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Abstract According to modern relaxed memory models, programs that contain data
races need not be sequentially consistent. Executions that are not sequentially con-
sistent may exhibit surprising behavior such as operations on a thread occurring in a
different order than indicated by the source code, or different threads having incon-
sistent views of updates of shared variables. Java Racefinder (JRF) is an extension of
Java Pathfinder (JPF), a model checker for Java bytecode. JRF precisely detects data
races as defined by the Java memory model and can thus be used to verify sequential
consistency. We describe an extension to JRF, JRF-Eliminator (JRF-E), that analyzes
information collected during model checking, specifically counterexample traces and
acquiring histories, and provides advice to the programmer on how to eliminate de-
tected data races from a program. Once data races have been eliminated, standard
model checking and other verification techniques that implicitly assume sequential
consistency can be soundly employed to verify additional properties.

Keywords Data race · Relaxed memory model · Counterexample

1 Introduction

Virtually all approaches for reasoning about the behavior of concurrent programs,
both the informal reasoning practiced by programmers writing a concurrent program
and formal methods and tools such as model checkers, start with an assumption of
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sequential consistency (SC) (Lamport 1979). Under sequential consistency, a concur-
rent program behaves as if all of its atomic actions occur in some global order that
is consistent with the program order on each thread and thus that all threads have a
consistent view of the way the memory has been updated. In modern systems, how-
ever, optimizations by compilers and hardware that significantly speed up programs
without affecting their sequential semantics, may allow sequentially inconsistent be-
havior.

As an example, consider the following program fragment.
...
computation();
done = true;
...

The (non-volatile) variable done is initially false and not accessed by
computation(), which updates other variables. Since the two statement are in-
dependent, the order could be reversed1 without changing the sequential semantics.
However, if this fragment occurs in a concurrent program and done is intended
to be a signal to other threads that computation() is finished, then another
thread finding done true may observe a state that reflects an incomplete execution of
computation(). This scenario is legal according to Java semantics, but violates
SC and the programmer’s expectations.

Exactly how threads interact with memory and how the programmer can control
this is defined by a memory model. Originally, memory models were defined for archi-
tectures, and program behavior with respect to the memory model is constrained us-
ing low level operations such as fences and memory barriers. More recently memory
models have become part of a programming language’s semantics. The Java memory
model (JMM) (Manson et al. 2005; Gosling et al. 2005) is an important example.
A situation that can lead to non-SC behavior is called a data race. Java semantics
guarantee that a program that is free from data races will behave as if it is SC, thus
corresponding to programmer intuition and the implicit assumptions of model check-
ers and other tools.

Java Racefinder (JRF) (Kim et al. 2009a, 2009b) is an extension to the Java
Pathfinder (JPF) model checking tool (Visser et al. 2003; Java Pathfinder 2012) that
detects data races, as defined by the JMM, precisely. Note that the meaning of the
term “data race” depends on the context. In much of the literature on data race de-
tection, a data race is a situation where conflicting accesses2 to shared variables are
not ordered by synchronization. Sequential consistency is implicitly assumed and
data races are of interest because they often, but by no means always, indicate some
sort of concurrency related bug, for example, a forgotten lock that might lead to an
atomicity violation. In contrast, we are interested in the specific notion of a data race
given in the Java Memory model where the notion of “ordered by synchronization”
is formally defined and incorporates a richer set of synchronization constructs than
locking.

1Among other possibilities, write buffers or values updated by computation() held in registers instead
of writing to main memory could cause this effect
2Two operations by different threads conflict if they access the same memory location and at least one is a
write.
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Once data races have been detected and eliminated from a program, it will be
sequentially consistent and standard model checking techniques and other verifica-
tion methods that assume sequential consistency can be soundly employed to reason
about the program. However, understanding a data race is a tedious task particu-
larly when multiple races are involved. In this paper, we describe a further extension,
JRF-Eliminator (JRF-E), that can explain detected races and provide advice to the
programmer about how to modify the source code to eliminate them. JRF-E analyses
use information collected during model checking, specifically counterexample traces
and acquiring histories. Experiments indicate that JRF-E is a practical tool.

2 Background

In this section we give a brief and informal description of the JMM (Gosling et al.
2005, Chap. 17) and (Manson et al. 2005; Aspinall and Sevcik 2007). We also briefly
describe Java Racefinder (JRF). A more complete treatment can be found in Kim
et al. (2009b).

2.1 The Java memory model

An execution of a Java program is a set of memory model related actions (read and
write, volatile read and write,3 lock and unlock a monitor lock, start a thread, detect
termination of a thread, etc.) along with an order,

po→, which totally orders the actions
on each thread, and a synchronization order,

so→, that totally orders the synchroniza-
tion actions. Additionally, we have the value written function, V , that assigns a value
to each write, and the write-seen function W that assigns a write action to each read
so that the value obtained by a read action r is V (W(r)). The synchronization or-
der,

so→, on an execution induces a partial order on synchronization actions called the
synchronizes-with order,

sw→, according to the following rules:

– An unlock action on a monitor lock m synchronizes-with all subsequent lock ac-
tions on m by any thread.

– A write to a volatile variable v synchronizes-with all subsequent reads of v.
– The action of starting a thread synchronizes-with the first action of the newly

started thread.
– The final action in a thread synchronizes-with an action in any other thread (e.g.

join, or invoking the isAlive() method) that detects the thread’s termination.
– The writing of default values of every object field synchronizes-with the first access

of the field.

In the descriptions above, “subsequent” is determined by the synchronization order.

Finally, the happens-before order,
hb→, is a transitive, partial order on the actions in

an execution obtained by taking the transitive closure of the union of
sw→ and

po→.

3Since Java 1.5, the volatile keyword prevents reordering of memory accesses across accesses to the
volatile variable. This is usually implemented using a memory barrier.
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Well-formed executions satisfy some unsurprising requirements such as type correct-
ness, correct behavior of locks, and consistency with the sequential semantics of the
program. In addition, a well-formed execution satisfies happens-before consistency
which requires that a read r of variable v is allowed to see the results of a write

w = W(r) provided that r is not ordered before w, i.e. ¬(r
hb→ w), and there is no

intervening write w′ to v, i.e. ¬∃w′ : w
hb→ w′ hb→ r . Well-formedness still allows

non-determinism since actions, unless they are synchronization actions, on different
threads need not be ordered. Also, it is not required that the write-seen function, W

returns the “most recent” write to the variable in question, nor is it required that W is
“consistent” for reads on different threads, thus allowing sequentially inconsistent be-
havior. Legal executions are well-formed executions that satisfy additional causality
constraints intended to provide certain safety guarantees (no “out-of-thin-air” values)
for programs, even when not sequentially consistent. Since our goal is to eliminate
data races, the causality conditions are not relevant.

In the JMM, two operations conflict if neither is a synchronization action, they
access the same memory location, and at least one is a write. A data race is defined to

be a pair of conflicting operations not ordered by
hb→. A sequentially consistent (SC)

execution is one where there is a total order,
sc→, on the actions consistent with

po→ and
so→ and where a read r of variable v sees the results of the most recent preceding write
w such that w

sc→ r and there is no intervening write w′ to v, i.e. ¬∃w′ : w sc→ w′ sc→ r .
A Java program is correctly synchronized if all sequentially consistent executions are
data race free. It has been shown (Manson et al. 2005; Aspinall and Sevcik 2007) that
any legal execution of a well-formed correctly synchronized program is sequentially
consistent.4 This result justifies using a model checker to detect data races.

2.2 Summarizing
hb→ with h

In this section, we describe the function, h, which is used by JRF to detect data races.

At each point in an sequentially consistent execution, h summarizes
hb→, allowing data

races to be detected as they occur. Let Addr be the set of memory locations represent-
ing non-volatile variables in the program, SynchAddr be the set of memory locations
representing variables with volatile semantics and locks, and Threads be the set of
threads. Then h : SynchAddr ∪ Threads → 2Addr maps threads and synchronization
variables to sets of non-volatile variables so that x ∈ h(t) means that thread t can
read or write variable x without causing a data race.

For a finite sequentially consistent execution E of program P , a set of static non-
volatile variables static(P ), let En be the prefix of E of length n, i.e. the sequence of
actions a0, a1, . . . , an−1, and hn be the value of h after performing all of the actions
in En. We assume that thread main is the single thread that initiates the program.
Initially, h0 = λz.if z = main then static(P ) else ⊥.

