cache blocks that are identified as non-temporal during their 
last residence in the main cache are allocated to the small 
fully-associative cache on subsequent requests. The locality 
information is detected and held by a hardware named NTDU. 
A block is considered NT if no word in that block was reused 
during a tour in the cache. A block is considered T if at least 
one word in the block was reused during a tour. A detection 
unit (DU) that contains locality information about blocks 
recently evicted from the cache is used to look ahead the 
locality characteristics of the fetched block. The block 
entering cache is checked to see if it has an entry in DU. the 
block is placed in the main cache if its locality flag bit 
indicates temporal, or else in the small fully-associative cache. 
The reuse information is kept via a single bit, the NT bit. If no 
DU match is found, a new entry is created in the DU and the 
block is assumed to be temporal and placed into the main 
cache.  
 The MAT (memory address table) cache [7] is one cache 
scheme based on the use of effective addresses like NTS 
cache. It dynamically partitions cache data blocks into two 
groups based on their frequency of reuse. Blocks are tagged as 
either Frequently or Infrequently Accessed. A memory 
address table is used to track reuse information. The 
granularity for grouping is a macroblock, defined as a 
contiguous group of memory blocks that are judged as having 
the same usage pattern features. Those blocks that are thought 
of Infrequently Accessed are allocated in a separate small 
cache.  
 C/NA(Cacheable/ Non-Allocable) cache [8] tries to 
examine the cache behavior of each load instruction and 
identifies the ones with the lowest cache hit rate. These are 
marked C/NA that means the data references generated by 
these load instructions will not invoke the allocation policy of 
the hardware cache management algorithm. It doesn’t mean 
that the data reference will not be in the cache – the data item 
might be in the cache if different instructions will allocate on 
miss references that address.  
 ABC (Allocation By Conflict) allocation scheme [9] 
decides where to allocate blocks (into the “main” cache with 
larger data store or the “buffer” with smaller data store) based 
on the current tour usage of the block it might replace in 
“main” cache, rather than on the past tour usage of the 
incoming block. ABC allocates a block to the “main” cache if 
the LRU element of its set in “main” cache has not been 
reaccessed since the last miss reference to that set that did not 
replace a block in “main” cache; otherwise, the block is 
allocated to the “buffer”. 

 

III.  LRU-LIKE ALGORITHM 

 When CPU accesses certain data, one word (or less) is 
accessed from the aspect of CPU. But the operation means one 
block access for the cache. Thus the locality of data stream 
may be exploited from various aspects: 
 1) The CPU aspect: when certain word is accessed, it 
might be accessed soon, and the words in adjacent region 
might be accessed soon. 
 2) The cache aspect: when certain block is accessed, it 
might be accessed soon, and the adjacent blocks might be 
accessed soon. 
 We could further analyze the operative property of the 
LRU replacement algorithm from the cache aspect. The LRU 
algorithm makes use of the deduction of the locality principle, 
i.e. a block most recently used (MRU block) could be 
accessed again soon, so the block determined to be evicted 
should be the least-recently-used block (LRU block). 
 Suppose there are n blocks (Bn-1, Bn-2……Bm……B1, B0 ) 
competing for the same set in a cache. Within an executing 
interval of program, the n blocks were accessed and placed 
into the cache in the block number sequence from 0 to n-1. As 
a result, many conflict misses occur if the ways in a set are not 
enough. According to the LRU algorithm, each way in a set 
should be attached to a counter to record the accesses recently, 
and thus the MRU and LRU block could be distinguished. 
When the set is full, the LRU block should be replaced. 
 Illuminated by LRU algorithm, we consider adding a 
buffer to filter the LRU blocks, at the same time holding all 
the MRU blocks in the DM cache in order to increase the hit 
rate of this new architecture of augmented cache. 
 Let’s suppose Bm be in the DM cache, and the other 
blocks competing for the same set be in the buffer. For all the 
blocks, the ideal method to utilize LRU algorithm is to attach 
a counter to each block. But that will increase the hardware 
cost. Therefore, only one bit for each block in the DM cache is 
designed to indicate the MRU block. The method is similar to 
that of LRU counter of 2-way associative cache. When cache 
access hit in DM cache, the Bm is marked as MRU block. 
Otherwise, when cache access hit in the buffer, the block of 
the same set as the needed block in DM cache is marked as 
LRU block. When the miss block is fetched, the location to 
refill in is determined by the indicating bit of the 
corresponding set, i.e. when the bit indicated MRU the block 
will be filled in the buffer; otherwise it will be filled in the 
DM cache. Since the LRU blocks on DM cache might not be 
the true LRU blocks relative to the blocks in the buffer, this 
replacement strategy is named LRU-like algorithm.  

