
A Cache Scheme Based on LRU-Like Algorithm

Dongxing Bao Xiaoming Li
College of Electronic Engineering Microelectronic Center

Heilongjiang University Harbin Institute of Technology
Harbin, Heilongjiang, China Harbin, Heilongjiang, China

bdx2008@yahoo.com.cn lixiaoming@hit.edu.cn

 Abstract - The LRU-like algorithm was proposed for the
block management to enhance the direct-mapped cache scheme.
Base on the LRU-like algorithm, the Least-Recently-Used Block
Filtering cache (LBF cache), which can filter LRU blocks, is
designed. From the point of cache usage rate, the LBF cache uses
LRU-like algorithm to allocate and replace blocks, and evicts the
blocks whose usage shows the least efficiency. After the
simulation, the performance of LBF cache shows better
performance than typical cache schemes with similar
architecture (such as victim cache and assist cache). Comparison
also shows, with the same block size of 32 bytes, 9KB LBF cache
reduces 26% in average miss rate over the traditional 16KB
direct-mapped cache and 53% over the 8KB 2-way set-
associative cache.

 Index Terms – Cache, miss rate, LRU algorithm

I. INTRODUCTION

 Memory access latencies have been the bottleneck of high
performance microprocessors. While the microprocessor
industry tries to design higher performance superscalar and
VLIW processors, the problem becomes more prominent. The
growing disparity between processor and memory perform-
ance will take cache misses increasingly expensive. Therefore,
cache memory is of increasingly great importance in modern
computer systems to reduce memory access penalty and power
consumption, and eventually improve the overall system
performance. At the same time, as the available chip area
grows, it makes sense to spend more resources to allow
intelligent control over the on-chip cache management, in
order to adapt the caching decisions to the dynamic accessing
behavior.
 Historically, hit time has been a concern on many caches.
This is because the cache read path is of critical importance
and often is the most critical speed-path on many micro-
processors. Direct-mapped caches (DM caches) are sometimes
preferred due to the less complicated organization enables
reduced hit time. Furthermore, a direct-mapped cache
organization is more conducive to reducing design cycle
times, as well as enables a variety of cache size configurations
in a relatively easy fashion. However, direct-mapped caches
suffer a fundamental drawback in that conflict misses
generally become a significant contributor to the total misses,
when compared to an n-way (n>1) set-associative cache,
especially for small sizes such as 0.5k.
 For the performance improvement of microprocessor,
access time and hit rate of cache are of the same importance to
designers. Therefore, two paths to access data in many cache
schemes do help to enhance the performance: one fast path to

satisfy most CPU accesses, at the same time a slower path to
be utilized to decrease the miss cost. Caches designed based
on the method could be classified into four types: decoupled
cache, multiple-access cache, augmented cache and multilevel
cache [1]. Augmented cache architecture includes two parts,
one direct-mapped cache and a much smaller fully-associative
cache. Both caches are accessed in parallel with almost the
same access latency because of the small capacity of the fully-
associative cache.
 Gary Tyson et al. [2] showed through application code
profiling that a very small number of load/store instructions
are responsible for a large percentage of cache misses.
Therefore, selective caching could be an important direction
for cache management research, especially for data cache
management. Most selective caching schemes for optimiza-
tion were based on the reuse of data in order to hold the
reusable data recently in the on-chip cache as long as possible.
However, the reusability of the data blocks is difficult to be
distinguished for the randomness and uncertainty of
application programs.
 When cache miss occurs and if the associativity of cache
is more than one, the replacement algorithm may be utilized to
help decide which block should be replaced to assure the
efficiency of cache. Various replacement algorithms have
been proposed, in which the Least Recently Used (LRU)
algorithm was the most approximate to OPT algorithm. But
exact LRU algorithm consumes much hardware resource on
chip, and increases the hardware complexity.
 In this paper, the LRU-like algorithm is proposed for the
augmented cache structure. A new cache structure based on
the LRU-like algorithm is presented and simulated also.

II. RELATED WORK

 Victim cache [3] improves the performance of direct
mapping caches through the addition of a small, full
associative cache between the L1 cache and the next level in
the hierarchy. When access misses occur, the replaced blocks
are transferred into the fully-associative cache. When one hit
occurs in the fully-associative cache, the block will be
swapped with the block of the same set in the DM cache.
 Assist cache [4] seeks to separate the data stream into
dynamic temporal and dynamic nontemporal data. Temporal
blocks, possessing high reuse probability during a cache
lifetime, are given the highest priority for residency in the
cache. In order to reduce the effect of nontemporal conflicts,
nontemporal data is excluded from the cache as far as
possible.