The way that hn+1 is obtained from hn depends on the action an. First, we de-
fine four auxiliary functions release, acquire, invalidate, and new. The function

4JRF actually uses a slightly weaker but still sound notion of correct synchronization.
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release(t, x) takes h and yields a new summary function by updating h(x) to include
the value of h(t). It is used with actions by thread t that correspond to the source of
a

sw→ edge.

release(t, x)h =̂h
[

x �→ h(t) ∪ h(x)
]

(1)

The function acquire(t, x) takes h and yields a new function by updating h(t) to
include the value of h(x). It is used in actions that form the destination of a

sw→ edge.

acquire(t, x)h =̂h
[

t �→ h(t) ∪ h(x)
]

(2)

The function invalidate yields a new function by removing x from h(z) for all z 	= t .
It is used in actions where thread t writes non-volatile x.

invalidate(t, x)h =̂λz.if (t = z) then h(z) else h(z)\{x}
The function new yields a new summary function by adding the set fields to the value
of h(t) and initializing the previously undefined values of h for the new volatile
variables.

new(t,fields, volatiles)h

=̂λz. if (t = z) then h(t) ∪ fields

else if (z ∈ volatiles) then φ else h(z) (3)

The definition of hn+1, which depends on hn and action an, is given in Fig. 1.
To extend the model checker, we maintain h, and check that

norace(x, t) = x ∈ h(t) (4)

holds before reading or writing non-volatile x by thread t . When this condition holds
for all non-volatile reads and writes in an execution, the execution is h-legal. We
have shown elsewhere (Kim et al. 2009b) that if all SC executions of a well-formed
program are h-legal all of its legal executions are SC.

an by thread t hn+1
write a volatile field v release(t, v) hn

read a volatile field v acquire(t, v) hn

lock the lock variable lck acquire(t, lck) hn

unlock the lock variable lck release(t, lck) hn

start thread t ′ release(t, t ′) hn

join thread t ′ acquire(t, t ′) hn

t ′.isAlive() if (t ′.isAlive())
then (acquire(t, t ′) hn)

else hn

write a non-volatile field x invalidate(t, x) hn

read a non-volatile field x hn

instantiate an object new(t,fields, volatiles) hn

Fig. 1 Definition of hn+1
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2.3 Java RaceFinder

Java PathFinder (JPF) model checks Java byte code by reading Java class files and
simulating their execution using its own virtual machine with on-the-fly verification
of specified properties. A property violation is reported by JPF along with a coun-
terexample, the execution path that led to the violation.

JPF provides a listener interface which was used to extend its functionality for
JRF. The interface provides a set of callback functions allowing low level opera-
tions such as object creation, object locking and unlocking, the start of a new thread,
and each execution of an instruction to be intercepted and augmented with user-
supplied code. JRF maintains a representation of the summary function h described
in Sect. 2.2; the listener code intercepts relevant instructions and updates the repre-
sentation as described in Fig. 1. In addition, the norace property, which was defined
in Eq. (4), is checked prior to all non-volatile reads and writes. Because everything,
including threads and locks are objects in Java, threads, locks, and variables are han-
dled uniformly as “memory locations”.

JRF employs a variety of additional optimizations and features that enhance us-
ability. These include:

– Search heuristics: Specialized heuristics can be employed to search paths that
are more likely to contain a data race earlier. For example, the writes-first(WF)
heuristic prioritizes write operations while the watch-written(WW) heuristic prior-
itizes operations on a memory location that has recently been written by a different
thread. The avoid release/acquire(ARA) heuristic prioritizes operations on threads
that do not have a recent acquire operation preceded by a matching release on the
execution path. The acquire-first(AF) heuristic prioritizes acquire operations that
do not have a matching release along the execution path. This situation often cor-
responds to unsafe publication5 of an otherwise correctly synchronized object.

– Search space pruning: Java Pathfinder (JPF) prunes the search space by giving
each state a state number and stopping the search along path when a state number
that has already been seen has been encountered. This is unsound in JRF since
states with the same state number with different histories may have different values
of h. Nevertheless, under certain conditions, tested by JRF the search space can be
safely pruned.

– Untracked variables: JRF offers the option to mark individual non-volatile loca-
tions as untracked, so that data races involving these locations are not detected,
but data races involving tracked variables are still found. An entire class can be
marked as trusted which will result in all of its private non-volatiles becoming un-
tracked. A package can be marked trusted, which will result in all package-private
non-volatile variables to become untracked. There are two different motivations
for not tracking variables. The first allows JRF to ignore certain data races that are
considered to be benign.6 The second is to improve the scalability of JRF. Marking

5An object is published when its reference is made visible to other threads. Unsafe publication is a common
error that can allow a partially initialized object to be seen by other threads.
6Occasionally data races will be deliberately allowed for performance reasons, and because the JMM
constrains the values that can be seen through data races enough to avoid type errors and out-of-thin-
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classes or packages as trusted is a convenient way to reduce the time and memory
requirements by not checking their internal variables. JRF does, however, continue
to track happens-before edges involving volatile fields and locks defined in trusted
classes and the non-volatile fields accessible outside of trusted classes (or pack-
ages) in order to continue to detect data races in or caused by other classes. For
example, a common way of safely publishing objects is to make them available
to other threads by passing them through a data structure such as a queue whose
implementation is provided in the java.util.concurrent package where
the insertion of an object happens-before removal of the object. If this package
is marked as trusted, the happens-before edges related to inserting and removing
objects will be preserved, but no checking will be done on the internal non-volatile
variables in the class unless they are visible outside the trusted code. By marking
the classes in the standard Java release as trusted, a significant reduction in the time
and space requirements to model check an application class can be achieved.

– Lazy representation of array elements: In the representation of h, every memory
location requires an entry in the h table. This also applies to arrays, which require
an entry for each array element. However, JRF uses a single h entry to abstractly
represent the entire array until such time that an individual element is updated and
obtains a different value for h. At that point, an additional entry in the h table
for that element is allocated. The abstract location is still used for the remaining
elements. The lazy representation of array elements saves acquire and release time
as well as space. This is especially important in programs that manipulate String
objects, which hold characters internally in an array.

– Thread local optimization: If we have knowledge of which memory locations
are not shared, this can be used to reduce the overhead. Since a data race on a
non-volatile variable by definition involves two threads, a non-static variable that
is only accessed by the thread that instantiated it can never be involved in a data
race. Static variables are accessed by a class loader thread during static initializa-
tion. They are then accessed by at most one application thread, they can also never
be involved in a data race because the JMM guarantees that static initialization is
guaranteed to happen-before the first access of a variable by any application thread.
Applying the thread local optimization requires somehow determining which vari-
ables are shared. We typically do this by running a slightly modified version of
Java Pathfinder that collects sharing information.

Additional information about the implementation, including the data structures
used for efficient implementation of h and proofs of soundness of the optimiza-
tions listed above can be found in Kim et al. (2009a, 2009b). JRF currently can
handle all Java language features related to the JMM except for finalizers. In par-
ticular, JRF correctly handles the memory-model related semantics of the classes in
the java.util.concurrent.atomic package. This package contains classes
that support atomic operations on variables such as atomic increment and compare
and swap. These classes are heavily used in lock-free algorithms (see Herlihy and

air values, this is feasible in principle. A well-known example is a racy lazy initialization of the hash
code value in the java.lang.String class. Generally, however, reasoning about programs with races is quite
difficult and should be considered to be a job for experts only.
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Shavit 2008 for a thorough treatment of lock-free algorithms). The ability of JRF to
precisely deal with races in this class of concurrent programs sets it apart from the
vast majority of tools that detect data races.7

3 Counterexample analysis

JRF inherits JPF’s ability to provide the sequence of statements (the counterexam-
ple path) that leads to a data race. This is extremely valuable information, but it is
a tedious job to parse the JRF output to determine the interleaving sequence of the
threads and the reason why the data race has occurred. JRF-E adds an analysis phase
that analyzes the counterexample path and some additional information gathered dur-
ing model checking and provides the programmer with a concise diagnosis of the
problem and suggestions for source code modifications to eliminate a race.

Since a data race is defined to be the lack of a happens-before edge, JRF-E can
leverage the information in h to identify the statement containing the write involved
in a data race, which we call the source statement, and the manifest statement, the
read or write where the data race occurred, i.e. where the norace condition failed.
This information is then used to provide suggestions for ways to eliminate the data
race by creating a happens-before relationship between those statements.

In addition to maintaining the h function, JRF-E also maintains the acquiring
history. The idea is to store the synchronization operation that enabled a thread t to
access a memory location m in a data-race free way. If accessing m by another thread
t ′ results in a data-race, JRF-E suggests that t ′ perform the same synchronization
operation that thread t has used before.

In any run of JRF-E multiple races will be detected. Some of these may be man-
ifestations of the same race (i.e. the race source and race manifest statements are
the same) occurring on different paths. The analysis can be configured to stop when
threshold number of data races have been detected (or the whole state space is ex-
plored). For each unique race, JRF-E generates a list of suggestions that will elim-
inate the data race on the corresponding execution paths. A higher threshold may
allow better suggestions to be provided at the cost of longer execution time.

A simple example will illustrate the practical benefits provided by JRF-E. A Java
implementation of the program shown in Fig. 2 was analyzed using JRF. Both x and
done are involved in races. Part of the output, including the counterexample path for
a data race involving x is shown in Fig. 3. The omitted output gives similar results
for additional (8 more) detected races.

Fig. 2 Thread 1 notifies Thread
2 that x is set through flag done

7Lock-based algorithms including the Race Detector tool in JPF cannot handle these lock-free algorithms
and will report false-positives since they approximate the happens-before orders only for locks.
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Fig. 3 Partial output from JRF for the program in Fig. 2. Eight similar traces have been omitted

To understand what caused the detected race, we need to decode the counterex-
ample path given as "trace #1". Clearly, this is a tedious exercise, even for this
simple program where the length of the counterexample path is only six. The path
length may be several hundreds in realistic examples. In contrast, Fig. 4 shows the
output of the analysis produced by JRF-E. For each unique race found, the race source
statement, the race manifest statement, and suggestions for code modifications that
will eliminate that race are given. Note that the tool recognized that marking done
as volatile is sufficient to also eliminate the race on x.



