
Precise Data Race Detection in a Relaxed Memory Model using

Model Checking

KyungHee Kim, Tuba Yavuz-Kahveci, Beverly A Sanders

Department of Computer and Information Science and Engineering

University of Florida

Gainesville, FL 30611-6120

email: {khkim, tyavuz, sanders}@cise.ufl.edu

Abstract

Most approaches to reasoning about multithreaded
programs, including model checking, make the implicit
assumption that the system being considered is se-
quentially consistent. This is not a valid assump-
tion for most current multiprocessor/core systems and
this fact is exposed to the programmer for many con-
current programming languages in the form a re-
laxed memory model. For example, the Java Mem-
ory Model only promises sequentially consistent behav-
iors for programs that are free from data races, mak-
ing the ability to detect and eliminate data races essen-
tial for soundly reasoning about Java programs. To-
wards this end, we introduce a new summary func-
tion that captures the information necessary for precise
data race detection along with an efficient representa-
tion of the function that allows data race detection by
model checking. In addition, we introduce novel search
heuristics specialized for data race detection that lead
to shorter counterexample paths than standard search
strategies. The ideas have been implemented in Java
RaceFinder (JRF), an extension to the model checker
Java PathFinder (JPF). In contrast to many data race
detection tools that can only deal with a restricted set of
concurrent programming idioms such as lock-based syn-
chronization, JRF correctly handles programs that con-
tain memory model relevant features including volatile
fields, final fields, compareAndSwap, and static initial-
ization in addition to both intrinsic and extrinsic locks.
As a result, it is powerful enough to be effectively used
with wait-free and lock-free data structures. Once a
concurrent program is data race free, standard model
checking techniques can be soundly used to check other
properties of interest.

1 Introduction

Virtually all approaches for reasoning about the be-
havior of concurrent programs, both the informal rea-
soning practiced by programmers writing a concurrent
program and formal methods and tools such as model
checkers start with an assumption of sequential consis-
tency (SC) [14]. With SC, a concurrent program be-
haves as if all of its atomic actions occur in some global
order that is consistent with the program order on each
thread. In particular, all threads ”see” values written
to main memory in a consistent order. Modern pro-
gramming environments do not satisfy SC. Common
optimizations by the compiler and the hardware which
significantly speed up programs without affecting their
sequential semantics, are not necessarily benign in a
concurrent environment.

As an example, consider the following program frag-
ment.

result = computation();

done = true;

The variable done is initially false and not accessed by
computation(), which updates result and possibly
has other side effects. Since the two statements are in-
dependent, the order could be reversed without chang-
ing the sequential semantics. However, if this fragment
occurs in a concurrent program and done is intended
to be a flag to other threads that computation() is fin-
ished, then reversing the order could result in another
thread finding done==true, and seeing a state reflect-
ing an incomplete execution of computation(). This
scenario violates SC.

Architectures provide low level instructions that can
be used to prevent reordering effects and are typically
inserted in the object code as a result of synchroniza-
tion instructions in the program’s source. Although it

would make concurrent programming much easier to
use compiler analysis to automatically insert the nec-
essary instructions, this currently isn’t practical and
the programmer is expected to insert sufficient syn-
chronization to ensure that SC is not violated.

Exactly how threads interact with memory and how
the programmer can control this is defined by a mem-
ory model. Traditionally, memory models have been
defined for architectures, but more recently memory
models have become part of a programming language’s
semantics. The Java memory model (JMM) [15] is an
important example. In the JMM, a situation that can
lead to non-SC behavior is called a data race.

The term data race has often been used where the
definition and consequences are subtly different from
those of data races in the context of the JMM. Two
memory accesses by different threads on the same lo-
cation are said to conflict when at least on is a write
and a data race has been defined to be a situation where
conflicting operations are not ordered by synchroniza-
tion. In a sequentially consistent system, data races
may indicate some sort of concurrency related non-
determinism that may or may not affect the overall
correctness of the program. For example, in a SC sys-
tem, for the example given earlier, the accesses to done
would be considered a benign data race1, while it is a
bug with potentially serious consequences in a program
executing under the JMM. Similarly, a program may be
free of data races in the sense of the JMM, and thus be
SC, while still containing concurrency related errors.
For example, suppose a class representing bank ac-
count contains field for the balance and offers a deposit
method that executes balance = balance + amount.
In the JMM, if balance is marked volatile (or if each
of the accesses to this field occur inside their own criti-
cal section implemented using a common lock) then the
program will not have a data race, but it will still be in-
correct due to the fact that the entire deposit method
is not atomic. Some authors would call this error a
”race”’, adding to the confusion around the term. In
this paper, we will use the term ”data race” as defined
in the JMM and discussed in more detail in section
2.1 with the goal of detecting situations that lead to
non-SC behavior.

The JMM satisfies the important fundamental prop-
erty for memory models [19]:

Programs whose SC executions have no races
must have only SC executions.

As a result, we can assume SC, and thus use model
checking to demonstrate data race freedom. Then, for
programs without data races, standard model checking

1SC rules out reordering and the access itself is atomic.

techniques can soundly be used to find other types of
concurrency related errors.

Most of the tools that have been developed to de-
tect data races do not precisely find race conditions as
defined by a well-defined memory model. Rather they
identify easy to detect situations that may indicate a
data race. For example, many approaches (including
the data race detection extensions in the current Java
PathFinder distribution) attempt to ensure that for all
shared variables, all accesses to a particular variable
are protected by a common lock. While this condition
is sufficient for data race freedom, it is not necessary.
In contrast to JRF, tools that check lock usage can-
not effectively analyze programs using important id-
ioms that are not based on locking including wait-free
and lock-free algorithms.

The paper is organized as follows: In section 2, we
give a brief overview the formal definition the JMM,
including a new result that shows a weaker condition
than complete data race freedom is sufficient to ensure
SC. In section 3, we introduce a summary function that
can be used to capture the necessary information to
precisely recognize data races during model checking.
We also describe a space efficient representation of the
summary function. Section 4 introduces new search
heuristics based on a careful analysis of the properties
of data races. The previously mentioned ideas were im-
plemented in a model checker by extending JPF. How
this was done is described in section 5, followed by ex-
perimental results in section 6. Related work is given
in section 7.

The main contributions of this work can be summa-
rized as

• A weaker requirement for the Java program to be
SC.

• A summary function that captures the necessary
happens-before relation along with a soundness
proof.

• An efficient representation of the summary func-
tion.

• Data race specific search heuristics.

• Our implementation of JRF provides a memory
model aware extension to JPF, thus making JPF
sound for relaxed memory models.

• In contrast to most data race detection tools, JRF
detects data races precisely.

• In contrast to many data race detection tools,
which can only deal with lock-based synchroniza-
tion, JRF correctly deals with data race avoid-

ance using any combination of intrinsic and ex-
trinsic locks, volatile variables, join, barriers, com-
pareAndSet operations, and transmitting values
through concurrent data structures. In particu-
lar, this allows lock-free and wait-free protocols to
be soundly analyzed.

2 Foundations

2.1 The Java Memory Model

In this section, we give an overview of the formal
definition of the Java Memory Model. For the most
part, our treatment follows that of [2]2, which is in
turn based on the original specification of the JMM
given in [15].3

An action is a memory-related operation a that be-
longs to a single thread Thread(a), affects the monitor
or variable v, and has a kind, which is one of the fol-
lowing: volatile read from v, volatile write to v, non-
volatile read from v, non-volatile write to v, lock of
lock m, unlock of lock m, starting a thread t, detect-
ing termination of thread t, and instantiating an ob-
ject with volatile fields volatiles and non-volatile fields
fields . All of the action kinds, with the exception of
non-volatile read and non-volatile write are synchro-
nization actions.

An execution E is given by a tuple 〈A, P,
po
→,

so
→

, W, V 〉 where

• A is a finite set of actions

• P is a program

•
po
→, the program order, is a partial order on A ob-
tained by taking the union of total orders repre-
senting each thread’s sequential semantics

•
so
→, the synchronization order, is a total order over
all of the synchronization actions in A

• V , the value written function, assigns a value to
each write

• W , the write-seen function, assigns a write action
to each read action so that the value obtained by
a read action r is V (W (r)).

2Our treatment explicitly handles object instantiation.
3The most important differences between [15] and [2] are that

the latter requires that the total order for SC executions be con-
sistent with both the synchronization order and program order
(as opposed to just the program order), formulates the semantics
in terms of finite executions, and ignores external actions.