2055978-1-4244-5704-5/10/$26.00 ©2010 IEEE

Proceedings of the 2010 IEEE
International Conference on Information and Automation

June 20 - 23, Harbin, China

 The NTS (non-temporal streaming) cache [5] and the PCS
(program counter selective) cache [6] are both proposed by J.
A. Rivers et al to improve the performance of the direct-
mapped cache with the help of some hardware applications.
The former is a location-sensitive cache management scheme
and the latter adopts its replacement based on the PC of
memory instruction causing the current miss. The NTS cache
scheme separates the reference stream into temporal (T) and
non-temporal (NT) block references. Blocks are treated as
non-temporal until they become temporal in the main cache.
Cache blocks that are identified as non-temporal during their
last residence in the main cache are allocated to the small
fully-associative cache on subsequent requests. The locality
information is detected and held by a hardware named NTDU.
A block is considered NT if no word in that block was reused
during a tour in the cache. A block is considered T if at least
one word in the block was reused during a tour. A detection
unit (DU) that contains locality information about blocks
recently evicted from the cache is used to look ahead the
locality characteristics of the fetched block. The block
entering cache is checked to see if it has an entry in DU. the
block is placed in the main cache if its locality flag bit
indicates temporal, or else in the small fully-associative cache.
The reuse information is kept via a single bit, the NT bit. If no
DU match is found, a new entry is created in the DU and the
block is assumed to be temporal and placed into the main
cache.
 The MAT (memory address table) cache [7] is one cache
scheme based on the use of effective addresses like NTS
cache. It dynamically partitions cache data blocks into two
groups based on their frequency of reuse. Blocks are tagged as
either Frequently or Infrequently Accessed. A memory
address table is used to track reuse information. The
granularity for grouping is a macroblock, defined as a
contiguous group of memory blocks that are judged as having
the same usage pattern features. Those blocks that are thought
of Infrequently Accessed are allocated in a separate small
cache.
 C/NA(Cacheable/ Non-Allocable) cache [8] tries to
examine the cache behavior of each load instruction and
identifies the ones with the lowest cache hit rate. These are
marked C/NA that means the data references generated by
these load instructions will not invoke the allocation policy of
the hardware cache management algorithm. It doesn’t mean
that the data reference will not be in the cache – the data item
might be in the cache if different instructions will allocate on
miss references that address.
 ABC (Allocation By Conflict) allocation scheme [9]
decides where to allocate blocks (into the “main” cache with
larger data store or the “buffer” with smaller data store) based
on the current tour usage of the block it might replace in
“main” cache, rather than on the past tour usage of the
incoming block. ABC allocates a block to the “main” cache if
the LRU element of its set in “main” cache has not been
reaccessed since the last miss reference to that set that did not
replace a block in “main” cache; otherwise, the block is
allocated to the “buffer”.

III. LRU-LIKE ALGORITHM

 When CPU accesses certain data, one word (or less) is
accessed from the aspect of CPU. But the operation means one
block access for the cache. Thus the locality of data stream
may be exploited from various aspects:
 1) The CPU aspect: when certain word is accessed, it
might be accessed soon, and the words in adjacent region
might be accessed soon.
 2) The cache aspect: when certain block is accessed, it
might be accessed soon, and the adjacent blocks might be
accessed soon.
 We could further analyze the operative property of the
LRU replacement algorithm from the cache aspect. The LRU
algorithm makes use of the deduction of the locality principle,
i.e. a block most recently used (MRU block) could be
accessed again soon, so the block determined to be evicted
should be the least-recently-used block (LRU block).
 Suppose there are n blocks (Bn-1, Bn-2……Bm……B1, B0)
competing for the same set in a cache. Within an executing
interval of program, the n blocks were accessed and placed
into the cache in the block number sequence from 0 to n-1. As
a result, many conflict misses occur if the ways in a set are not
enough. According to the LRU algorithm, each way in a set
should be attached to a counter to record the accesses recently,
and thus the MRU and LRU block could be distinguished.
When the set is full, the LRU block should be replaced.
 Illuminated by LRU algorithm, we consider adding a
buffer to filter the LRU blocks, at the same time holding all
the MRU blocks in the DM cache in order to increase the hit
rate of this new architecture of augmented cache.
 Let’s suppose Bm be in the DM cache, and the other
blocks competing for the same set be in the buffer. For all the
blocks, the ideal method to utilize LRU algorithm is to attach
a counter to each block. But that will increase the hardware
cost. Therefore, only one bit for each block in the DM cache is
designed to indicate the MRU block. The method is similar to
that of LRU counter of 2-way associative cache. When cache
access hit in DM cache, the Bm is marked as MRU block.
Otherwise, when cache access hit in the buffer, the block of
the same set as the needed block in DM cache is marked as
LRU block. When the miss block is fetched, the location to
refill in is determined by the indicating bit of the
corresponding set, i.e. when the bit indicated MRU the block
will be filled in the buffer; otherwise it will be filled in the
DM cache. Since the LRU blocks on DM cache might not be
the true LRU blocks relative to the blocks in the buffer, this
replacement strategy is named LRU-like algorithm.