500 Autom Softw Eng (2012) 19:491–530

Fig. 4 JRF-E output which explains the source of the race and suggests how to eliminate it

3.1 Suggestion generation

When JRF detects a data race, it passes the following information to JRF-E: the
counterexample path (pathInstr), the h information for the counterexample path
(pathHB), the acquire history (AcquireHis), the position of the manifest statement
(raceManifestIndex), and the position of the source statement (raceSourceIndex) on
the counterexample path. The remainder of this section describes the algorithms used
in generating the suggestions.

3.1.1 Change a (non-array element) variable to volatile or implement with an
atomic class

Due to the semantics of volatile variables in Java, changing a variable involved in a
race to volatile is always sufficient to eliminate a data race involving that variable.
Since volatile variables inhibit compiler optimizations and accesses to volatiles incur
runtime overhead, the trivial way of eliminating races by making everything volatile
is undesirable.

Changing a variable to volatile likely to be the most appropriate in situations where
this variable is being used for publication (i.e. making the reference to a new object
instance visible to other threads). Unsafe publication (Goetz et al. 2006) is a common
error in concurrent Java programs written by programmers without a good under-
standing of the JMM and can lead to a situation where another thread sees a partially
initialized object.

Figure 5 illustrates the well-known double-checked-locking antipattern and its fix
using volatile to publish shared reference helper. The scenario given in Fig. 6 is
the case where double-checked-locking is broken due to the unsafe publication of
helper. Figure 7 illustrates the search path with a race and suggestions to fix it.
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Fig. 5 Double-checked-locking
antipattern with races on
helper and helper.data

Fig. 6 Non-SC execution
scenario where
double-checked-locking is
broken for the program in Fig. 5.
Thread 2 failed to print correctly
initialized value 2011

Fig. 7 Part of the state space
for the program in Fig. 5 with a
data race

Another guaranteed solution is to replace the variable with a final8 refer-
ence to an instance of the atomic class corresponding to the variable’s type
in the java.util.concurrent.atomic package. For example, replace an
int variable with an instance of the AtomicInteger class in java.util.
concurrent.atomic package. These classes are less convenient than volatiles
because they must be accessed with get and set methods and are the better choice
only if the lock-free atomic update methods they provide are needed. These atomic
update methods include compareAndSet, which is frequently used in lock-free

8Final fields must be set in the constructor, cannot be modified, and have special semantics in the JMM.
Note that the value encapsulated in the atomic object can change, just not the object itself.
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Fig. 8 This implementation
does not guarantee mutually
exclusive access to shared
since it has a race on flag[0]
and flag[1]

Fig. 9 Part of the state space
with a race on flag[1]

Algorithm makeChangeToVolatileSuggestions (raceManifestIndex, raceSourceIndex)
integer raceManifestIndex, raceSourceIndex

let v denote the variable accessed by instructions at
raceManifestIndex and raceSourceIndex

if v is an array element then
print "Use atomic array ..."

else
print "Make v volatile"

Fig. 10 Suggest change to volatile or atomic array

algorithms, and where appropriate for the type, methods such as getAndAdd,
addAndGet, getAndIncrement, etc.

3.1.2 Change an array to an atomic array

Atomic arrays for various element types are provided in the java.util.concur-
rent.atomic package. They provide volatile semantics for array elements and
thus this change is always sufficient to eliminate data races involving array elements.
Arrays are objects in Java and a frequent error is to mark an array reference volatile
without realizing that this does not provide volatile semantics for the accesses to the
elements. Figure 8 is the example implementation of Peterson algorithm with a data
race on non-volatile elements of volatile array and Fig. 9 illustrates one counterex-
ample path with a race on flag[1]. Figure 10 implements these two suggestions.

3.1.3 Move source statement

Data races can sometimes be avoided by placing the source statement before a state-
ment, s1, that is the source of a happens-before edge. Assume that the happens-before
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Fig. 11 Find the set of
happens-before edges through
synchronization actions on path
pathInstr

Algorithm findHBEdges(pathInstr): Set of integer pairs
Stack pathInstr
Set of integer pairs HBEdges ←∅

for indexDest from size(pathInstr) to 1 do
if pathInstr(indexDest) is an acquire then

for indexSource from indexDest − 1 to 1 do
if pathInstr(indexSource) is a release matching

pathInstr(indexDest) then
HBEdges ←HBEdges ∪ (indexSource, indexDest)
break

return HBEdges

Algorithm makeMoveSourceInstructionSuggestions (pathInstr, raceManifestIndex, raceSourceIndex)
Stack pathInstr
integer raceManifestIndex, raceSourceIndex

Set of integer pairs HBEdges ←findHBEdges(pathInstr)
foreach pair p =(i1,i2) ∈ HBEdges do

if i1 < raceSourceIndex
AND
(raceSourceIndex,raceManifestIndex) intersects p
AND
same thread executed pathInstr(i1) and pathInstr(raceSourceIndex)
AND
same thread executed pathInstr(i2) and pathInstr(raceManifestIndex) -
then

print “Move instruction at raceSourceIndex before i1”

Fig. 12 Suggest moving instruction

edge is between s1 and statement s2. As long as the source statement and s1 are ex-
ecuted by the same thread and hence ordered by happens-before due to the program
order and similarly s2 and the manifest statement are ordered by happens-before, the
move creates a happens-before edge between the source and the manifest statements
due to transitivity of the happens-before relation.

The algorithm in Fig. 12 first calls the findHBEdges algorithm in Fig. 11 to com-
pute all the happens-before edges that result from synchronization actions on the
counterexample path.

A happens-before edge is a pair of instructions where the release instruction is
the source vertex and the matching acquire instruction is the destination vertex. In-
structions are identified by their positions on the counterexample path. After hav-
ing all pairs representing the happens-before edges on the counterexample path,
Fig. 12 compares the (source statement, manifest statement) pair, (raceSourceIndex,
raceManifestIndex), with all other pairs from the set of happens-before edges.
We suggest moving the source statement before an existing happens-before edge
to get a transitive happens-before ordering through program orders and exist-
ing happens-before order. The candidate happens-before order should be between
the thread executing source statements and the thread executing manifest state-
ment.

As an example, consider the program in Fig. 13 where goFlag and publish are
shared variables. Since publish is a reference, the object to which it refers can also
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Fig. 13 Via goFlag Thread 1
notifies Thread 2 when object
publish is ready to be used

Fig. 14 Part of the state space
of the showing a data race free
path and a path with a data race

be accessed by both threads.9 Thread 1 creates an object at line s1 which is currently
accessible only by itself. Then it publishes the object by storing the reference in a
shared variable publish at line s2. The state of the object is updated at line s3 and
shared variable goFlag is set to true at line s4 declaring that object descriptor has
been set and can safely be read by other threads. Thread 2 checks whether publish
is not null at line t1 and if so, spins until the global flag becomes true at line t2 and
reads the object descriptor in line t3.

When the code is analyzed using standard JPF, no assertion violation is reported.
However, an assertion failure at line t4 is legal according to the Java semantics. The
program contains a data race between writing the object’s descriptor by Thread 1 and
reading it by Thread 2, thus SC semantics is not ensured and it would be legal for
lines s3 and s4 to be reordered. JRF correctly reports a data-race for this program.

Figure 14 shows part of the state space of the example. As long as JRF does not
run out of memory or the user out of patience, it can explore all possible paths in
the state space. The first path does not exhibit a data race. When JRF executes t2
on the 2nd path that is explored, a data race is manifested (e.g., assert norace fails),
the currently explored path is reported to the user as a counterexample, and JRF
terminates. One way of eliminating this particular data race is making the global flag,
goFlag, volatile, thus creating a happens-before edge between s4 and t2. Another
way is to move s4 before s2 and create a happens-before edge between s4 and
t2, which follows from the transitive property of the happens-before relationship:

s4
hb→ s2, s2

hb→ t1, and t1
hb→ t2 implies s4

hb→ t2. Once this change is made, a

9Since JPF is working at the bytecode level, accessing a field potentially involves two bytecode
instructions—one to get a reference to the object and one to access the field.
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Algorithm makePutInSynchronizedBlockSuggestions (pathInstr, raceSourceIndex, raceManifestIndex)
Stack pathInstr
integer raceSourceIndex, raceManifestIndex
Set of InstructionLocations syncLoc1 ←∅, syncLoc2 ←∅

for index from raceManifestIndex − 1 to raceSourceIndex + 1 do
if (pathInstr(index) is a MONITOREXIT instruction OR
RETURN instruction of a synchronized method)
AND
same thread executed pathInstr(index) and pathInstr(raceSourceIndex) then

let loc denote the source line for pathInstr(index)
syncLoc1 ←syncLoc1 ∪ {loc}

if (pathInstr(index) is a MONITORENTER instruction OR
INVOKE instruction of a synchronized method)
AND
same thread executed pathInstr(index) and pathInstr(raceManifestIndex) then

let loc denote the source line for pathInstr(index)
syncLoc2 ←syncLoc2 ∪ {loc}

foreach source line loc ∈ syncLoc1 do
print "Put instruction pathInstr(raceManifestIndex)

in synchronized block as in line loc "
foreach source line loc ∈ syncLoc2 do

print "Put instruction pathInstr(raceSourceIndex)
in synchronized block as in line loc "

Fig. 15 Suggest a synchronized block

Fig. 16 Thread 2 need to
synchronize on lock to access
data

new data race between the write at s3 and the read at t3 is exhibited. This can be
eliminated by moving s3 before s2. At this point the example is both correct (the
assertion will never fail) and contains no data races.