Executions are subject to certain well-formedness con-
straints but still allow non-determinism since normal
actions on different threads need not be ordered. In
addition, it is not required that the write-seen func-
tion returns the ”most recent” write to the variable in
question or that the write-seen functions for actions on
different threads are consistent, thus allowing various
sorts of sequentially inconsistent behavior.

The synchronizes-with relation on actions, denoted
sw
→, is given below.

• An unlock action on a monitor lock m

synchronizes-with all subsequent lock actions on
m by any thread.

• A write to a volatile variable v synchronizes-with
all subsequent reads of v.

• The action of starting a thread synchronizes-with
the first action of the newly started thread.

• The final action in a thread synchronizes-with an
action in any other thread (e.g. join, or invoking
the isAlive() method) that detects the thread’s ter-
mination.

• The writing of default values of every object field
synchronizes-with the first access of the field.

In the descriptions above, ”subsequent” is determined
by the synchronization order.

Well-formedness constraints4 on executions include
unsurprising requirements such as type correctness,
correct behavior of locks, and consistency with the
sequential semantics of the program, and consistency
of volatile reads and writes with the synchronization
order. In addition, a well-formed execution satisfies
happens-before consistency where happens-before order
is a transitive, irreflexive partial order on the actions in
an execution obtained by taking the transitive closure

of the union of
sw
→ and

po
→. Happens-before consistency

means that a read r of variable v is allowed to see the
results of a write w = W (r) provided that

• r is not ordered before w, i.e. ¬(r
hb
→ w).

• There is no intervening write w′ to v, i.e. ¬∃w′ :

w
hb
→ w′ hb

→ r.

4In addition to the well-formedness conditions, legal execu-
tions according to the JMM are also required to satisfy additional
causality conditions that constrain the behavior of programs with
data races, thus providing certain safety guarantees for program
with races. Our goal is to detect data races so that they can be
eliminated rather than reason about the properties of programs
with data races, thus these conditions are not relevant for the
work described in this paper.

Two operations conflict if neither is a synchroniza-
tion action, they access the same memory location and
at least one is a write. A data race is defined to be a
pair of conflicting operations not ordered by

hb
→.

A sequentially consistent (SC) execution is one

where there is a total order,
sc
→, on the actions con-

sistent with
po
→ and

so
→ and where a read r of variable v

sees the results of the most recent preceding write w.

• w
sc
→ r

• There is no intervening write w′ to v, i.e. ¬∃w′ :
w

sc
→ w′ sc

→ r.

A Java program is correctly synchronized if all se-
quentially consistent executions are data race free.

Theorem 1 Any legal execution of a well-formed cor-
rectly synchronized program is sequentially consistent.

This is a property of the JMM [9, 15] and is equivalent
to Theorem 1 in [2], where a proof can be found.

Theorem 1 is crucial for justifying our approach. It
means that we can use a model checker, which assumes
SC, to check whether the program is correctly synchro-
nized, and if so, soundly use the model checker to check
other properties as desired.

2.2 A Weakened Condition for Sequential
Consistency

Data races in SC executions can be classified into
three kinds: WR, WW, and RW, meaning that the
conflicting operations are a write followed by a read,
a write followed by a write, and a read followed by a
write, respectively. To improve the time and space ef-
ficiency of JRF, information to allow detection of RW
data races is not maintained. In most cases, a program
that contains a RW race in one SC execution will con-
tain a WR race on the same variable in a different SC
execution, and the latter data race will be detected. In
any case, the following Theorem guarantees that the
approach is sound.

A Java program is weakly correctly synchronized if
all sequentially consistent executions are data race free
or contain only RW data races.

Theorem 2 Any legal execution E of a well-formed
weakly correctly synchronized programs is sequentially
consistent.

The proof of Theorem 1 in [2] is still valid with the
weaker hypothesis.

3 Capturing the happens-before rela-

tion

3.1 The summary function, h

In this section, we introduce a function h that sum-

marizes
hb
→ at each point in a SC execution, allowing

data races to be detected as they occur during model
checking. Let Addr be the set of (abstract) memory
locations representing non-volatile variables in the pro-
gram, SynchAddr be the set of (abstract) memory lo-
cations representing variables with volatile semantics
and locks, and Threads be the set of threads.

We summarize the happens-before relation as a

function h : SynchAddr ∪Threads → 2Addr that maps
threads and synchronization variables to sets of non-
volatile variables so that x ∈ h(t) means that thread t

can read or write variable x without causing a WW or
WR data race.

For a finite sequentially consistent execution E of
program P that has a set of static non-volatile variables
static(P), let En be the prefix of E of length n, i.e.
the sequence of actions a0, a1, . . . , an−1, and hn be the
value of h after performing all of the actions in En.
We assume that thread main is the single thread that
initiates the program. Initially,

h0 = λz.if z = main then static(P) else ⊥ (1)

The way that hn+1 is obtained from hn depends on
the action an. First, we define four auxiliary functions
release, acquire, invalidate , and instantiate.

The function release(t, x) takes a summary function
h and yields a new summary function by updating h(x)
to include the value of h(t). It is used with actions by

thread t that correspond to the source of a
sw
→ edge, for

example, writing a volatile variable x, releasing lock x,
starting thread x, etc.

release(t, x) h =̂ h[x 7→ h(t) ∪ h(x)] (2)

The function acquire(t, x) takes a summary function h

and yields a new summary function obtained from h

by updating h(t) to include the value of h(x). It is

used in actions that form the destination of a
sw
→ edge,

for example, reading a volatile x, locking lock x, and
joining or detecting termination of thread x.

acquire(t, x) h =̂ h[t 7→ h(t) ∪ h(x)] (3)

The function invalidate yields a new summary func-
tion by removing x from h(z) for all z 6= t. It is used
in actions where thread t writes non-volatile x.

invalidate(t, x) h =̂ λz.if (t = z) then h(z) else h(z)\{x}

an by thread t hn+1

write a volatile field v release(t, v) hn

read a volatile field v acquire(t, v) hn

lock the lock variable lck acquire(t, lck) hn

unlock the lock variable lck release(t, lck) hn

start thread t′ release(t, t′) hn

join thread t′ acquire(t, t′) hn

t’.isAlive() if (t′.isAlive())(acquire(t, t′) hn) else hn

write a non-volatile field x invalidate(t, x) hn

read a non-volatile field x hn

instantiate an object containing non-volatile
fields fields and volatile fields volatiles

instantiate(t,fields , volatiles) hn

Figure 1. Definition of hn+1

The function instantiate is used to incorporate
newly instantiated object into the summary function.
It yields a new summary by adding the set fields to the
value of h(t) and initializing the previously undefined
values of h for the new volatile variables.

instantiate(t,fields , volatiles) h =̂ (4)

λz. if (t = z) then h(t) ∪ fields

else if (z ∈ volatiles) then{}

else h(z)

We define

norace(x, t) = x ∈ h(t) (5)

The definition of hn+1, which depends on hn and
action an, is given in Figure 1.

To detect data races during model checking, we
maintain h and check norace(x, t) before reading or
writing of non-volatile x by thread t. When this con-
dition holds for all non-volatile reads and writes in an
execution, we say the execution is h-legal.

We can prove several facts about h-legal executions.
In the following, we use last(E) to denote the last ele-
ment of finite sequence E and En|w(x)∪inst(x) to denote
the subsequence of actions in En that write to x plus
the instantiation action.

The first, rather obvious lemma confirms our intu-
ition that non-static variables belonging to objects that
have not been instantiated yet have not been written
in any h-legal execution and will serve as the base case
for inductive proofs of other results.

Lemma 3 For an SC execution E, and non-static x,
if x has not been instantiated, En|w(x)∪inst(x) is empty.

The following two lemmas, for non-static and static
variable, respectively, say that at any point in an SC ex-
ecution, the most recent thread to write a non-volatile
variable can access it without causing a data race.

Lemma 4 For an SC execution En and non-volatile,
non-static variable x, if x has been instantiated in En

and t = thread(last(En|w(x)∪inst(x)), then x ∈ hn(t).

The proof is by induction. Since x cannot have been
instantiated in E0, the base case holds trivially. Now,
assume the lemma holds for n and show that it holds
for n + 1. There are four cases:

• x has not been instantiated in En and action an

does not instantiate it. Then the lemma continues
to hold trivially.