IV.  LRU BLOCK FILTERING CACHE SCHEME 

 According to the LRU-like algorithm, a new augmented 
cache scheme named Least-Recently-Used Block Filtering 
Cache (LBF cache) is proposed. Fig. 1 shows the LBF cache 
structure, which includes a DM cache and a fully associative 
buffer. 
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 For the DM cache the tag of each block is added one 
MRU block judge bit (M bit), which is used to detect if the 
block was accessed recently. The block in DM cache generally 
obtains relatively more reusability, so the evicted block from 
DM cache should be kept in L1 cache as long as possible.  
 The steps of LBF cache for every condition are shown 
below. 
 1) Cache hit: CPU accesses the DM cache and the buffer 
in parallel. If cache access hits in the DM cache, the M bit for 
the hit block is set to 1. Otherwise, when cache access hit in 
the buffer, the M bit for corresponding set in DM cache is 
cleared. 
 2) Cache miss: The fetched block from next level of 
memory hierarchy is filled into DM cache if the M bit for the 
same set of the miss block is 0; otherwise, the block is filled 
into the buffer. 
 3) Block transfer: When CPU waits for the required block, 
the evicted block from DM cache is filled into the buffer. 
 4) Cache refilling: When a block is refilled into the buffer 
for the first time, the M bit for the same set in DM cache is 
cleared to 0; when a block is refilled into the DM cache for the 
first time, the M bit is set to 1. 
 Let’s examine how effective this scheme will be, for some 
simple reference patterns also used by McFarling [8] to 
illustrate his dynamic cache exclusion scheme. 
 
A. Conflict between loops 
 In this case, there is a conflict between references inside 
two different loops. If there is such a reference and there is a 
memory access pattern such as (A10B10)10, where the 
superscript denotes the frequency of usage of the particular 
data word address access.  

  

Tag0   M0 Block0 
Tag1   M1 Block1 
 
 
 
Tagn   Mn Blockn 

Tag0’        Block0 
Tag1’        Block1 
Tag2’        Block2 
Tag3’        Block3 

Add DM cache 

LBF cache 

From Next Hierarchy 

  Mj = 1 

Y 
N 

 
Fig.1 The LBF cache. 

 

 The behavior of a conventional direct-mapped cache 
would be 

(AmAh
9BmBh

9)10 

and the miss rate is  

MDM = 20/200 = 10% 

 Now let’s consider the behavior of our scheme. When A is 
refilled into the DM cache, the M bit is set. Then B is 
requested after nine hits of A, it will be refilled into the buffer. 
For the next nine cycles, no conflict occurs. On the other hand, 
if A is refilled into the buffer for the first time, the M bit for 
corresponding set in DM cache is cleared, so B will be refilled 
into the DM cache. For both the refilling conditions, the 
access behavior would be 

AmAh
9BmBh

9 (Ah
10Bh

10)9 

and the miss rate is  

MLBF = 2/200 = 1.0% 

 Thus LBF cache may gain more hits in this case. 
 
B. Conflict between inner and outer loops 
 In this case, a conflict occurs between a reference inside a 
loop with another reference outside the inner loop, and the 
memory access pattern can be represented as (A10B)10. The 
behavior of a direct-mapped cache would be 

(AmAh
9Bm)10 

and the miss rate is  

MDM = 2/11 = 18% 

 Consider the behavior of our cache scheme in this case, 
the same refilling process guarantees both block A and B will 
be reserved in L1 cache. So the behavior of LBF cache would 
be 

AmAh
9Bm (Ah

10Bh)9 

and the miss rate is  

MLBF = 2/110 = 1.82% 
 
C. Conflict within loops 
 In this case, there are two references A and B within a 
single loop mapping to the same location in the cache. This 
type of memory access pattern may be (AB)10. we can see that 
the behavior of direct-mapped cache would be 

(AmBm)10 

and the miss rate is  

MDM = 20/20 = 100% 

 The LBF cache have the same behavior, i.e. after initial A 
miss and B miss in the L1 cache, the next time A and B will be 
put in the DM cache and the buffer, therefore the behaviors are 

AmBm (AhBh)9 
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and the miss rates are 

MLBF = 2/20 = 10% 

 From the examples above we can see that LBF cache may 
improve the hit rate of direct-mapped cache.  

V.  SIMULATION 

A. Simulation Environment 
 sim-outorder in SimpleScalar toolset [10] was selected as 
our simulator, and mlcache [11] was used to replace the 
corresponding cache subprogram in sim-outorder.c. The 
simulation just considered to evaluate the performance of L1 
Dcache, so the Icache, L2 cache and bus were supposed ideal. 
The parameters of simulator and memory system are listed in 
table I. 
 All the benchmarks for simulation were from SPEC95, in 
which only 129.compress were inputted with train data set, 
and others with test data set. All the benchmarks were run to 
the end. 
  
B. Metrics 
 The performance measure best suited for the evaluation of 
the proposed caches is effective memory access time or total 
memory access time. If h is the hit rate in L1 cache, t is the 
access time of L1 cache, and teff is the effective access time, 
then 
 

teff = h*t + (1- h) * misspenalty                (1) 
 
 Here we assumed that the access time of L1 cache be one 
cycle, and the miss penalty be 18 cycles. As to our simulation, 
the miss rate is defined as 
 

miss rate = L1 Dcache miss number/ L1Dcache reference 
number                                                                             (2) 

 
 The speedup is 
 

teff of the target structure / teff of the base structure   (3) 
 
 Bus traffic that indicates the words L1 Dcache swaps with 
next level of memory hierarchy is another important metrics 
for processor. In this paper, Relative Bus Traffic is defined as 
below: 
 

Relative Bus Traffic= Bus Traffic of base structure - Bus 
Traffic of target structure                                             (4) 

 
 The Relative Bus Traffic is more, the speed of the 
processor is faster. 