IV. LRU BLOCK FILTERING CACHE SCHEME

 According to the LRU-like algorithm, a new augmented
cache scheme named Least-Recently-Used Block Filtering
Cache (LBF cache) is proposed. Fig. 1 shows the LBF cache
structure, which includes a DM cache and a fully associative
buffer.

2056

 For the DM cache the tag of each block is added one
MRU block judge bit (M bit), which is used to detect if the
block was accessed recently. The block in DM cache generally
obtains relatively more reusability, so the evicted block from
DM cache should be kept in L1 cache as long as possible.
 The steps of LBF cache for every condition are shown
below.
 1) Cache hit: CPU accesses the DM cache and the buffer
in parallel. If cache access hits in the DM cache, the M bit for
the hit block is set to 1. Otherwise, when cache access hit in
the buffer, the M bit for corresponding set in DM cache is
cleared.
 2) Cache miss: The fetched block from next level of
memory hierarchy is filled into DM cache if the M bit for the
same set of the miss block is 0; otherwise, the block is filled
into the buffer.
 3) Block transfer: When CPU waits for the required block,
the evicted block from DM cache is filled into the buffer.
 4) Cache refilling: When a block is refilled into the buffer
for the first time, the M bit for the same set in DM cache is
cleared to 0; when a block is refilled into the DM cache for the
first time, the M bit is set to 1.
 Let’s examine how effective this scheme will be, for some
simple reference patterns also used by McFarling [8] to
illustrate his dynamic cache exclusion scheme.

A. Conflict between loops
 In this case, there is a conflict between references inside
two different loops. If there is such a reference and there is a
memory access pattern such as (A10B10)10, where the
superscript denotes the frequency of usage of the particular
data word address access.

Tag0 M0 Block0
Tag1 M1 Block1

Tagn Mn Blockn

Tag0’ Block0
Tag1’ Block1
Tag2’ Block2
Tag3’ Block3

Add DM cache

LBF cache

From Next Hierarchy

 Mj = 1

Y
N

Fig.1 The LBF cache.

 The behavior of a conventional direct-mapped cache
would be

(AmAh
9BmBh

9)10

and the miss rate is

MDM = 20/200 = 10%

 Now let’s consider the behavior of our scheme. When A is
refilled into the DM cache, the M bit is set. Then B is
requested after nine hits of A, it will be refilled into the buffer.
For the next nine cycles, no conflict occurs. On the other hand,
if A is refilled into the buffer for the first time, the M bit for
corresponding set in DM cache is cleared, so B will be refilled
into the DM cache. For both the refilling conditions, the
access behavior would be

AmAh
9BmBh

9 (Ah
10Bh

10)9

and the miss rate is

MLBF = 2/200 = 1.0%

 Thus LBF cache may gain more hits in this case.

B. Conflict between inner and outer loops
 In this case, a conflict occurs between a reference inside a
loop with another reference outside the inner loop, and the
memory access pattern can be represented as (A10B)10. The
behavior of a direct-mapped cache would be

(AmAh
9Bm)10

and the miss rate is

MDM = 2/11 = 18%

 Consider the behavior of our cache scheme in this case,
the same refilling process guarantees both block A and B will
be reserved in L1 cache. So the behavior of LBF cache would
be

AmAh
9Bm (Ah

10Bh)9

and the miss rate is

MLBF = 2/110 = 1.82%

C. Conflict within loops
 In this case, there are two references A and B within a
single loop mapping to the same location in the cache. This
type of memory access pattern may be (AB)10. we can see that
the behavior of direct-mapped cache would be

(AmBm)10

and the miss rate is

MDM = 20/20 = 100%

 The LBF cache have the same behavior, i.e. after initial A
miss and B miss in the L1 cache, the next time A and B will be
put in the DM cache and the buffer, therefore the behaviors are

AmBm (AhBh)9

2057

and the miss rates are

MLBF = 2/20 = 10%

 From the examples above we can see that LBF cache may
improve the hit rate of direct-mapped cache.