• x has not been instantiated in En and action an

is an action of thread t that instantiates x. Then,
last(En+1|w(x)∪inst(x)) = an and from the rule for
object instantiation in figure 1, x ∈ hn+1(t).

• x has been instantiated in En, x ∈ hn(t) where
t = thread(last(En|w(x)∪inst(x)) and thread(an) =
t. From figure 1, there are no actions performed
by thread t that have the effect of removing items
from hn(t) to obtain hn+1(t).

• x has been instantiated in En, x ∈ hn(t) where
t = thread(last(En|w(x)∪inst(x)) and thread(an) 6=
t. From figure 1, either an writes to x falsifying
t = thread(last(En|w(x)), or x ∈ hn+1(t).

Lemma 5 For an SC execution En and non-volatile,
static variable x, x ∈ hn(t) where t = (if En|w(x) 6=
Θ then thread(last(En|w(x)) else main)

Proof: Again the proof is by induction. Since x is
static, x ∈ h0(main) and the base case holds. Now,
assume the lemma holds for En and show that it holds
for En+1. There are four cases.

• x ∈ hn(t), thread(an) = t.

• x ∈ hn(t) and thread(an) 6= t.

The next lemma forms the basis of our soundness
proof. In this lemma, a

hb=
−→ b indicates either a

hb
→ b or

a = b.

Lemma 6 Let E be a well-formed, h-legal SC execu-
tion. Then for all non-volatiles x, all threads t, all
volatiles v, and all n

x ∈ hn(t) ⇒ En|w(x)∪inst(x)
hb=
−→ last(En|t)

∧

x ∈ hn(v) ⇒ En|w(x)∪inst(x)
hb=
−→ last(En|w(v))

where for set S, S
hb=
−→ s means (∀s′ : s′ ∈ S : s′

hb=
−→ s).

The proof is given in appendix A.
The lemma tells us that if x ∈ hn(t), then all the

preceding writes to x happen-before the latest action
on thread t. Since there are no writes to x between
last(En|t) and an, by program order, last(En|t)

hb
→ an,

and by transitivity all writes to x
hb
→ an. As a result,

if an is a write by thread t to x, the action can be
performed without causing a WW data race.

The next theorem, which follows easily from Lemma
6 justifies our approach.

Theorem 7 If all SC executions of a well-formed pro-
gram are h-legal, then the program is weakly correctly
synchronized, and all of its legal executions are SC.

3.2 Representation of h

In this section, we describe a representation of h that
is suitable for implementation in a model checking tool.
This context requires space efficiency, efficient updat-
ing, and, since model checking involves backtracking,
a way to efficiently save and restore previous incar-
nations. We take advantage of the fact that in Java,
threads and locks are also objects and handle elements
of SynchAddr , Thread , and Addr uniformly as ”mem-
ory locations”.

Recall that h maps SynchAddr ∪ Thread to

2Addr . This mapping is implemented as an ar-
ray of bit vectors. Each SynchAddr ∪ Threads is
given unique index,5 conceptually corresponding to
a row, and Addr an index conceptually correspond-
ing to a column. Then norace(t, x) holds when
h[rowindex(t), columnindex(x)] == 1.

5Each memory location is given a unique key constructed from
the name of the class, the instance number, and the field name
(or array index if the location in question is an array element).
The keys are in turn mapped to the corresponding index in the
bit vector for elements of Addr , and the array holding the bit
vectors for elements of SynchAddr ∪ Thread .

h history stack

h bitmap
row index table

column index table

SyncAddr

∪

Threads

Addr

Figure 2. Internal representation of h

When an element of SynchAddr ∪ Threads is cre-
ated, an element of the array of bit vectors is reserved.
When an element of Addr is created, an index is as-
signed, but space in the corresponding bit vector is not
allocated until it is actually used. This implies that the
bit vectors are dynamically resized. The acquire and
release operations can be implemented as a single set
union step, and the norace check, which is used most
often, can be done with bit masking. The invalidate
operation, however, involves a number of rows of set
operations. Fortunately, |SynchAddr ∪ Threads | is far
less than |Addr |. In our experiments, the former is on
the order of tens, while the latter can easily exceed
thousands.

The changes in h are stored in a separate stack
in order to restore the value to an earlier state when
the model checker backtracks. Figure 2 illustrates the
bitmap for h, and a history stack used to store ∆s.
The ∆s of h includes the changes following acquire,
release, invalidate , and allocation including reuse of
garbage collected memory and instantiation in a static
initializer. In addition, the changes in prior release and
written by information, explained in section 5, are also
stored in h history stack. During state backtracking,
these are undone to recover h to previous values.

4 Data race specific search heuristics

Model checking is a way to verify a program cor-
rectness by exhaustively exploring all possible states
of a multithreaded program. At each state, a model
checker chooses the next state from all possible candi-
dates and checks the properties that should be satisfied
at that point in the program. When there are no can-
didates for the next states left, it backtracks to check
any remaining scheduling sequences.

The order that states are traversed during model
checking influences how many states must be visited
before errors are found. Since a data race requires the
interaction of two threads, a search strategy with more
thread interleaving is likely to find a data race ear-
lier than a depth-first search strategy (DFS) which has
minimum interleaving through sequential scheduling of
threads at the beginning. Rather than simply increas-
ing thread interleaving, we also consider the nature of
data races and propose the following heuristics, which
depend on the current value of h, to choose the next
state. In the descriptions, curr refers to the current
thread.

• Writes-first(WF): Although a data race may oc-
cur at either a read or a write, the source of a data
race involving memory location m is a write of m

that causes an invalidate operations to remove m

from h(t) for all t 6= curr. Any future read or
write to m by some other thread results in a data
race unless an appropriate synchronization action
has occurred. Thus this heuristic prioritizes write
operations.

• Watch-written(WW): If there has been a write
on a memory location, m, it is possible that a fu-
ture read or write on m by another thread will
result in a data race. Thus, this heuristic prior-
itizes operations on a memory location that has
recently been written by a different thread.

• Avoid release/acquire(ARA): A data race free
program involves appropriately located matching
release and acquire operations. Although pro-
grams with data races may also have acquire and
release operations, existence of these on a path
may indicate a lower probability of existence of a
data race. This heuristic prioritizes operations on
threads that do not have a recent acquire opera-
tion preceded by a matching release on the execu-
tion path.

• Acquire-first(AF): When an acquire operation
is executed after a matching release, a happens-
before edge is created on the current path. How-
ever, if the acquire is executed before the matching
release statement then this does not result in an
happens before edge and cannot prevent a data
race. This heuristic prioritizes acquire operations
that do not have a matching release along the ex-
ecution path. This situation often corresponds to
situations of unsafe publication of an otherwise
correctly synchronized object.6

6Publication of an object is the act of making its reference

Initially, flag0 = flag1 = turn = shared = 0;

/* all fields are non-volatile */

Thread 1 Thread 2

======================= ======================

s1: flag0 = 1; s6:flag1 = 1;

s2: turn = 1; s7:turn = 0;

s3: while (flag1==1 \& s8:while (flag0==1 \&

turn==1) {/*spin*/} turn==0) {/*spin*/}

s4: shared++; s9:shared++;

/*critical section*/ /*critical section*/

s5: flag0 = 0; s10:flag1 = 0;

Figure 3. One iteration of Peterson’s Algo-
rithm

DFS search

(s1) write of flag0

Thread 2

(s2) write of turn

Thread 1

(s4) write of shared

(s3) read of flag1

(s6) write of flag1

(s7) write of turn

(s5) write of flag0

data race!

(a) DFS algorithm

Heuristic search

(s1) write of flag0

Thread 2

(s2) write of turn

Thread 1

(s3) read of flag1

data race!

(s6) write of flag1

(s6) write of flag1

(s6) write of flag1

(s7) write of turn(s3) read of flag1

* Dashed lines represents alternative choices
 Solid arrows show the chosen ones

(b) HEURISTIC algorithm

Figure 4. The model checking of Peterson’s
algorithm using different search strategies

The fragment of well known Peterson’s algorithm in
Figure 3 shows the advantage of the WF heuristic over
depth-first search.

The search space using DFS for this example is
shown in Figure 4a, and WF heuristic search in
Figure 4b. DFS-based model checking takes seven
states to find the data race on turn while the heuris-
tic search finds the same race after visiting only four
states. The counter example path is shorter and easier
to analyze.