3.1.4 Use a synchronized block

Using consistent locking is one way of creating happens-before edges between ac-
cesses to shared data. Using synchronized blocks is one way of implementing lock-
ing in Java. The algorithm in Fig. 15 finds all the locks that are released after the
source statement and before the manifest statement and suggests protecting the man-
ifest statement with these locks by referring to the specific source lines that performs
the locking. It also suggests to protect the source statement with the locks acquired
by the thread executing the manifest statement between the source and the manifest
instruction.

Figure 16 shows an example in which Thread 1 acquires a lock before accessing
the shared data data whereas Thread 2 does not acquire any lock before access-
ing data. Figure 17 shows the counterexample path that manifests the data race on
data. At s3 Thread 1 unlocks lock before the manifest statement t1. The data
race can be eliminated by making Thread 2 acquire lock before t1.
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Fig. 17 Part of the state space
with the unlock in between
source and manifest statements

Algorithm isHappensBeforeOrdered (sourceIndex, destIndex, hbEdges) : boolean
integer sourceIndex, destIndex
Set of integer pairs hbEdges

if sourceIndex and destIndex have same executing thread then
return true;

if (sourceIndex,destIndex) ∈ hbEdges then
return true;

foreach (s1, s2) ∈ hbEdges
if isHappensBeforeOrdered(sourceIndex, s1,hbEdges)
and isHappensBeforeOrdered(s2,destIndex, ,hbEdges) then

return true;
return false;

Algorithm makeChangeOtherToVolatileSuggestions (manifestIndex, sourceIndex, hbEdges)
integer manifestIndex, sourceIndex
Set of integer pairs hbEdges

for each write of v at s1 between sourceIndex and manifestIndex do
if there exists a read of v at s2 between s1 and manifestIndex
and isHappensBeforeOrdered(sourceIndex,manifestIndex,hbEdges∪(s1, s2)) then

if v is an array element then
print “Use atomic array for v . . .”

else
print “Make v volatile”

Fig. 18 Suggest changing a different memory locations to volatile

3.1.5 Change other memory locations to volatile or use atomic arrays

One way of creating a happens-before edge between the source and the manifest
statement is to create a happens-before edge between a pair of statements (s1, s2) that
come between the source and the manifest statement in the execution sequence, i.e.,

(source, . . . , s1, s2, . . . ,manifest). For this to work we need source
hb→ s1 and s2

hb→
manifest. If our program modifications establish s1

hb→ s2, then by the transitivity of

the happens-before relation, we will have source
hb→ manifest.

If s1 and s2 are the write and read of a variable v, respectively, then changing
v to volatile creates a happen before edge between s1 and s2. Figure 18 shows the
algorithm for checking the happens-before relation and the algorithm for this type of
suggestion using it.

Figure 2 shows an example with two threads sharing two variables: done and x.
If JRF-E is configured with threshold > 1, it is possible to find a counterexample that
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Fig. 19 Part of the state space that change done to volatile can eliminate a race on x

shows a data race manifested in statement t2 as shown in Fig. 19. It turns out that
between the source statement (s1) and the manifest statement (t2), there is a write of
done followed by read of done. Since s1 and s2 are executed by Thread 1 and t1
and t2 are executed by Thread 2, changing done to volatile creates a happens-before
edge between s1 and t2 and eliminates the data race.

In our experience, suggestions from this class are often the most appropriate solu-
tion in lock-free algorithms that exhibit data races on multiple variables.

3.1.6 Perform the same synchronization operation

JRF-E keeps track of the acquiring history to allow determination of how happens-
before edges were created for non-racy accesses to a memory location. Formally, we
define the acquiring history as a function: AcquireHis : Addr ⇒
2(SynchAddr∪Threads)×Threads. For a memory location m, (v, t) ∈ AcquireHis(m) means
that at some point in the computation so far, thread t performed an operation on v that
resulted in m being added to h(t). The actions by thread t that would result in (v, t)

being added to AcquireHis(m), for some m could be reading v, locking v, or joining
v, where v is a volatile field, lock, or thread, respectively. In contrast to the summary
function h, which only applies to a particular path, the AcquireHis is cumulative and
contains information from all the explored paths.

The algorithm in Fig. 20 determines how previous accesses to the data race mem-
ory location (m) have been ordered by the happens-before relation and suggests per-
forming the same acquire operation. Three possible acquire operation choices are
read, lock, and join according to the type of memory location. If the memory
location is a field, then it must be volatile and the corresponding acquiring operation
is to read it. If the memory location is a lock, the acquire operation is to lock it. When
the memory location is a reference to thread, joining it serves as an acquire.

The example in Fig. 21 motivates the use of the acquiring history. In execution
sequence (r1, r2, s1, s2, t1) as shown in Fig. 22, there is a data race be-
tween r1, a write of x by Thread 1, and t1, the read of x by Thread 3. It should
be noted that Thread 2 also performs a read of x but it does not result in a data race
with Thread 1 and the reason is Thread 2 reads volatile done before reading x and
this generates a happens-before edge between the write of x by Thread 1 and the read
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Algorithm makePerformSameAcquireSuggestions (AcquireHis,m,h)
Mapping of memoryLocation to Set of (ThreadId,agentLoc) AcquireHis
MemoryLocation m, loc
Mapping of memoryLocation to Set of memoryLocation h

foreach (t, loc) ∈ acquireHistory[m] do
if m ∈ h(loc) then

if loc is reference to thread then
print “join thread loc before manifest instruction”

else if loc is a field then
print “read field loc before manifest instruction”

else
print “lock the object loc before manifest instruction”

Fig. 20 Suggest performing an acquire operation that can add the data race memory location to h of the
manifesting thread

Fig. 21 Acquiring history of
Thread 2 shows that Thread 3
will obtain race free access on x
by reading done

Fig. 22 Part of the state space
with the acquiring history that
guides how to eliminate the race

of x by Thread 2. The acquiring history stores this information and JRF-E uses it to
suggest that Thread 3 reads volatile done before reading x to eliminate the data race.

The suggestions generated by the above algorithms are guaranteed to eliminate
the data race on the path where the race was discovered. The “precision” of the sug-
gestions are improved by filtering the set of suggestions to only include those that
appear on all of the paths. More details are discussed in Sect. 3.3. Given the set of
suggestions, the programmer determines the best solution and implements it. JRF-E
should then be rerun.

3.2 Theoretical results

In this section, we prove that modifying the program according to the suggestions
generated by our tool does not remove any happens-before edges that existed before
the modification. Specifically, Theorems 1 and 2 show that this is the case for all
execution paths considering changing a non-volatile to volatile and adding a new
synchronization action via putting in a synchronized block or following an acquiring
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history-based suggestion, respectively. Theorem 5 shows a similar result for the move
suggestion only on the counter-example path under certain conditions.

One important thing to note is that though the code modifications we suggest never
remove existing happens-before edges, they may have other side effects. For instance,
changing non-volatile field to volatile would result in poor performance since it will
disable some compiler optimization. It is clear that addition of a synchronization
may result in a deadlock or livelock. It also changes search space by disallowing
certain paths. When an instruction is moved, the programmer should make sure that
it would not change the program semantics such as the control flow or an output value.
However, in all these changes, it is guaranteed that no new race will be introduced as
following theorems prove.

Theorem 1 Changing a non-volatile variable to a volatile variable does not remove
any of the existing happens-before edges that result from synchronization actions on
any of the execution paths but it may introduce additional happens-before edges.

Proof Accessing non-volatile variables are not synchronization actions so they can-
not involve in the creation of happens-before edges resulting from synchronization
actions.

Once a non-volatile variable is changed to a volatile variable, the write accesses
will become release statements and the read accesses will become acquire statements
and matching release and acquire pairs, if any, will create happens-before edges. �

Theorem 2 Changing a program by adding a synchronization action (joining a
thread, acquiring a lock, and reading a volatile variable) that involves an existing
memory location, does not remove any of the existing happens-before edges that re-
sult from synchronization actions or the program order on any of the execution paths.

Proof An existing happens-before edge that result from synchronization actions can
be removed only by changing the source or the destination statement of the happens-
before edge. Adding a synchronization action does not change such a statement. Also,
an existing happens-before edge that result from program order does not change as
a result of adding a synchronization action as happens-before is a transitive relation
and all such existing happens-before edges would be preserved due to transitivity. �

Lemma 3 Moving an instruction that accesses a non-volatile variable does not re-
move any of the existing happens-before edges that result from synchronization ac-
tions on any of the execution paths.

Proof Same reasoning as in proof of Theorem 1. �

Let tid(i) denote the id of the thread that executed instruction i on a given path.