V. SIMULATION

A. Simulation Environment
 sim-outorder in SimpleScalar toolset [10] was selected as
our simulator, and mlcache [11] was used to replace the
corresponding cache subprogram in sim-outorder.c. The
simulation just considered to evaluate the performance of L1
Dcache, so the Icache, L2 cache and bus were supposed ideal.
The parameters of simulator and memory system are listed in
table I.
 All the benchmarks for simulation were from SPEC95, in
which only 129.compress were inputted with train data set,
and others with test data set. All the benchmarks were run to
the end.

B. Metrics
 The performance measure best suited for the evaluation of
the proposed caches is effective memory access time or total
memory access time. If h is the hit rate in L1 cache, t is the
access time of L1 cache, and teff is the effective access time,
then

teff = h*t + (1- h) * misspenalty (1)

 Here we assumed that the access time of L1 cache be one
cycle, and the miss penalty be 18 cycles. As to our simulation,
the miss rate is defined as

miss rate = L1 Dcache miss number/ L1Dcache reference
number (2)

 The speedup is

teff of the target structure / teff of the base structure (3)

 Bus traffic that indicates the words L1 Dcache swaps with
next level of memory hierarchy is another important metrics
for processor. In this paper, Relative Bus Traffic is defined as
below:

Relative Bus Traffic= Bus Traffic of base structure - Bus
Traffic of target structure (4)

 The Relative Bus Traffic is more, the speed of the
processor is faster.

VI. EXPERIMENTAL RESULTS

 The DM cache, 2-way associative cache, victim cache and
assist cache are simulated to be compared to the LBF cache.
All the augmented caches for compare are (8+1)KB, i.e. 8KB
DM cache and 1KB buffer. The block size is 32B for all the
caches.

A. Miss Rate
 Table II shows miss rates for various L1 Dcache schemes
after running 8 SPEC95 benchmarks. As a result, for all the
benchmarks, the miss rates of the LBF cache are basically
lower than those of assist cache except that of su2cor; except
miss rates of gcc and su2cor, the miss rates of LBF cache are
lower than those of victim cache. Among the three cache
schemes, the average miss rates of LBF cache, victim cache
and assist cache are respectively 5.34%, 5.38% and 5.48%.

TABLE I

 PROCESSOR AND MEMORY CHARACTERISTICS
Fetch Mechanism Fetches up to 4 instructions in program order per cycle

Branch Predictor Bimodal predictor with 2084 entries

Issue Mechanism Out-of-order issue of up to 4 operations per cycle, 16 entry re-order buffer, 8 entry load/store queue

Functional Units 4 integer ALUs, 4 FP ALUs, 1 integer MULT/DIV, 1 FP MULT/DIV

Data cache Write-back, write-allocate, 32-byte lines, 4 read/write ports, non-blocking

TABLE II

MISS RATES OF SIX L1 DCACHE SCHEMES

 compress gcc li ijpeg perl hydro2d su2cor swim

DM:8K 0.0673 0.0462 0.0231 0.0564 0.0597 0.1195 0.0891 0.4068

DM:16K 0.0557 0.0288 0.0178 0.0221 0.0373 0.1063 0.0796 0.1424

8K2W 0.0563 0.0300 0.0148 0.0448 0.0288 0.1112 0.0768 0.3904

Victim 0.0553 0.0259 0.0141 0.0111 0.0246 0.1094 0.0709 0.0473

Assist 0.0562 0.0287 0.0148 0.0118 0.0281 0.1095 0.0722 0.0472

LBF 0.0543 0.0265 0.0137 0.0104 0.0235 0.1078 0.0723 0.0463

2058

TABLE III
RELATIVE BUS TRAFFIC OF FOUR L1 DCACHE SCHEMES (MILLION WORD)

 compress gcc li ijpeg perl hydro2d su2cor swim

LBF -3.3 -6.4 -3.0 0.5 2.07 -129.8 -90.9 177.9

Victim -11.1 -64.4 -122.9 -6.4 -14.3 -319.8 -309.1 -449.5

Assist -8.2 -30.1 -57.9 -0.3 -3.4 -274.9 -212.9 124.8

8K2W 0.1 -0.4 16.4 -2.1 2.4 -8.8 11.4 -144.0

1

1. 5

2

2. 5

3

3. 5

4

4. 5

compress gcc li ijpeg perl hydro2d su2cor swim

victim cache
assist cache
LBF cache
DM:16K

Fig. 2 Speedup of 4 cache schemes with 8KB DM cache as base structure.