Figure 5 shows the heuristic search algorithm used
in JRF. It stores the states in a max priority queue,
where a priority is the sum of the heuristic value and
the depth of a given state times the max heuristic value
(MAX=WRITEwritten by other). The heuristic values
only affect the choice of a next state among children of
current state. Once the next state is chosen and ad-
vanced, its newly generated children always have higher
priority than the states remaining in the queue. This

visible to other threads. Unsafe publication (section 3.5 of [8])
can lead to a partially constructed object becoming visible to
other threads.

guarantees that the highest priority children and their
descendants will be explored first. The search algo-
rithm visits the states in descending priority order until
it reaches an error state or no more states are left.

The main purpose of those heuristics is to follow
paths which minimize the happens-before orderings
since it is the lack of happens-before orderings that
causes data races. The heuristics can be used together
and the heuristic search algorithm given in Figure
6 can be configured in various ways by turning on
and off each of the 4 heuristics: WF, WW, AF,
ARA. The example seen earlier in Figure 4b shows
the search path with only write-first configured. For
example, if the choice of heuristic is writes-first and
watch-written, the only available heuristic values
are WRITEwritten by other , WRITEwritten by self ,
READwritten by other , READwritten by self , and
OTHER.

In comparison with DFS, the heuristic search al-
gorithm requires more memory. A model checker us-
ing DFS only advances and backtracks while heuristic
search generates and stores all possible child states be-
fore advancing and later restores them. Although only
∆s of h related data are stored during state advance
and backtrack, a complete copy of the h is saved when
the child states are generated. Heuristic search also
tends to take more time because it visits more states
in general. As we can see from Figure 4, DFS only
generates 7 states to find the race, but heuristic search
generates 8 states since it takes into consideration all
children of current state to decide next one. The ad-
vantage of heuristic search is that it tends to find data

AlgAlgorithm HeuristicSearch
Q: max priority queue

s, s′: state

value: integer

Q ← empty

put (initial state, max integer) into Q

while Q not empty do

(s, value) ← remove from Q

if s is an error state then

print(”error”)
break

for each successor s′ of s do

if s′ is not marked then

mark s′

put (s′, HeuristicV alue(s’) + depth ∗MAX) into Q

Figure 5. Heuristic search algorithm. States
are prioritizes based on their heuristic value
as computed in Figure 6 and the search
depth.

Algorithm HeuristicValue (s: state)
v: variable

if s reached via write to non-volatile v then

if v most recently written by another thread then

return 8 /*WRITEwritten by other (WF ∨ WW)*/
else return 7 /*WRITEwritten by self (WW) */

if s reached via read from non-volatile v then

if v most recently written by another thread then

return 6 /*READwritten by other (WF) */
else return 5 /*READwritten by self (WF ∧ WW) */

if s reached via read from a volatile v

or locking an object not released before then

return 4 /*ACQUIREwithout prior release (ARA) */
if s reached via read from a volatile v

or locking an object released before then

return 2 /*ACQUIREwith prior release (ARA ∨ AF) */
if s reached via volatile write

or unlocking an object then

return 1 /*RELEASE (AF) */
else return 3 /*OTHER (ALL) */

Figure 6. Algorithm for deciding heuristic val-
ues for states based on their likelihood of
leading to a data race. Heuristic values be-
comes available according to the heuristics
(WF, WW, ARA, AF) presented in Section 4.

races with a shorter counter example path than DFS in
most cases. This is important because reasoning about
the cause of a data race using the counterexample path
is not a straight-forward task in our experience, espe-
cially when the length of the path is fairly large. Ex-
perimental results are given in section 6.

5 Extending Java Pathfinder

Java PathFinder(JPF) [13] is a model checker for
Java byte code. It reads Java class files and simulates
program execution using its own virtual machine with
on-the-fly verification of specified properties. We have
extended JPF so that we can precisely detect data races
using the summary function, h, and search heuristics
described earlier. This section describes implementa-
tion details.

5.1 The Listener Implementation

JPF supports a Listener interface which can be used
to extend its functionality. The interface provides a set
of callback functions allowing low level operations such
as object creation, object locking and unlocking, the
start of a new thread, and execution of instructions
to be intercepted and augmented with user-supplied
codes. In our case, this code maintains h as described

target application
classes

JPF

JVM

OS platform

native libraries

java standard
libraries

MJI

h
 listener

h history stack

java.util.concurrent.*

h bitmap

target
application

data

h related data

* shaded area represent our implementation to extend JPF

Figure 7. System Structure

in section 3.2. The operations acquire, release, invali-
date and asserting norace are performed as appropriate
when execution of memory model related instructions
occur.

The structure of the system is shown in Figure 7.
The Listener lies at the same level as other JPF code
outside of the target model classes.

To implement the heuristic search algorithm de-
scribed in section 4, we use the following two auxiliary
functions:

• written by : Addr × Thread → Boolean

• prior release : SynchAddr → Boolean

written by(m, t) returns true when the most recent
write to the given memory location m was done by
the thread t, and prior release(m) returns true when
the given memory location m was released at least once
previously.

We have discussed elsewhere [18] how our approach
can be used with standard assertional reasoning tech-
niques to (in principle) give a formal proof that a pro-
gram is free from data races. In an earlier incarnation
of our tool, we annotated the byte code with these as-
sertions and then checked for assertion violations using
standard JPF. The listener-based approach to extend-
ing JPF described above proved to be both more effi-
cient and flexible.

5.2 Using the Model Java Interface

Java programs rely on a number of platform depen-
dent functions including thread implementation and
low level synchronization primitives that are imple-
mented in native codes. The model java interface(MJI)

is provided to allow JPF to handle these situations: na-
tive codes are executed by the host JVM and not model
checked by JPF. Unfortunately, this means that the h

data structures are no longer correct after executing na-
tive codes. Fortunately, the number of native functions
that are relevant to the memory model is small enough
that it is feasible to modify their model java interfaces
to reflect the way the target functions update h. In par-
ticular, we modified the MJI code for sun.misc.Unsafe ,
which is heavily used by java.util.concurrent pack-
ages, to include the necessary calls to h manipula-
tion code. For completeness, it was necessary to also
extend MJI to include the missing classes from the
java.util.concurrent.atomic package including all array
versions of atomic data structures. Many lock-free data
structures use these classes. The current implementa-
tion of JRF correctly handles all java language features
related to the JMM except for finalizers.

5.3 Problems with State Backtracking

There were several issues with state backtracking
that made the task of extending JPF less straightfor-
ward than one might expect.

Static initializers complicate the management of h

since the state backtracking scheme built into JPF does
not reload classes and re-initialize their static fields,
even when the state is backtracked to a point before
the class was loaded. Thus, it is necessary to identify
which memory locations are allocated in a static initial-
izer. These locations, if they have not been updated,
should be accessible by all threads, including those
created later without causing a data race. We main-
tained another set of Addr , h(static initializer), where
static initializer is a synthetic thread representing the
class loader thread. This represents the locations cor-
responding to static variables that have not yet been
updated outside of the static initializer for the class. In
addition to the release(parent thread, child thread),
the thread start operation should also performs
release(static initializer, child thread).

Another complication in the listener implementation
is the unpredictable garbage collection in JPF. When
an object is garbage collected during state search, it is
no longer in use along that path and might be reused
for a new object. The problematic situation occurs
when the unique key for the object is no longer unique.
The original object, which is still used in other stored
paths, shares its key with the new object, resulting in
incorrect sharing of h. State backtracking will use the
h of the new object unless it is properly restored to the
value before garbage collection. The h history stack
stores the necessary garbage collection and reallocation

information.

5.4 Allowing trusted classes and benign
races

A final field can be safely excluded from data race
checking if the object containing it is properly con-
structed.7

The JMM provides a strong guarantee, namely se-
quential consistency for properly synchronized pro-
grams. It also constrains programs with data races
in order to provide some minimal security guarantees.
These guarantees include type safety and the guarantee
that there are no ”out-of-thin-air” values. As a result,
it is possible, in principle, for programmers to write and
reason about the correctness of programs that contain
data races, and in some cases the presence of these
races will not cause the program to violate its specifi-
cation. Doing so is quite difficult and is considered to
be a job for experts only. Most programmers should
write race-free programs. JRF does not support rea-
soning about programs with races in the sense that one
cannot construct a program with data races, submit it
to JRF, and expect the model checker to have explored
the states that only occur in non-SC executions. In or-
der to deal with intentional races that are trusted to
be benign, JRF allows specification of individual loca-
tions so that data races involving these locations will
be ignored.