Lemma 4 Moving a data race source instruction, write x at step h, before an
instruction that is the source of a happens-before edge, represented by [d, i] where
d < h < i, does not introduce a new data race that involves the moved statement on
the same counter-example path if and only if the following conditions hold:
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Fig. 23 Via goFlag Thread 1
notifies Thread 2 when object
publish is ready to be used.
Thread 3 can also notify Thread
2 by checking a field of the
object pointed by publish

Fig. 24 (a) Instantiation of Condition 1 in Lemma 4 (b) instantiation of Condition 2 in Lemma 4 based on
sample program in Fig. 23. Happens-before edges formed by synchronization actions are shown by lines
connecting the matching release and acquire instructions

Condition 1: The moved source instruction does not become a new data race source
instruction. For any read/write x at step g s.t. d < g < h, there exists a happens-
before edge represented by range [e, f ] s.t. d < e < f < g and tid(h) = tid(e) and
tid(f ) = tid(g).

Condition 2: The moved source instruction does not become a new data race man-
ifesting instruction. For the first read/write x at step a that precedes the in-
struction at d , there exists a happens-before edge [b, c] s.t. a < b < c < d and
tid(a) = tid(b) and tid(c) = tid(h).

Proof Condition 1: After the move, the old data source instruction (at step h) would
be at step d −1 and would be ordered with the instruction at step g by happens-before.
As a concrete example consider the sample program in Fig. 23 and the corresponding
counter-example path in Fig. 24a.

Condition 2: After the move, the old data source instruction (at step h) would be
at step d − 1. The instruction at step a and the instruction at step d − 1 would be
ordered by happens-before. As a concrete example consider the sample program in
Fig. 23 and the corresponding counter-example path in Fig. 24b. �
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Fig. 25 Other counterexample path for the same race in Fig. 17

Theorem 5 Moving a data race source instruction, write x at step h, before an
instruction that is the source of a happens-before edge, represented by [d, i] where
d < h < i, does not involve any new data races if and only if Conditions10 1 and 2 in
Lemma 4 hold.

Proof Follows from Lemmas 3 and 4. �

3.3 Combining suggestions from multiple traces

As shown in Fig. 4, considering multiple races at the same time would give better
choice among JRF-E suggestions. Even with one race,11 it is worthwhile to consider
the suggestions from multiple traces when selecting the most appropriate fix. It is
obvious that one race is discovered in multiple traces with different set of sugges-
tions. For example, the simple program in Fig. 2 has only two races on x and done
but reports nine different traces. Since JRF-E suggestions are based on the happens-
before relations among executions in the counterexample path, it is possible that a
suggestion from one trace would not be applicable to other trace for the same race.
As discussed in Sect. 4, JRF-E provides the ability to detect multiple race traces at
one JRF-E run and the suggestions from this option are more precise than one race
trace result.

The rule to combine suggestions for a race depends on the types of suggestions.
Suggestions from Sects. 3.1.1 and 3.1.2 are common to all different traces for a race
and always guarantee to eliminate the specific race. Suggestions from Sects. 3.1.3,
3.1.5 and 3.1.6 are specific to the counterexample path and cannot applicable to other
traces with different happens-before relations. JRF-E produces combined suggestions
for a race by intersecting those suggestion from different traces.

One exception is the suggestion in Sect. 3.1.4. In Fig. 25 which shows different
trace for a race represented in Fig. 17, it is explained that this suggestion is only
present in subset of all interleavings and the uncovered state spaces are excluded
by the modification when the corresponding lock is held at the source or manifest

10Checking of the two conditions in Lemma 4 has been implemented in JRF and the suggestion is made
only if the conditions hold. For brevity, the algorithm in Fig. 12 does not include checking these conditions.
11Two race traces report the same race when their source and manifest statements are the same.
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Algorithm combineSuggestions (TraceInfo)
Mapping of Traces to Set of (Suggestions,sSyncS,mSyncS,slocks,mlocks) TraceInfo
integer t
MemoryLocation l
suggestion s
Set of suggestion advices ←TraceInfo[1].Suggestions
Set of (suggestion, MemoryLocation) sadvices ←TraceInfo[1].sSyncS
Set of (suggestion, MemoryLocation) madvices ←TraceInfo[1].mSyncS

for t from 2 to size(TraceInfo) do
advices ←advices ∩ TraceInfo[t].Suggestions
sadvices ←sadvices ∪ TraceInfo[t].sSyncS
madvices ←madvices ∪ TraceInfo[t].mSyncS

foreach (s, l) ∈ sadvices do
for t from 1 to size(TraceInfo) do

if l /∈ TraceInfo[t].slocks then
sadvices ←sadvices \ (s, l)
break

foreach (s, l) ∈ madvices do
for t from 1 to size(TraceInfo) do

if l /∈ TraceInfo[t].mlocks then
madvices ←madvices \ (s, l)
break

foreach s ∈ advices do
print s

foreach (s, l) ∈ sadvices do
print s

foreach (s, l) ∈ sadvices do
print s

Fig. 26 Combine suggestions from multiple traces for the same race

statement depending on the reasons we suggested in Fig. 15. JRF-E only generates
this type of suggestion when the corresponding lock is held at the source or manifest
statement for all traces of a race.

Figure 26 summarizes the algorithm to combine suggestions from different traces.
A trace information produced by JRF-E composed of suggestions from Sects. 3.1.1,
3.1.2, 3.1.3, 3.1.5 and 3.1.6 as Suggestions, suggestions from Sect. 3.1.4 divided
into sSyncS and mSyncS according to the statement to put in synchronized block,
and the set of locks held by the thread executing source or manifest statement as
slocks and mlocks.

Combining suggestions for different races in a program can be ranked using the
number of races it can eliminate. However, JRF-E provides all suggestions with
their rank instead of reporting the highest rank one as shown as frequency of
advice in Fig. 4. This is to let the programmer decide the most appropriate modifi-
cation considering possible side-effects including a deadlock and overhead.

3.4 Separation of model checking and counterexample analysis

Clearly, adding the additional data structures and algorithms required for JRF-E in-
creases the runtime and memory usage over that of JRF. Further, since more coun-
terexample paths yield better suggestions, it is desirable to analyze multiple races and
combine the suggestions. In our experience, one line of a racy code easily produces
thousands of counterexample traces making it infeasible to store all of them without
significantly reducing the applicability of the tool. We address this problem by pro-
viding an option to store the required information in a file and analyze it later with
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Fig. 27 The JRF-E execution model: plugin or standalone

a tool called standalone JRF-E as opposed to the combined tool with JRF as JRF-E
plugin. Figure 27 shows the structure of JRF-E extension. Each counterexample trace
is directed to a file without any analysis when JRF detects a race. JRF-E will analyze
traces and categorize them into different races, bookkeeping the suggestions accord-
ingly. Additional information, such as happens-before edges in the counterexample
path and acquiring history, are available to better explain the race. This approach
is close to the JPF extension jpf-trace-server that provides storing, querying, and
analysis of execution trace. jpf-trace-server cannot be used directly because of the
additional information required by JRF.

Standalone JRF-E also provides happens-before relations in each trace to help pro-
grammers understand the counterexample path. The computation of happens-before
relations in a trace, findHBEdges, is the most time-consuming part of JRF-E analysis
with the complexity of O(n2) where n is the length of the path.12 This is stored in
the file for reuse. The same mechanism is used for suggestions and allows standalone
JRF-E to be incremental. This enhances the scalability of JRF-E.13

Figures 28 and 29 show the output using standalone JRF-E. The time and memory
requirement for JRF standalone reporter usually took more than JRF but less than

12This assumes worst case scenario based on current JPF trace structure. We can enhance the algorithm
by filtering out threadlocal instructions from the trace and managing trace data more wisely but this is left
as future work.
13The Filter example from Herlihy and Shavit (2008) in Sect. 4 reported 6 races with 863 traces and
was successfully analyzed using this incremental mechanism which ran out of memory in standalone
mode when tried to analyze all at once. This is more important in user-friendly GUI interface as a future
extension to standalone JRF-E, in that the number of traces loadable at the same time was the bottleneck
in our experience and it is easy to selectively load minimum necessary information with this mechanism.
In addition, it will be also possible to analyze races in parallel and merge the result. These two extension
is left as future work.
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Fig. 28 The JRF standalone reporter output for the program in Fig. 2. The race statistics is writ-
ten to the file jrf/simple.SimpleRace.race and the traces are saved as jrf/simple.
SimpleRace.trace#

JRF-E unless the program was very simple (such as the program used in Fig. 28), so
that the overall disk access time outweighed the analysis time.

4 Experimental results

In order to evaluate the usefulness and determine good threshold values for number of
data races to detect before stopping, JRF-E was used to analyze programs taken from
a variety of sources including a textbook14 on multiprocessor programming by Her-
lihy and Shavit (2008), the Amino Concurrent Building Blocks library (2012), barrier
implementations from a Google concurrent data structures workshop (2012), the Java
Grande Forum Benchmark Suite (2012), and undergraduate students assignments im-
plementing a multithreaded web server simulator. JRF discovered a data race in 19
out of 65 examples from the textbook, 9 races in 20 Junit tests15 and 10 examples in
Amino16, and 10 of 12 barrier implementations in the Google code. We also found
data races in 6 out of 10 examples from the Java Grande Foum benchmarks and 7 out
of 28 students projects. These results show that data races are a common error in Java
programs, even when written by experts.