 Compared to 16KB DM cache and 8KB 2-way associative
cache, the average miss rate of (8+1)KB LBF cache decreases
about 26% and 53% respectively.

B. Bus Traffic
 Table III shows the relative bus traffic result of four cache
schemes as the target structures and the 16KB DM cache as
the base structure. According to the table, the accesses to bus
for LBF cache are the least among the four cache structures.

C. Speedup
 Fig. 2 shows the speedup of four cache schemes that the
8KB DM Dcache is as the base structure. For most of the
benchmarks, the speedup of LBF cache is the highest.

D. Hardware Overhead
 Compared with victim cache and assist cache, the LBF
cache is easy to be realized. The LBF cache only utilizes a
one-direction path to transfer evicted blocks, but victim cache
needs two paths. On judgment of data transfer, assist cache
needs the help of software interpreter, but the LBF cache
doesn’t need.

VII. CONCLUSIONS

 In this paper, a method called LRU-Like algorithm to
filter blocks that may not be used recently on chip was
presented. According to this method, a new cache structure
named LBF cache was proposed. The result of simulation
showed that miss rate of (8+1)KB LBF cache are apparently
lower than those of 16KB direct-mapped cache and 8KB 2-
way associative cache. Compared with the typical augmented
cache (victim cache and assist cache), the miss rate of LBF
cache was lower.

ACKNOWLEDGMENT

 We would like to thank the anonymous reviewers for their
helpful comments. This research was supported by Open Fund
of Key Laboratory of Electronics Engineering, College of
Heilongjiang Province, (Heilongjiang University), P. R. China
(DZZD20100033).

REFERENCES

[1] J. K. Peir, W. W. Hsu, and A. J. Smith, “Functional Implementation
Techniques for CPU Cache Memories,” IEEE Transaction on
Computers, 48(2): pp. 100-110, 1999.

2059

[2] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A Modified
Approach to Data Cache Management,” Proc. of MICRO-28 (Dec 1995),
Piscataway, USA, 1995, pp. 93-103.

[3] N. P. Jouppi, “Improving Direct mapping Cache Performance by the
Addition of a Small Full Associative Cache and Prefetch Buffers,” In
Proceedings of the 17th International Symposium on Computer
Architecture, Seattle, USA, 1990, pp.364-373.

[4] G. Kurpanek, G. Chan, K. Zheng, and et al, “PA7200: A PA-RISC
Processor with Integrated High Performance MP Bus Interface,” In
Proceedings of IEEE International Computer Conference, San
Francisco, USA, 1994, pp. 375-382.

[5] E. S. Tam, J. A. Rivers, V. Srinivasan, G. S. Tyson, and E. S. Davidson,
“Active Management of Data Caches by Exploiting Reuse Information,”
IEEE Trans on Computers, 1999, 48(11): pp. 1244-1258.

[6] J. A. Rivers and E. S. Davidson. “Reducing Conflicts in Direct-Mapped
Caches with a Temporality-Based Design,” Proc. of the ICPP, vol. I,
August 1996, pp. 151-160.

[7] T. Johnson and W. W. Hwu. “Run-Time Adaptive Cache Hierarchy
Management via Reference Analysis,” Proc. of ISCA-24, Denver, USA,
1997, pp. 315-326.

[8] S. McFarling, “Cache Replacement with Dynamic Exclusion,” Proc. of
Annual Symposium on Computer Architecture. Gold Coast, Australia,
1992, pp. 191-200.

[9] E. S. Tam, S. A. Vlaovic, G. S. Tyson, and E. S. Davidson, “Allocation
By Conflict: A Simple, Effective Multilateral Cache Management
Scheme,” Proceedings of 2001 International Conference on Computer
Design (ICCD'01), Austin, Texas, 2001, pp. 133-140.

[10] D. Burger and T. M. Austin, “Evaluating Future Processors: The
SimpleScalar Tool Set,” Technical Report #1342, University of
Wisconsin, Madison, June 1997.

[11] E. S. Tam, J. A. Rivers, G. S. Tyson, and et al, “mlcache: A Flexible
Multilateral Cache Simulator,” in Proceedings of the Sixth International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Montreal, Canada, 1998, pp. 19-26.

2060