It is also possible to designate certain classes as
trusted. JRF does not maintain necessary information
to check for data races involving non-volatile variables
in these classes. It does however, continue to track
happens-before edges involving volatile fields and locks
defined in the class in order to continue to detect data
races in other classes precisely. For example, a com-
mon way of safely publishing objects is to make them
available to other threads by passing them through a
data structure such as a queue whose implementation
is provided in the java.util.concurrent package where
the insertion of an object happens-before removal of
the object. If the package is marked as trusted, the
happens-before edges related to inserting and remov-
ing objects will be preserved, but no checking will be
done on the internal non-volatile variables in the class.
By marking the classes in the standard java release as
trusted, a significant reduction in the time and space
requirements to model check an application class can
be achieved.

7An object is ”properly constructed” if the ”this” reference
does not escape the constructor.

6 Experimental Results

Our extension to JPF8 make it possible to soundly
analyze complex, highly concurrent data structures
that do not necessarily use locking, or use a mixture of
locking and other synchronization idioms. In order for
JPF to be sound when applied to these programs, the
program must be free of data races. Lock-free programs
typically use volatile variables along with instances of
classes in the java.util.concurrent.atomic package to
create the necessary happens-before edges to prevent
data races.

6.1 Performance

To evaluate the usefulness of JRF and empirically
explore the behavior of the search heuristics, we used
it to analyze an extensive set of concurrent data
structures using a wide variety of synchronization ap-
proaches. Figure 8 shows empirical results comparing
the behavior of heuristic search with DFS for a selec-
tion of examples, all containing data races identified by
JRF.

Testing was performed on a 2.53 GHz Intel Core 2
Duo processor with Mac OS X/10.5.7, JPF version 4
and Java 1.6 with 2GB JVM heap memory. The states
column contains the total number of states searched,
the length column contains the transition length of a
data race path. Each transition may be composed of
multiple instructions. The h size column summarizes
the number of memory locations kept in the h bitmap;
this is indicative of the extra data structures main-
tained by listener.

The first group of test programs were examples
from the acclaimed textbook by Herlihy and Shavit
[10]. Java implementations were obtained from the
book’s web site. The table contains detailed data from
a few examples with data races. The broader results
from our tests on these examples were extremely
encouraging about the value of JRF. A total of 65
programs were tested, with errors identified in 16.
These included data races as well as other typical con-
currency errors such as deadlock and atomicity errors.
In addition, JRF revealed a benign data race in the
java.util.concurrent.AbstractOwnableSynchronizer
(which is used in the implementation of
java.util.concurrent.locks.ReentrantLock), and a
non-benign race in the java.util.Math class (a reported

8The standard JPF distribution includes two race detecting
tools: RaceDetector and PreciseRaceDetector. Both, section 7
explains more, do not correctly deal with programs where data
races are avoided by using volatile variable or classes from the
java.util.concurrent.atomic package.

example(threads,iteration) DFS Heuristic
state length time mem h size state length time mem h size

barrier.DisBarrier (2,2) 109 109 2s 12M 35*640 79 39 2s 21M 35*640
barrier.StaticTreeBarrier (7,1) 123 123 4s 19M 51*813 407 102 5s 123M 51*898
hash.StripedHashSet (4,12) 35 35 3s 12M 83*820 213 26 4s 60M 91*820
lists.LazyList (4,16) 87 87 3s 19M 65*603 360 44 3s 63M 56*582
lists.OptimisticList (3,6) 47 47 2s 12M 55*598 229 37 3s 39M 52*592
mutex.Bakery (2,2) 53 42 5s 12M 37*794 79 37 4s 21M 37*742
mutex.LockFreeQueue (2,2) 31 27 1s 12M 28*441 37 17 1s 12M 28*439
spin.CLHLock (4,8) 106 98 2s 12M 37*293 106 48 2s 20M 37*293
spin.CorrectedMCSLock (2,4) 289 136 3s 12M 41*537 107 33 2s 20M 41*537

IteratorTest(LockFreeQueue) (2,2) 33 33 17s 21M 213*1817 57 30 16s 36M 205*1817
IteratorTest(EBDeque) (2,2) 25 25 18s 35M 253*2030 41 22 16s 34M 245*2030
IteratorTest(LockFreeList) (2,2) 37 37 16s 21M 214*1747 65 34 15s 35M 206*1747
QueueTest (2,2) 91 81 4s 20M 72*1367 180 85 5s 59M 70*1309

moldyn (2,1) 1884 1884 48s 34M 36*629 1894 949 333s 703M 36*717
sor (2,15) 76 76 4s 12M 41*721 84 44 3s 22M 41*721
lufact (2,5) 26 26 1s 12M 34*309 32 18 1s 12M 34*309
montecarlo (2,5) 105 94 13s 30M 63*3265 29 15 4s 21M 50*1449

Figure 8. Comparison of DFS and heuristic(ARA,AF,WF,WW) se arch

bug in the Java bug database). The second group of
examples are from the Amino Concurrent Building
Blocks project (version 0.5.3) [1]. The last four
examples in the table are from the Java Grande Forum
(JGF) Benchmark Suite Thread Version 1.0.[12].

Figure 9 summarizes the result of JPF Precis-
eRaceDetector for examples in Figure 8. Precis-
eRaceDetector found one false race on a volatile
field, and missed races on arrays declared as volatile
but their element are not volatiles. In addition,
it has an application exception due to the incom-
plete java.util.concurrent.atomic package. JRF heuris-
tic search outperforms PreciseRaceDetector and gives
shorter counter-example paths in most cases: all cases
other than barrier.StaticTreeBarrier gives shorter
counterexample paths.

We tested various configurations of the heuristic
choices, and the results show that using all four
heuristics or (WW,WF) perform best for most cases:
(WW,WF) configuration gives 13 best solutions for
our selected 17 test cases, which is one more than
(ARA,AF,WF,WW), but gives longest path for mol-
dyn. The experiment results with different heuristic
configurations are given in appendix B.

6.2 Overhead

In order to show the overhead of JRF compared with
standard JPF, we checked two types of examples with-
out data races; three without any errors, and one with
application program error so JPF reports property vi-
olation. The first example, Simple, is a variation of the
example discussed in Section 1.

/* thread 1 */

result = 1;

done = true; //done is volatile

/* thread 2 */

if (done)

assert (result==1);

The second example, Peterson, is Peterson’s algorithm
from Figure 3 with all the variables declared to be
volatile. The last two examples are from [10]. Sense-
BarrierTest has no error but the final example, Tour-
BarrierTest, throws an ArrayIndexOutOfBoundsEx-
ception which both JPF and JRF report as a viola-
tion of the NoUncaughtExceptionsProperty. Figure 10
summarizes the result. The default of DFS was used
for both cases.

7 Related Work

Most existing tools to detect race conditions are lim-
ited in ways that make them unsuitable for the exam-
ples we discussed in this paper. Many tools for data
race detection or avoidance do not start from the mem-
ory model and its definition of a data race, but instead
look for conditions that imply data race freedom and
are easier to check. For example, lockset-based ap-
proaches attempt to ensure that all accesses to a par-
ticular shared variable are protected by a common lock.

Eraser [20] is the seminal example of this approach
and uses it to implement dynamic race detection.
Eraser predates programming languages with well-
defined memory models. Although based on the idea
that accesses to shared variables should be consistently

example(threads,iterations) state length time mem result

barrier.DisBarrier(2,2) 100 100 1s 12M same race
barrier.StaticTreeBarrier(7,1) 102 102 1s 12M same race
hash.StripedHashSetTest(4,12) 312 171 1s 13M same race
lists.LazyList(4,16) 2491 689 3s 21M same race
lists.OptimisticList(3,6) 1069 202 2s 12M same race
mutex.Bakery(2,2) 1519 374 3s 22M different race found*
mutex.LockFreeQueue(2,2) 93 26 1s 12M same race
spin.CLHLock(4,8) 263 94 1s 12M same race
spin.CorrectedMCSLock(2,4) 282 129 1s 12M false race on volatile field

IteratorTest(LockFreeQueue)(2,2) 67 28 3s 21M same race
IteratorTest(EBDeque)(2,2) 0 0 1s 12M NoSuchMethodException**
IteratorTest(LockFreeList)(2,2) 68 33 2s 22M same race
QueueTest (2,2) 165 80 2s 12M same race

moldyn(2,1) 11386982 58035 3115s 1020M no race found*
sor(2,15) 2287 499 2s 20M no race found*
lufact(2,5) 2781 675 2s 18M no race found*
montecarlo(2,5) 1012 87 4s 21M same race
*The results in boldface are failure to detect races on volatile array with non-volatile element accesses

**java.util.concurrent.atomic.AtomicReferenceArray is not implemented in JPF

Figure 9. Execution result of PreciseRaceDetector

example(threads,iteration) result Original JPF DFS
state length time mem state length time mem h size

Simple (2,) no error 12 4 1s 7M 12 4 1s 11M 29*92
Peterson (2,2) no error 866 46 1s 11M 866 46 3s 11M 30*82
barrier.SenseBarrierTest (2,2) no error 3329 94 3s 12M 3329 94 19s 16M 36*629
barrier.TourBarrierTest (3,3) other error* 182 182 1s 12M 182 182 2s 12M 37*698
*ArrayIndexOutOfBoundsException caused by application program

Figure 10. Overhead measurement

locked, it did allow the thread that creates an object
to modify it without holding a lock until some other
thread accesses it. It did not check for safe publication
of the reference to the object, however, and would thus
be unsound if applied to the current JMM.