Figure 30 summarizes the statistics for all 51 tests with races. JRF-E was con-
figured to stop at the first race found. Since the suggestions were counted when the
analysis stopped at the first race detection, the suggestion might not be able to re-
move a similar race found in a different path. For example, the “move” suggestion
in the table were the cases that the first race can be eliminated by moving the source
instruction but it cannot fix the same race found in other path. The most appropriate
suggestions are chosen according to the program semantic analysis and verified by
manually testing the modified version using JRF-E again.

Most races were caused by not using volatile or atomic array. 31 races can be fixed
by directly changing the field or array involved to volatile or atomic array. Four of

14Java implementations were obtained from the book’s companion web site.
15183 different functions are tested in 20 Amino Junit tests.
16These races involve features documented as not thread safe, thus indicate bugs in client code, not the
Amino library.
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Fig. 29 Standalone JRF-E output for the saved race traces in Fig. 28. Note the analysis results such as
HBedges and advice are empty at the read traces phase but filled after the analysis phase. The only
HBedges in this program are between the two threads starts and their first instructions
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Fig. 30 The number of suggestions by JRF-E for the first races detected and the correct solutions to fix
them for all test cases given as (JRF-E suggestions/correct solution). The correct solution for students
projects cases in ()* are to ensure correct program semantics including atomicity in addition to eliminate
the race

them depend on changing a different field to volatile or an atomic array. This is be-
cause many of the examples from the textbook, Amino, and Google barrier code were
concurrent data structures that implement lock-free algorithms. Also, the program-
mers who implement the concurrent libraries are the experts who tend to make few
basic concurrency mistakes caused by missing synchronization or inconsistent lock-
ing. JRF-E failed to suggest one appropriate solution of Herlihy and Shavit (2008)
since the model checking was stopped at the first race trace and the acquiring history
was incomplete at that moment.

In the students projects, on the other hand, the races were related to the fields
accessed without any protection. Their code showed, in many cases, a lack of under-
standing of how to safely access shared data in a concurrent program. Since six of
them didn’t use any acquire/release operations, JRF-E only suggested the straight-
forward suggestions-to use volatile/atomic array or change others to volatile. Though
all those suggestions by JRF-E can eliminate the races found, the correct program
modification in those cases were using synchronization to protect shared data to en-
sure other program semantics such as atomicity. In this set of test cases, JRF-E failed
to provide the most appropriate solutions in six out of seven. For inexperienced con-
current programmers, the best approach is to use plain old Java Pathfinder (which
assumes sequential consistency) to find and correct those concurrency errors that are
problems even in a sequentially consistent environment, and then use JRF-E to find
and deal with races, possibly after using JRF to find the races and identify shared
variables.

The Java Grande Forum examples are perhaps the most illustrative; they contained
significant amounts of threading and synchronization, but were application programs
rather than concurrency libraries. JRF-E successfully provided suggestions for all of
them. Suggestions from Sects. 3.1.4 and 3.1.6 sometimes advise the same changes.

More in depth test results excluding students projects are shown in Table 1
to Table 8. Testing was performed on a i386/8 processor with 32 GB ram using
Linux/2.6.32-24-generic OS, JPF version 5, and Sun Microsystems Inc./1.6.0_16
Java with 2 GB JVM heap memory. Tables 1, 3, 5 and 7 summarize the resources
required to find 1, 10, and 100 race traces. The “states” column represents total state
space visited and the “max length” column contains the number of transitions in the
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Table 1 Experimental results for (Herlihy and Shavit 2008) examples containing races found by JRF-E.
Results threshold as 1, 10, 100 are given

Example Traces States Max
length

JRF
time (s)

JRF-E
time (s)

Mem
(MB)

Sync
Addra

Addrb

DisBarrier 1 108 108 8 0 70 36 300

10 331 265 27 5 157 36 304

100 1656 268 150 57 263 36 304

StaticTreeBarrier* 1 58 58 10 0 57 39 322

CoarseHashSet** 1 60 34 8 0 71 42 341

10 177 38 37 2 157 69 374

LockFreeHashSet 1 55 55 7 0 68 44 380

10 81 57 10 7 77 44 386

100 138 61 18 26 107 44 406

RefinableHashSet 1 101 56 19 2 105 49 376

10 251 61 66 23 223 63 383

100 360 62 95 36 242 76 409

StripedHashSet** 1 60 34 9 0 63 46 351

10 184 38 41 5 159 73 384

LazyList 1 64 64 10 0 86 54 353

10 118 66 20 8 119 54 355

100 489 77 108 81 241 68 362

OptimisticList 1 55 55 8 0 74 54 349

10 118 59 22 8 123 54 351

100 1645 59 597 24 412 102 407

Bakery 1 33 33 3 1 40 38 423

10 36 34 4 16 39 38 430

100 71 51 9 181 72 38 492

Filter 1 54 55 5 2 47 38 300

10 72 70 6 32 55 38 304

100 197 81 18 304 102 38 320

LockFreeQueue 1 25 25 1 0 29 29 236

10 34 29 2 0 33 29 238

100 254 38 11 5 76 29 238

Peterson 1 24 24 2 0 34 35 307

10 29 26 2 2 33 35 319

100 141 39 9 20 73 35 337
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Table 1 (Continued)

Example Traces States Max
length

JRF
time (s)

JRF-E
time (s)

Mem
(MB)

Sync
Addra

Addrb

ALock 1 22 22 2 0 31 35 245

10 25 23 2 1 34 35 245

100 161 36 9 9 72 35 245

CLHLock 1 19 19 1 0 32 33 250

10 24 21 2 0 33 33 255

100 265 31 18 3 80 33 255

MCSLock 1 17 17 1 0 32 33 253

10 71 26 4 0 49 33 253

100 312 30 18 3 94 33 279

CorrectedMCSLock* 1 17 17 1 0 29 35 251

DEQueue 1 26 26 2 0 32 29 245

10 50 35 3 1 38 29 245

100 274 37 13 11 80 29 246

UnboundedQueue 1 35 35 5 0 55 46 333

10 40 37 6 5 52 46 335

100 196 45 31 52 130 46 348

aVolatiles, locks, and threads

bNon-volatiles

*JRF-E ran out of memory before detecting 10 and 100 threshold races

**JRF-E ended by application assertion error before detecting 100 threshold races

longest counterexample path. The memory requirement and elapsed time for JRF and
JRF-E are given in the next three columns. The overhead of counterexample analysis
is the time and memory spent in managing additional data such as the acquiring his-
tory and path elements as well as applying the algorithm to generate suggestions. The
final two columns show the field involved in a detected data race and the suggestions
generated by JRF-E. Each row gives results generated using three different values for
the number of races threshold. The suggestion in bold in Tables 2, 4, 6 and 8 corre-
sponds to a solution chosen by a knowledgeable programmer as the most appropriate
way to eliminate the data race on fields in the second column.

In the DisBarrier test, the log[] integer array is part of the test driver,
not the barrier. The race on its elements could be eliminated trivially by chang-
ing the array to an atomic array. However, the suggestions show that chang-
ing the flag[] to an atomic array will also correct the races on log[], and
this is the best solution. StaticTreeBarrier and CorrectMCSLock marked
with * ran out of memory before detecting 10 and 100 threshold race traces and
used other optimization technique to exclude threadlocals to get JRF-E results.
TCuckooHashSetBarrier ended with an application assertion failure before de-
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Table 2 JRF-E suggestions for Herlihy-Shavit examples with a race summarized from 1/10/100 traces

Test suite Race field of class Analysis

DisBarrier flag[] of Node use atomic array for flag[]

log[] of DisBarrier use atomic array for flag[] or log[]

StaticTreeBarrier sense of StaticTreeBarrie make sense volatile

log[] of StaticTreeBarrie use atomic array for log[], make sense volatile

CoarseHashSet size of CoarseHashSet make size volatile, lock the lock

LockFreeHashSet bucket[] of LockFreeHashSet use atomic array for bucket[]

head of BucketList make next volatile,
use atomic array for bucket[]

next of Node make next or head of BucketList volatile,
use atomic array for bucket[]

RefinableHashSet size of RefinableHashSet make size volatile,lock the locks[]

StripedHashSet size of StripedHashSet make size volatile, lock the locks[]

TCuckooHashSet table[] of TCuckooHashSet use atomic package for table[],
lock the locks[][]

LazyListTest next of Node make next volatile, lock the lock

marked of Node make marked or next volatile, lock the lock

key of Node make key, marked, or next volatile, lock the lock

OptimisticList next of Entry make next volatile, lock the lock

key of Entry make key or next volatile, lock the lock

Bakery label[] of Bakery use atomic array for label[] and flag[],
make counter of Label volatile

counter of Label make counter or id of Label volatile,
use atomic array for label[]

flag[] of Bakery use atomic array for flag[]

Filter level[] of Filter use atomic array for victim[] or level[]

victim[] of Filter use atomic array for victim[]

counter of Filter make counter volatile,
use atomic array for victim[] or level[]

Peterson victim of Peterson make victim or counter volatile,
use atomic array for flag[]

flag[] of Peterson use atomic array for flag[]

counter of Peterson make counter volatile, use atomic array for flag[]