VI.  EXPERIMENTAL RESULTS 

 The DM cache, 2-way associative cache, victim cache and 
assist cache are simulated to be compared to the LBF cache. 
All the augmented caches for compare are (8+1)KB, i.e. 8KB 
DM cache and 1KB buffer. The block size is 32B for all the 
caches. 
 
A. Miss Rate 
 Table II shows miss rates for various L1 Dcache schemes 
after running 8 SPEC95 benchmarks. As a result, for all the 
benchmarks, the miss rates of the LBF cache are basically 
lower than those of assist cache except that of su2cor; except 
miss rates of gcc and su2cor, the miss rates of LBF cache are 
lower than those of victim cache. Among the three cache 
schemes, the average miss rates of LBF cache, victim cache 
and assist cache are respectively 5.34%, 5.38% and 5.48%.  
 
 

 
TABLE I 

 PROCESSOR AND MEMORY CHARACTERISTICS 
Fetch Mechanism Fetches up to 4 instructions in program order per cycle 

Branch Predictor Bimodal predictor with 2084 entries 

Issue Mechanism Out-of-order issue of up to 4 operations per cycle, 16 entry re-order buffer, 8 entry load/store queue 

Functional Units 4 integer ALUs, 4 FP ALUs, 1 integer MULT/DIV, 1 FP MULT/DIV 

Data cache Write-back, write-allocate, 32-byte lines, 4 read/write ports, non-blocking 

  
TABLE II 

MISS RATES OF SIX L1 DCACHE SCHEMES 

  compress gcc li ijpeg perl hydro2d su2cor swim 

DM:8K 0.0673 0.0462 0.0231 0.0564 0.0597 0.1195 0.0891 0.4068 

DM:16K 0.0557 0.0288 0.0178 0.0221 0.0373 0.1063 0.0796 0.1424 

8K2W 0.0563 0.0300 0.0148 0.0448 0.0288 0.1112 0.0768 0.3904 

Victim 0.0553 0.0259 0.0141 0.0111 0.0246 0.1094 0.0709 0.0473 

Assist 0.0562 0.0287 0.0148 0.0118 0.0281 0.1095 0.0722 0.0472 

LBF 0.0543 0.0265 0.0137 0.0104 0.0235 0.1078 0.0723 0.0463 
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TABLE III 
RELATIVE BUS TRAFFIC OF FOUR L1 DCACHE SCHEMES (MILLION WORD) 

 compress gcc li ijpeg perl hydro2d su2cor swim 

LBF -3.3 -6.4 -3.0 0.5 2.07 -129.8 -90.9 177.9 

Victim -11.1 -64.4 -122.9 -6.4 -14.3 -319.8 -309.1 -449.5 

Assist -8.2 -30.1 -57.9 -0.3 -3.4 -274.9 -212.9 124.8 

8K2W 0.1 -0.4 16.4 -2.1 2.4 -8.8 11.4 -144.0 
 

1

1. 5

2

2. 5

3

3. 5

4

4. 5

compress gcc li ijpeg perl hydro2d su2cor swim

victim cache
assist cache
LBF cache
DM:16K

 
Fig. 2 Speedup of 4 cache schemes with 8KB DM cache as base structure. 

 
 Compared to 16KB DM cache and 8KB 2-way associative 
cache, the average miss rate of (8+1)KB LBF cache decreases 
about 26% and 53% respectively. 
  
B. Bus Traffic 
 Table III shows the relative bus traffic result of four cache 
schemes as the target structures and the 16KB DM cache as 
the base structure. According to the table, the accesses to bus 
for LBF cache are the least among the four cache structures.  
  
C. Speedup 
 Fig. 2 shows the speedup of four cache schemes that the 
8KB DM Dcache is as the base structure. For most of the 
benchmarks, the speedup of LBF cache is the highest. 
  
D. Hardware Overhead 
 Compared with victim cache and assist cache, the LBF 
cache is easy to be realized. The LBF cache only utilizes a 
one-direction path to transfer evicted blocks, but victim cache 
needs two paths. On judgment of data transfer, assist cache 
needs the help of software interpreter, but the LBF cache 
doesn’t need. 
  

VII.  CONCLUSIONS 

 In this paper, a method called LRU-Like algorithm to 
filter blocks that may not be used recently on chip was 
presented. According to this method, a new cache structure 
named LBF cache was proposed. The result of simulation 
showed that miss rate of (8+1)KB LBF cache are apparently 
lower than those of 16KB direct-mapped cache and 8KB 2-
way associative cache. Compared with the typical augmented 
cache (victim cache and assist cache), the miss rate of LBF 
cache was lower. 
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