The standard JPF distribution includes two race de-
tecting tools, RaceDetector and PreciseRaceDetector.
The former implements the lockset algorithm based on
the assumption that every shared field is protected
by a common lock. This lacks the ability to check
happens-before ordering by other than locking. The
latter checks a data race based on a generic definition
of a race rather than starting with the JMM. At each
choice generator, it checks if there are more than two
thread choices trying to access the same memory lo-
cation and at least one of them is an update access.
Read and write accesses to a volatile field are also de-
tected as a race. Both JPF race detectors report a
race for the code in Figure 3 with all fields declared as
volatiles. Our tool successfully verified race freedom of

this modified version of Figure 3. While the seman-
tics of the lock primitive in Java imply that consistent
locking is sufficient for data race freedom, it is not nec-
essary, and requiring it rules out increasingly important
programming idioms including wait-free and lock-free
algorithms.

Static race detection tools typically sacrifice com-
pleteness, in the sense that they can only deal with a
particular set of programming idioms. Some tools de-
liberately sacrifice soundness as well, failing to identify
certain data races. For example, the Chord [17] design-
ers made scalability an important design goal and the
system can handle lexically-scoped lock-based synchro-
nization, fork/join synchronization, and wait/notify. It
starts by constructing a superset of possible conflicting
operations, then filters this set using a sequence of anal-
yses, and reports a possible data race for all remaining
pairs. Although Chord is both unsound and incom-
plete, it seems to be extremely well-engineered and has
shown significant utility in practice by identifying nu-

merous concurrency related errors in a set of widely
used, large, open source programs. Another example
is the rcc checker[7] that has been recently resurrected
and extended for the Mobius project[4]. This tool uses
a type theory-based approach (which requires annota-
tions by the users) to ensure that locking is done cor-
rectly. In its most recent incarnation, it also recognizes
that volatile variables do not need to be protected by
locks to avoid data races. Both chord and rcc would
find a false data race in the example program Simple

in section 6.2. Neither would be particularly useful for
the types of algorithms in the tests in section 6.

The tool most closely related to ours is Goldilocks[6].
Goldilocks is a dynamic analysis tool using an algo-
rithm based on a relation that is very similar to the
inverse of h. In other words, the Goldilocks algorithm
maintains a function for each variable that indicates
which threads can access the variable. As with all tools
performing dynamic analysis, the required instrumen-
tation of the program may change its behavior and the
tool is limited to analyzing paths that happen to be
tested.

Recently, several studies [3, 5, 11] have incorporated
memory model awareness to model checking. The ap-
proaches presented in [3, 11] can verify sequential con-
sistency. [3] considers a hardware-level memory model
and uses bounded model checking and a stateless model
checker, CHESS [16]. Therefore, they use vector-clocks
to capture the happen-before relation. Since JPF is a
state-based model checker, we can store the happen-
before information for each state. [11] considers C#’s
memory model and a bytecode-level state-based model
checker tailored for C#. The technique presented in
[5] guides the model checker in generating a subset
(i.e., under approximates the JMM) of program exe-
cutions varying due to instruction reordering allowed
in the JMM. However, their tool does not detect data
races. JRF can verify sequential consistency of a Java
program without generating all such subsets via as-
sertional reasoning but cannot handle reasoning about
programs that are not sequentially consistent.

8 Conclusion

We have described an approach, based on maintain-
ing a function summarizing the happens-before relation
that can be used in a model checker to precisely de-
tect data races. In addition, we introduced new search
heuristics based on a careful analysis of data races that
leads to shorter and easier-to-understand counterexam-
ple paths. The ideas have been implemented in JRF,
an extension of JPF that detects data races which is
important since standard JPF is unsound for programs

that contain data races. JRF has been shown to be
useful on a wide range of important concurrent data
structures. In contrast to most other approaches, JRF
is precise and can deal with the wealth of synchroniza-
tion actions in the Java programming language.

References

[1] Amino concurrent building blocks. http://amino-
cbbs.sourceforge.net/.

[2] D. Aspinall and J. Sevcik. Formalising Java’s data-
race-free guarantee. In TPHOLs 2007 (LNCS), vol-
ume 4732, pages 22–37. Springer, 2007.

[3] S. Burckhardt and M. Musuvathi. Effective program
verification for relaxed memory models. In CAV ’08:
Proceedings of the 20th international conference on
Computer Aided Verification, pages 107–120, Berlin,
Heidelberg, 2008. Springer-Verlag.

[4] M. Consortium. Deliverable d3.3: Preliminary re-
port on thread-modular verification, March 2007.
http://mobius.inria.fr.

[5] A. De, A. Roychoudhury, and D. D’Souza. Java
memory model aware software validation. In PASTE
’08: Proceedings of the 8th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 8–14, New York, NY, USA, 2008.
ACM.

[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a
race and transaction-aware java runtime. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
pages 245–255, New York, NY, USA, 2007. ACM.

[7] C. Flanagan and S. N. Freund. Type-based race de-
tection for Java. In PLDI ’00: Proceedings of the
ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pages 219–232,
New York, NY, USA, 2000. ACM Press.

[8] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
and D. Lea. Java Concurrency in Practice. Addison
Wesley Professional, 2006.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java
Language Specification. Addison Wesley, 3rd edition,
2005.

[10] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[11] T. Q. Huynh and A. Roychoudhury. Memory model
sensitive bytecode verification. Form. Methods Syst.
Des., 31(3):281–305, 2007.

[12] The Java Grande Forum benchmark suite.
http://www2.epcc.ed.ac.uk/computing/research
activities/java grande/index 1.html.

[13] Java Pathfinder. http://javapathfinder.sourceforge.net/.

[14] L. Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690–691,
September 1979.

[15] J. Manson, W. Pugh, and S. V. Adve. The Java mem-
ory model. In POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 378–391, New York,
NY, USA, 2005. ACM Press.

[16] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A sys-
tematic testing tool for concurrent software. Technical
Report MSR-TR-2007-149, Microsoft Research, 2007.

[17] M. Naik, A. Aiken, and J. Whaley. Effective static
race detection for Java. In PLDI ’06: Proceedings of
the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 308–319,
New York, NY, USA, 2006. ACM Press.

[18] B. A. Sanders and K. Kim. Assertional reasoning
about data races in relaxed memory models. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, 2008.

[19] V. A. Saraswat, R. Jagadeesan, M. Michael, and
C. von Praun. A theory of memory models. In PPoPP
’07: Proceedings of the 12th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, pages 161–172, New York, NY, USA, 2007.
ACM Press.

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

A Proof of Lemma 6

Lemma 8 Let E be a well-formed, h-legal SC execu-
tion. Then for all non-volatiles x, all threads t, and all
volatiles v, and all n

x ∈ hn(t) ⇒ En|w(x)∪inst(x)
hb=
−→ last(En|t)

∧

x ∈ hn(v) ⇒ En|w(x)∪inst(x)
hb=
−→ last(En|w(v))

where for set S, S
hb
→ s means (∀s′ : s′ ∈ S : s′

hb=
−→ s).

Proof: The proof is by induction. For the base
case, we have E0, which does not contain any actions
and where h(main) = static(P) and h is undefined for
all other arguments. Since E0 is empty, the right sides
of both implications are trivially true. Now, we assume
the property for En and show it holds for En+1. We
must consider each action kind.