LockFreeQueue tail of LockFreeQueue make tail volatile

head of LockFreeQueue make tail volatile

items[] of LockFreeQueue use atomic array for items[], make tail volatile

ALock flag[] of ALock use atomic array for flag[],
make value of Entry volatile

counter of ALock make counter or value of Entry volatile,
use atomic array for flag[]
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Table 2 (Continued)

Test suite Race field of class Analysis

CLHLock locked of QNode make locked volatile

counter of CLHLock make locked of QNode or counter volatile

MCSLock next of QNode make next of QNode volatile

counter of MCSLock make locked of QNode or counter volatile

locked of QNode make locked of QNode volatile

CorrectedMCSLock counter of MCSLock make locked of QNode or counter volatile

DEQueue bottom of DEQueue make bottom volatile

map[] of DeQueue use atomic array for map[]

UnboundedQueue next of Node make next volatile, lock the enqLock

value of Node make value or next volatile, lock the enqLock

*bold entry indicates the most appropriate solution

tecting a race trace and other configuration of JRF-E revealed a race on table[].
CoarseHashSet uses a single lock, StripedHashSet uses a fixed-size ar-
ray of locks, and RefinableHashSet uses a resizable array of locks to imple-
ment a closed-address hash set. All three cases have a race on size and are cor-
rected using additional locking. LockFreeHashSet is implemented using Atom-
icIntegers and a BucketList which is a list of Node. The bucket list should be
changed to atomic array to guarantee the “volatile” semantics for each element ac-
cess. Even though the elements of a bucket list, are not protected at all, the thread-
safe access of the BucketList provides the required ordering of accesses to the in-
ternal list elements. JRF-E verifies that using an atomic array for bucket[] will
also eliminate the races on Node, next of Node, and head of BucketList.
The race involving next is quite subtle. The next field is declared to be an
AtomicMarkableReference<Node>. This means that the accesses of the ob-
jects referenced by the field can be safely accessed with volatile semantics. Since the
data structure is a linked list, accesses to Nodes other than the first are safe. The next
node of the head of the list however, exhibits data races. In OptimisticList, each
list element is represented by an Entry object. Races on next and key fields are
both removable by marking next as volatile. Bakery, Filter, and Peterson
implemented mutex algorithms using arrays. All three had the common mistake of
using an array reference declared as volatile without volatile semantics of element
accesses. In MCSLock three fields of QNode are involved in races but one change,
changing next to volatile, does not resolve the other two. From the suggestions, we
can easily deduce that one more fix is needed, changing locked to volatile, which
will also correct the data race involving counter.

The Amino open source software project (Amino concurrent building blocks
2012) implements concurrent building blocks in highly efficient and scalable codes,
and aims to support a set of lockfree collection classes, parallel patterns, and schedul-
ing algorithms. The org.amino.ds.lockfree.LockFreeDeque implements
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Table 3 Experimental results for (Amino concurrent building blocks 2012) examples containing races
found by JRF-E. Results threshold as 1, 10, 100 are given

Example Traces States Max
length

JRF
time (s)

JRF-E
time (s)

Mem
(MB)

Sync
Addra

Addrb

IteratorTest
(EBDeque)

1 26 26 33 0 139 91 564

10 36 27 58 9 172 91 571

100 47 28 81 14 228 91 582

IteratorTest
(LockFreeDeque)

1 26 26 8 0 65 58 458

10 36 27 14 7 80 58 465

100 47 28 19 12 105 58 476

IteratorTest
(LockFreeList)

1 38 38 10 0 66 52 446

10 48 39 14 5 92 52 453

100 59 40 18 8 95 52 464

IteratorTest
(LockFreeOrderedList)

1 38 38 10 0 65 52 458

10 48 39 15 5 99 52 465

100 59 40 19 9 98 52 476

IteratorTest
(LockFreePriorityQueue)

1 33 33 89 22 227 96 995

10 47 34 137 159 248 93 978

100 64 35 187 252 260 92 978

IteratorTest
(LockFreeQueue)

1 61 61 20 0 102 57 518

10 76 71 27 5 121 63 533

100 126 71 76 58 238 63 533

QueueTest 1 14 14 2 0 39 44 314

10 31 22 7 0 56 45 335

100 204 47 43 6 130 47 355

aVolatiles, locks, and threads

bNon-volatiles

a double-ended queue using a Compare-And-Set based lock free algorithm. The lock
free algorithm uses an AnchorType object with left and right pointers, a status
field, and a number of elements in deque. One anchor is defined for each deque, and
is immutable. It uses java.util.atomic.AtomicIntegerFieldUpdater
to change the status field. In addition, an anchor for a deque is updated using
a java.util.atomic.AtomicReference wrapper. The org.amino.ds.
lockfree.LockFreeQueue is a lock free FIFO queue. It also uses two point-
ers, prev and next, instead of a standard singly linked list, stores head and tail
of the queue in a volatile field, and is updated using java.util.atomic.
AtomicReferenceFieldUpdater. QueueItr for this class is not thread safe
and has a race on its nextNode field when the same iterator is used by multithreads.
The 8 races found in this test suite were in the iterator which contained comments



522 Autom Softw Eng (2012) 19:491–530

Table 4 JRF-E suggestions from counterexample and acquiring history analysis for (Amino concurrent
building blocks 2012) examples with races

Test suite Race field of class Analysis

Iterator(EBDeque) cursor of DeqIterator make cursor volatile

Iterator(LockFreeDeque) cursor of DeqIterator make cursor volatile

Iterator(LockFreeList) next of ListItr make next volatile

cur of ListItr make cur, next volatile

prev of ListItr make cur, prev volatile

Iterator(LockFreeOrderedList) next of ListItr make next volatile

cur of ListItr make cur, next volatile

prev of ListItr make cur, prev volatile

Iterator(LockFreePriorityQueue) cursor of PQueueIterator make cursor volatile

Iterator(LockFreeQueue) nextNode of QueueItr make nextNode, nextItem volatile

nextItem of QueueItr make nextItem volatile

lastRef of QueueItr make lastRef, nextNode volatile

Iterator(LockFreeSet) next of CompositeStateHold make next volatile

cur of CompositeStateHold make next, cur volatile

prev of CompositeStateHold make prev volatile

Queue prev of Node make prev volatile

*bold entry indicates the most appropriate solution

indicating that it was not thread-safe. The race can be eliminated using volatile fields
but cannot avoid concurrent modification within the iterator. Different configura-
tion with threadlocal optimization allowed us to get the result for LockFreeSet.
One of the example program, OrderedListExample, finds a benign17 race in
java.lang.String class.

The barrier implementations in Table 6 illustrates the limitations of JRF-E’s ap-
proach. The race on _value of CounterWithBarrier, which is part of the test
driver, not the barrier, can be eliminated by marking it volatile. However, the problem
is that the implementation has multiple threads set the variable to the same value, with
each update after the first manifesting a data race. A better solution is to avoid the
multiple updates. This sort of semantic reasoning cannot be done by JRF-E. However,
the suggestion given would eliminate the data race.

17Aspects of the JMM constrain the behavior of programs with races. Benign races are those where these
constraints guarantee that overall behavior of the program is correct, even with a race. The hashcode
variable in the java.lang.String class is the most important example. The hashcode is created lazily,
when needed, and is never changed once initialized. The JMM semantics guarantee that the only values
seen will be the correct hashcode value, or null, in which case the value will be (re) computed. Since the
recomputed value will be the same, it doesn’t affect correctness if the data race allows it to be done more
than once.
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Table 5 Experimental results for (Google concurrent data structures workshop barriers 2012) examples
containing races found by JRF-E. Results threshold as 1, 10, 100 are given

Example Traces States Max
length

JRF
time (s)

JRF-E
time (s)

Mem
(MB)

Sync
Addra

Addrb

LinearSenseBarrierVolatileTest 1 39 39 6 0 61 43 372

10 53 54 8 5 66 43 372

100 338 67 48 58 151 43 394

LinearSenseBarrier 1 40 40 6 0 48 44 400

10 56 57 9 3 67 44 424

100 366 72 60 37 176 44 514

SimpleBarrier* 1 37 29 5 0 44 38 335

SenseBarrier 1 48 48 7 0 57 41 362

10 62 49 9 3 58 41 362

100 498 50 71 32 206 41 380

SenseBarrierWithWaitTest 1 68 68 8 0 54 41 360

10 90 69 10 6 69 41 360

100 717 70 83 63 180 41 378

TreeBarrier 1 71 71 12 0 80 44 386

10 88 72 14 2 74 44 386

100 431 72 58 24 215 44 386

LockBarrier 1 34 34 6 0 65 58 406

10 40 37 7 6 77 58 406

100 217 43 60 67 176 62 407

CyclicBarrier 1 25 25 2 0 25 37 334

10 41 31 3 1 58 37 334

100 481 36 36 20 162 38 346

BinaryStaticTreeBarrier 1 60 60 10 0 66 47 391

10 87 78 16 5 88 47 391

100 1212 78 213 48 263 52 483

SplittedSenseBarrier 1 71 71 14 0 72 49 383

10 94 72 18 8 82 49 383

100 433 72 73 73 171 49 383

aVolatiles, locks, and threads

bNon-volatiles

*JRF-E ran out of Java heap space before threshold races and JPF failed to report the result