• Write a volatile field v by thread t. hn+1(t) =
hn(t), and due to program order, and the hypoth-

esis, En|w(x)∪inst(x)
hb
→ last(En; write(v, t)|t). The

second requirement is similar for x ∈ hn(v). For
the new additions, we already have x ∈ hn(t) →

En|w(x)∪inst(x)
hb
→ last(En; write(v, t)|t). Since

this write will become last(En|w(v)), the condition
is reestablished.

• Read a volatile field v by thread t.This has the
effect of adding the elements satisfying x ∈ hn(v)

to hn+1(t). Since for any such x, all writes of x
hb
→

the latest write of v, which
hb
→ the read which is

the current action on thread t, and thus becomes
last(En+1|t), thus reestablishing the condition.

• Lock the lock lck. The situation is analogous to
reading a volatile

• Unlock the lock lck. The situation is analogous to
writing a volatile

• Start thread t′. This case is somewhat strange
since it involves two threads, and one of them
does not have any actions. To deal with this, we
consider that the first action of a thread is a syn-
thetic action where the start action by the starting
thread happens-before this action. Then, by tran-

sitivity of
hb
→, the first condition is reestablished.

• Join thread t′. This case follows easily from the

transitivity of
hb
→.

• Detecting termination t’ with t’.isAlive(). Similar
to join

• Write a non-volatile field x by thread t. In
this case, both conditions are violated–it need no
longer be the case, for example, that that all writes
of x happen before the last statement of thread
t’. The solution is to remove x from hn+1(t

′),
thus reestablishing the condition. Since we require
x ∈ h(t) before performing the write, the required
condition for thread t will be maintained.

• Read a non-volatile field x This does not affect the
second condition, and extending En with a read
operation preserves the first.

• Instantiate an object containing non-volatile fields
by thread t non-volatile fields fields and volatile
fields volatiles The instantiate adds the new non-
volatiles to hn+1(t) while extending En with the
instantiate action, thus preserving the first con-
dition. The second condition is not affected by
merely defining a new h(v) to be empty.

B Empirical comparison of different

heuristic configurations

The experimental results for the examples described
in section 6 with various heuristic configurations follow.
The boldface lengths are the shortest counter-example
paths. In a few cases, spin.CLHLock, the three amino
examples, and moldyn the all-heuristic configuration is
not the best choice.

example(threads,iteration) configuration state length time mem h table

barrier.DisBarrier(2,2) AF 77 39 3s 21M 35*640
ARA 85 44 3s 21M 35*640
WW 87 44 3s 22M 35*640
WF 87 44 4s 22M 35*640

ARA,AF 77 39 3s 21M 35*640
WW,WF 87 44 3s 22M 35*640
WW,ARA 87 44 3s 21M 35*640
WW,AF 79 39 2s 22M 35*640
WF,ARA 87 44 3s 22M 35*640
WF,AF 79 39 3s 22M 35*640

ARA,AF,WW 79 39 3s 22M 35*640
ARA,AF,WF 79 39 3s 22M 35*640
ARA,WF,WW 87 44 2s 22M 35*640
AF,WF,WW 79 39 2s 22M 35*640

ARA,AF,WF,WW 79 39 2s 21M 35*640
barrier.StaticTreeBarrier(7,1) AF 379 102 4s 114M 51*813

ARA 379 102 5s 71M 51*813
WW 407 102 6s 123M 51*898
WF 407 102 8s 123M 51*898

ARA,AF 379 102 5s 71M 51*813
WW,WF 407 102 6s 123M 51*898
WW,ARA 407 102 5s 123M 51*898
WW,AF 407 102 5s 123M 51*898
WF,ARA 407 102 5s 123M 51*898
WF,AF 407 102 5s 123M 51*898

ARA,AF,WW 407 102 5s 122M 51*898
ARA,AF,WF 407 102 7s 123M 51*898
ARA,WF,WW 407 102 5s 123M 51*898
AF,WF,WW 407 102 5s 123M 51*898

ARA,AF,WF,WW 407 102 5s 123M 51*898
hash.StripedHashSet (4,12) AF 263 35 3s 64M 83*820

ARA 263 35 4s 64M 83*820
WW 269 33 9s 97M 107*820
WF 356 44 10s 97M 83*820

ARA,AF 263 35 4s 64M 83*820
WW,WF 213 26 6s 60M 91*820
WW,ARA 269 33 8s 97M 107*820
WW,AF 269 33 8s 97M 107*820
WF,ARA 356 44 7s 97M 83*820
WF,AF 356 44 7s 105M 83*820

ARA,AF,WW 269 33 8s 97M 107*820
ARA,AF,WF 356 44 7s 97M 83*820
ARA,WF,WW 213 26 5s 60M 91*820
AF,WF,WW 213 26 4s 57M 91*820

ARA,AF,WF,WW 213 26 4s 60M 91*820

example(threads,iteration) configuration state length time mem h table

lists.LazyList (4,16) AF 679 87 4s 127M 65*603
ARA 679 87 4s 127M 65*603
WW 2425 302 58s 690M 116*610
WF 800 99 7s 219M 65*603

ARA,AF 679 87 4s 126M 65*603
WW,WF 360 44 4s 73M 56*582
WW,ARA 2425 302 54s 1056M 116*610
WW,AF 2425 302 53s 689M 116*610
WF,ARA 800 99 5s 219M 65*603
WF,AF 800 99 5s 219M 65*603

ARA,AF,WW 2425 302 54s 690M 116*610
ARA,AF,WF 800 99 5s 219M 65*603
ARA,WF,WW 360 44 3s 67M 56*582
AF,WF,WW 360 44 3s 73M 56*582

ARA,AF,WF,WW 360 44 3s 63M 56*582
lists.OptimisticList (3,6) AF 270 47 3s 69M 55*598

ARA 270 47 3s 69M 55*598
WW 619 102 22s 174M 92*592
WF 331 54 5s 68M 55*598

ARA,AF 270 47 3s 69M 55*598
WW,WF 229 37 3s 38M 52*592
WW,ARA 619 102 20s 172M 92*592
WW,AF 619 102 20s 174M 92*592
WF,ARA 331 54 3s 68M 55*598
WF,AF 331 54 3s 68M 55*598

ARA,AF,WW 619 102 20s 174M 92*592
ARA,AF,WF 331 54 3s 68M 55*598
ARA,WF,WW 229 37 3s 38M 52*592
AF,WF,WW 229 37 3s 40M 52*592

ARA,AF,WF,WW 229 37 3s 39M 52*592
mutex.Bakery (2,2) AF 1071 351 29s 339M 41*901

ARA 1071 351 30s 338M 41*901
WW 1079 358 32s 304M 41*901
WF 1091 358 33s 383M 41*901

ARA,AF 1071 351 30s 337M 41*901
WW,WF 82 37 7s 34M 40*767
WW,ARA 1067 351 30s 310M 41*901
WW,AF 1067 351 30s 310M 41*901
WF,ARA 1079 354 29s 344M 41*901
WF,AF 1079 351 30s 344M 41*901

ARA,AF,WW 1067 351 30s 316M 41*901
ARA,AF,WF 1079 351 31s 344M 41*901
ARA,WF,WW 1062 351 30s 311M 41*901
AF,WF,WW 1062 351 30s 312M 41*901

ARA,AF,WF,WW 79 37 4s 21M 37*742

example(threads,iteration) configuration state length time mem h table

mutex.LockFreeQueue (2,2) AF 56 27 1s 12M 28*439
ARA 56 27 1s 12M 28*439
WW 37 18 1s 12M 28*439
WF 37 17 1s 12M 28*439

ARA,AF 56 27 1s 12M 28*439
WW,WF 37 17 1s 12M 28*439
WW,ARA 37 18 1s 12M 28*439
WW,AF 37 18 1s 12M 28*439
WF,ARA 37 17 1s 12M 28*439
WF,AF 37 17 1s 12M 28*439

ARA,AF,WW 37 18 1s 12M 28*439
ARA,AF,WF 37 17 1s 12M 28*439
ARA,WF,WW 37 17 1s 12M 28*439
AF,WF,WW 37 17 1s 12M 28*439

ARA,AF,WF,WW 37 17 1s 12M 28*439
spin.CLHLock (4,8) AF 293 98 3s 38M 37*293

ARA 293 98 3s 38M 37*293
WW 171 39 3s 35M 37*291
WF 163 35 2s 35M 37*289

ARA,AF 293 98 2s 38M 37*293
WW,WF 106 48 2s 20M 37*293
WW,ARA 171 39 2s 35M 37*291
WW,AF 171 39 3s 35M 37*291
WF,ARA 163 35 1s 35M 37*289
WF,AF 163 35 1s 35M 37*289