Four jgf examples have races on volatile arrays without volatile element ac-
cess IsDone[] and sync[] and nonvolatile array A[][]. These widely avail-
able benchmarks were implemented before the current JMM, and before the is-
sues relevant to the memory model were well known, and illustrate the useful-
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Table 7 Experimental results for (The Java Grande Forum benchmark suite 2012) examples containing
races found by JRF-E. Results threshold as 1, 10, 100 are given

Example Traces States Max
length

JRF
time (s)

JRF-E
time (s)

Mem
(MB)

Sync
Addra

Addrb

BarrierBench 1 87 87 13 0 103 45 474

10 128 102 27 2 137 45 535

100 1667 102 637 22 284 45 556

SyncBench 1 111 103 18 0 115 48 507

10 131 113 25 0 128 48 507

100 666 113 229 5 273 48 507

lufact 1 34 34 4 0 39 35 274

10 72 72 7 1 49 35 276

100 331 331 29 64 156 35 300

sor 1 15 15 8 0 57 42 690

10 77 77 43 13 130 42 691

100 159 159 78 288 222 42 691

moldyn 1 2821 2821 638 32 723 37 521

10 2861 2861 663 295 725 37 521

100 3136 3136 697 3621 754 37 521

montecarlo 1 86 86 38 2 181 64 919

10 91 88 50 19 190 64 984

100 167 125 239 202 297 66 1103

aVolatiles, locks, and threads

bNon-volatiles

ness of a tool that can check for data races even in apparently correct code. One
race found in montecarlo was a benign race caused by the redundant update on
UNIVERSAL_DEBUG field.

The tests showed that in most cases, the tool gave the most appropriate suggestion.
This is especially true for programs where the problem is lack of attention (or misun-
derstanding) of memory model issues, but the programs are basically correct. JRF-E
allows programmers to confidently choose a solution where the volatility of one vari-
able also guards other variables from data races. In addition, the results show that
regardless of the number of memory locations involved in a race, the threshold plays
important role to better suggestions. When considering only one trace to select a fix,
there were more chances of discovering the same race in different path where the fix
is not applicable. If the program contained races involving more than one memory lo-
cation, then considering them together helps to find the most appropriate suggestions.
Based on this fact, number of race traces determines the quality of suggestions and
the optimization including separation of detection and analysis described in Sect. 3.4
is significant.
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Table 8 JRF-E suggestions from counterexample and acquiring history analysis for (The Java Grande
Forum benchmark suite 2012) examples with races

Test suite Race field of class Analysis

BarrierBench IsDone[] of TournamentBarrier use atomic array for IsDone[]

SynchBench shared_count of CounterClass make shared_count volatile,
synchronize on CounterClass

lufact IsDone[] of TournamentBarrier use atomic array for IsDone[]

sor sync[] of SOR use atomic array for sync[]

A[][] of RandomMatrix use atomic array for A[][], sync[]

moldyn IsDone[] of TournamentBarrier use atomic array for IsDone[]

montecarlo UNIVERSAL_DEBUG of Universal make UNIVERSAL_DEBUG
volatile**

*bold entry indicates the most appropriate solution

**This is a benign race in redundant writes

Figure 31 compares the time and memory consumed in JPF, JRF, JRF-E respec-
tively. JRF and JRF-E were configured to use a threshold trace of one and JPF
was forced to stop at the same state number. The graph shows that in most cases
JRF-E adds moderate overhead for both time and memory. (Interestingly, JRF-E in
Peterson and LinearSenseVolatileBarrier outperforms JRF. One pos-
sible explanation would be the underlying java runtime environment behavior such
as garbage collection had consumed more resources in JRF than JRF-E.) The stan-
dalone JRF was incomparable for one threshold configuration due to the disk access
overhead. However, when the threshold grows, this performance gap reversed. We
can conclude that the JRF-E is feasible to apply to a simple program without many
races, but more complicated programs would be better to use with standalone mode
to allow more traces and flexibility in analysis. This graph demonstrates the relative
overhead JRF-E added on top of JRF and JPF. Scalability was always the problem
in model checking and acceptable overhead is essential in this tool. From this point
of view, the value added by JRF-E was valuable enough to compensate the time and
memory spent for it.

5 Related work

Many, many, tools have been developed to detect data races, statically or dynamically,
using a variety of definitions of a data race. As mentioned in the introduction, most
of these tools use a slightly different notion of a data race that has nothing to do with
a relaxed memory model.

The tool most closely related to JRF is Goldilocks (Elmas et al. 2007). Goldilocks
is a dynamic analysis tool using an algorithm based on a relation that is very similar
to the inverse of h. In other words, the Goldilocks algorithm maintains a function
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Fig. 31 The temporal and spatial performance comparison of JPF, JRF, JRF-E when JRF and JRF-E are
configured to finish at one race trace and JPF is configured to stop at the same state

for each variable that indicates which threads can access the variable. As with all
tools performing dynamic analysis, the required instrumentation of the program may
change its behavior and the tool is limited to analyzing paths that happen to be tested.
FastTrack (Flanagan and Freund 2009) is a more recent dynamic data race detector
based on an optimized representation of vector clocks that is precise and claims to be
more efficient than Goldilocks. Neither of these offer suggestions for fixing errors.

Recently, several studies have incorporated memory model awareness into model
checking. For example, the Sobor tool (Burckhardt and Musuvathi 2008) considers
programs assumed to be executing on hardware where the memory model is relaxed
using store buffers. It can detect the presence of sequentially inconsistent executions
and uses bounded model checking and a stateless model checker, CHESS (Musu-
vathi et al. 2007). The algorithm uses vector-clocks to capture the happen-before
relation. Store buffers are much simpler than the JMM. The JMM is given as part
of the programming language semantics constrains or allows compiler optimizations
in addition to the low level reordering caused by store buffers. Also, since JPF is a
state-based model checker, we can store the happen-before information for each state.

The tool described by Huynh and Roychoudhury (2007) considers the C# mem-
ory model and performs invariant checking at the bytecode-level using state-based
model checker tailored for C#. The memory model is defined by specifying allowed
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reorderings rather than based on happens-before consistency. The tool does not find
data races, rather it performs the reorderings allowed by the memory model and ver-
ifies that a particular invariant holds, even on the sequentially inconsistent execu-
tions. Also, it provides simple program modifications in the form of inserting mem-
ory/barrier fences to eliminate data races. This type of suggestion is similar to our
changing a non-volatile to a volatile. However, our tool provides a richer set of sug-
gestions.

De et al. (2008) introduce a new memory model for Java called OpMM that al-
lows some sequentially inconsistent executions, but is an underapproximation of the
actual JMM. They have implemented a model checker that generates these sequen-
tially inconsistent executions and checks that program properties are satisfied. Since
the tool is an underapproximation of the JMM, it can only be used for bug-finding
not verification. JRF can verify sequential consistency of a Java program without
generating all such subsets but does not deal with sequentially inconsistent programs
(except in the limited sense of allowing the user to specify that certain races that the
use considers to be benign are ignored).

Several works compare a set of successful traces with a set of erroneous ones to
localize the errors or to focus the debugging process on a relatively small part of the
program. Groce and Visser (2003) considers both transition and invariant differences
on successful traces and the counterexample paths. It provides feedback on how suc-
cessful traces can be transformed into counterexample paths. However, our analysis
provides feedback on how to transform a counterexample path to a possibly success-
ful trace. Ball et al. (2003) generate multiple error traces having independent causes
and for each error cause reports a single error trace. Brun and Ernst (2004) use dy-
namic analysis and machine learning to classify program properties as fault-revealing
and non fault-revealing and report program invariants that are in the fault-revealing
set. Basu et al. (2004), Flanagan et al. (2008) focus on error traces only. Basu et al.
(2004) slice a counterexample path to find the statements that directly or indirectly
affect the failure. Flanagan et al. (2008) compute the transactional happens-before
edges on the dynamically generated execution traces to detect blocks that cannot pre-
serve their atomicity and hence cannot be serialized.

6 Conclusion

Our data race detection tool, JRF is an extension of JPF that precisely detects data
races, as defined by the Java Memory Model, in Java bytecode. This is important since
standard JPF is unsound for programs that contain data races. Because it is based di-
rectly on the Java memory model, JRF can handle all concurrent programming idioms
supported by Java, including lock-free algorithms. In this paper, we described JRF-E,
an extension of JRF that analyses the counterexample path and acquiring history and
provides suggestions for eliminating data races. The usefulness of the suggestion fa-
cility was evaluated by applying to a number of examples. Appropriate suggestions
were provided in most cases, indicating that JRF-E can be a practical tool. Note that
the suggestions provided by JRF-E may have side effects. For example, move source
statement can change program semantics and results in other property violation in
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new search path enabled by the change. New deadlock or livelock can be introduced
when additional synchronization block is used. This would result in longer waiting
time and even some existing interleaving would be disabled with additional locking.
When a memory is changed to volatile or atomic array, certain compiler optimization
would be prohibited and results in poorer performance. The validation and correct-
ness of the suggestion is left to the programmer and it is highly recommended to use
JPF again to evaluate the correctness and performance after the suggested modifica-
tion. Even with this limitation, by explaining data races and providing a correct set of
choices to fix them, JRF-E is a valuable addition to JRF.
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