ARA,AF,WW 171 39 2s 35M 37*291
ARA,AF,WF 163 35 2s 35M 37*289
ARA,WF,WW 106 48 2s 20M 37*293
AF,WF,WW 106 48 2s 20M 37*293

ARA,AF,WF,WW 106 48 2s 20M 37*293
spin.CorrectedMCSLock (2,4) AF 121 33 2s 22M 41*537

ARA 106 35 1s 22M 41*537
WW 119 33 2s 36M 41*537
WF 140 33 2s 34M 41*537

ARA,AF 121 33 1s 22M 41*537
WW,WF 119 44 2s 20M 41*537
WW,ARA 116 35 2s 35M 41*537
WW,AF 119 33 2s 36M 41*537
WF,ARA 137 35 2s 34M 41*537
WF,AF 140 33 2s 34M 41*537

ARA,AF,WW 119 33 2s 36M 41*537
ARA,AF,WF 140 33 2s 34M 41*537
ARA,WF,WW 106 35 2s 20M 41*537
AF,WF,WW 107 33 2s 20M 41*537

ARA,AF,WF,WW 107 33 2s 20M 41*537

example(threads,iteration) configuration state length time mem h table

IteratorTest(LockFreeQueue)(2,2) AF 57 30 15s 36M 205*1817
ARA 57 30 15s 36M 205*1817
WW 32 16 11s 36M 194*1756
WF 32 16 12s 36M 194*1756

ARA,AF 57 30 15s 36M 205*1817
WW,WF 32 16 12s 36M 194*1756
WW,ARA 57 30 15s 36M 205*1817
WW,AF 57 30 15s 36M 205*1817
WF,ARA 57 30 15s 36M 205*1817
WF,AF 57 30 15s 36M 205*1817

ARA,AF,WW 57 30 15s 36M 205*1817
ARA,AF,WF 57 30 16s 36M 205*1817
ARA,WF,WW 57 30 15s 36M 205*1817
AF,WF,WW 57 30 15s 36M 205*1817

ARA,AF,WF,WW 57 30 16s 36M 205*1817
IteratorTest(EBDeque)(2,2) AF 41 22 16s 35M 245*2030

ARA 41 22 17s 35M 245*2030
WW 24 12 13s 35M 234*1969
WF 24 12 13s 35M 234*1969

ARA,AF 41 22 16s 35M 245*2030
WW,WF 24 12 13s 35M 234*1969
WW,ARA 41 22 16s 35M 245*2030
WW,AF 41 22 17s 35M 245*2030
WF,ARA 41 22 16s 35M 245*2030
WF,AF 41 22 17s 35M 245*2030

ARA,AF,WW 41 22 17s 35M 245*2030
ARA,AF,WF 41 22 17s 35M 245*2030
ARA,WF,WW 41 22 16s 35M 245*2030
AF,WF,WW 41 22 17s 35M 245*2030

ARA,AF,WF,WW 41 22 16s 34M 245*2030

example(threads,iteration) configuration state length time mem h table

IteratorTest(LockFreeList)(2,2) AF 65 34 15s 33M 206*1747
ARA 65 34 15s 33M 206*1747
WW 42 21 11s 34M 195*1686
WF 42 21 11s 33M 195*1686

ARA,AF 65 34 15s 33M 206*1747
WW,WF 42 18 12s 33M 195*1684
WW,ARA 65 34 15s 34M 206*1747
WW,AF 65 34 15s 33M 206*1747
WF,ARA 65 34 15s 33M 206*1747
WF,AF 65 34 15s 33M 206*1747

ARA,AF,WW 65 34 17s 34M 206*1747
ARA,AF,WF 65 34 15s 34M 206*1747
ARA,WF,WW 65 34 14s 33M 206*1747
AF,WF,WW 65 34 15s 34M 206*1747

ARA,AF,WF,WW 65 34 15s 35M 206*1747
QueueTest(2,2) AF 169 85 5s 59M 70*1309

ARA 169 85 5s 58M 70*1309
WW 180 85 5s 56M 70*1309
WF 180 85 5s 59M 70*1309

ARA,AF 169 85 5s 59M 70*1309
WW,WF 180 85 5s 59M 70*1309
WW,ARA 180 85 5s 59M 70*1309
WW,AF 180 85 5s 59M 70*1309
WF,ARA 180 85 5s 57M 70*1309
WF,AF 180 85 5s 56M 70*1309

ARA,AF,WW 180 85 5s 56M 70*1309
ARA,AF,WF 180 85 5s 56M 70*1309
ARA,WF,WW 180 85 5s 56M 70*1309
AF,WF,WW 180 85 5s 59M 70*1309

ARA,AF,WF,WW 180 85 5s 59M 70*1309

example(threads,iteration) configuration state length time mem h table

moldyn (2,1) AF 1894 949 334s 684M 36*717
ARA 1894 949 331s 684M 36*717
WW 1892 948 31s 358M 36*653
WF 1892 948 31s 356M 36*653

ARA,AF 1894 949 344s 684M 36*717
WW,WF 1890 1352 41s 319M 36*629
WW,ARA 1894 949 332s 713M 36*741
WW,AF 1894 949 332s 713M 36*741
WF,ARA 1894 949 330s 713M 36*741
WF,AF 1894 949 331s 713M 36*741

ARA,AF,WW 1894 949 350s 713M 36*741
ARA,AF,WF 1894 949 341s 713M 36*741
ARA,WF,WW 1894 949 1559s 708M 36*717
AF,WF,WW 1894 949 339s 708M 36*717

ARA,AF,WF,WW 1894 949 333s 703M 36*717
sor (2,15) AF 84 44 2s 22M 41*721

ARA 84 44 2s 22M 41*721
WW 84 44 3s 22M 41*721
WF 84 44 3s 22M 41*721

ARA,AF 84 44 2s 22M 41*721
WW,WF 84 44 3s 22M 41*721
WW,ARA 84 44 2s 22M 41*721
WW,AF 84 44 2s 22M 41*721
WF,ARA 84 44 3s 22M 41*721
WF,AF 84 44 2s 22M 41*721

ARA,AF,WW 84 44 3s 22M 41*721
ARA,AF,WF 84 44 3s 22M 41*721
ARA,WF,WW 84 44 2s 22M 41*721
AF,WF,WW 84 44 2s 22M 41*721

ARA,AF,WF,WW 84 44 3s 22M 41*721

example(threads,iteration) configuration state length time mem h table

lufact (2,5) AF 32 18 1s 12M 34*309
ARA 32 18 1s 12M 34*309
WW 32 18 1s 12M 34*309
WF 32 18 2s 12M 34*309

ARA,AF 32 18 1s 12M 34*309
WW,WF 32 18 2s 12M 34*309
WW,ARA 32 18 1s 12M 34*309
WW,AF 32 18 1s 12M 34*309
WF,ARA 32 18 1s 12M 34*309
WF,AF 32 18 1s 12M 34*309

ARA,AF,WW 32 18 1s 12M 34*309
ARA,AF,WF 32 18 1s 12M 34*309
ARA,WF,WW 32 18 1s 12M 34*309
AF,WF,WW 32 18 1s 12M 34*309

ARA,AF,WF,WW 32 18 1s 12M 34*309
montecarlo (2,5) AF 189 94 13s 99M 60*1993

ARA 189 94 13s 99M 60*1993
WW 29 15 5s 21M 50*1449
WF 29 15 5s 21M 50*1449

ARA,AF 189 94 13s 98M 60*1993
WW,WF 29 15 4s 20M 50*1449
WW,ARA 29 15 4s 21M 50*1449
WW,AF 29 15 5s 20M 50*1449
WF,ARA 29 15 4s 21M 50*1449
WF,AF 29 15 4s 20M 50*1449

ARA,AF,WW 29 15 5s 21M 50*1449
ARA,AF,WF 29 15 5s 21M 50*1449
ARA,WF,WW 29 15 4s 21M 50*1449
AF,WF,WW 29 15 4s 21M 50*1449

ARA,AF,WF,WW 29 15 4s 21M 50*1449

