
Abstract—Wireless sensor networks (WSNs) are typically 
composed of very small, battery-operated devices (sensor nodes) 
containing simple microprocessors with few computational 
resources. However, the rapidly increasing popularity of WSNs 
has placed increased computational demands upon these 
systems, due to increasingly complex operating environments 
and enhanced data-sensing technology. Whereas introducing 
more powerful microprocessors into sensor nodes addresses 
these demands, sensor nodes do not contain sufficient energy 
reserves to support these microprocessors. In this paper, we 
present a partially reconfigurable FPGA-based architecture and 
methodology to provide increased WSN flexibility and 
computational resources, resulting in superior power 
consumption and performance compared to a microprocessor 
capable of satisfying similar demands.     
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I. INTRODUCTION AND MOTIVATING EXAMPLE 
Wireless sensor networks (WSNs) are composed of a 

sensing array (multiple sensor nodes) distributed across an 
area with the purpose of observation and data collection. Each 
sensor node consists of a microprocessor coupled with 
wireless communication technology and a sensor, both of 
whose ranges determine a node’s communication and sensing 
boundaries. Within these boundaries, a sensor node may be 
responsible for detecting, tracking, and/or monitoring single or 
multiple environmental points-of-interest (targets) using 
specialized algorithms or applications (modules). 

Growing demands for more efficient WSNs have forced 
WSN designers to explore onboard processing solutions [2]. 
Onboard processing reduces wireless communication 
bandwidth, and thus power consumed due to this 
communication, by performing data processing on the sensor 
node, and transmitting only the results. One option, field-
programmable gate arrays (FPGAs), have become the focus of 
recent research [6]. FPGAs offer increased performance 
compared to microprocessors and increased flexibility 
compared to ASICs [7], while maintaining low power 
consumption.  

However, an FPGA-based system that considers multiple 
modules is more difficult to design than a microprocessor-
based system. Since WSN environments are dynamic in 

nature, the quantity and type of targets may change frequently, 
requiring many system reconfigurations – situation-based 
reconfiguration. Thus, modular systems are required to 
provide flexibility with respect to executing module quantity 
and type. However, even though FPGAs are reconfigurable in 
nature, such modular dynamics are not inherent, since 
reconfiguration typically does not occur during execution. 
Many other challenges exist when taking full advantage of 
parallelism in modular FPGA-based sensor nodes.  

Considering an environment’s dynamic nature, the primary 
challenge lies in choosing how many modules and which types 
of modules to include on a sensor node. One potential solution 
creates many predefined module mixes for different situations 
and a bitstream (i.e., FPGA configuration file) for each 
situation. Choosing an appropriate module mix is non-trivial, 
as the number of combinations is exponential. Additionally, 
FPGA runtime reconfiguration between different module 
mixes interrupts execution. Fortunately, partial reconfiguration 
(PR) in FPGAs addresses many of these limitations [4]. PR 
enables selective region reconfiguration without system 
disruption. This module isolation reduces bitstream storage 
and communication requirements, since only the data 
associated with the particular PRR is required. 

In this paper, we propose a methodology and modular 
architectural framework for situation-based reconfiguration in 
WSNs using PR-capable FPGAs. Using a Kalman filter as the 
base computational kernel, results show clear benefits for a 
PR-based FPGA implementation over a microprocessor or 
static FPGA system implementations. These benefits include 
power consumption reductions, consistent performance when 
tracking multiple targets, and significant cost savings. 

II. RELATED WORK 
Both WSNs and FPGAs have been popular disjoint 

research topics, but their combination is an emerging field [7], 
and thus there exists little research. New and innovative WSN 
applications demand longer battery life, faster responses, and 
enhanced results. FPGAs, and in particular PR-capable 
FPGAs, provide a logical next step to satisfy these demands by 
providing a great balance of performance, parallelism, cost, 
and power.  
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A. Wireless Sensor Networks  
The first step towards situation-based FPGA 

reconfiguration is a state-of-the-art method to support 
situation-based reconfiguration via microprocessors. Agilla [3] 
is an architecture and methodology enabling WSN users to 
create special programs called mobile agents (a.k.a. modules) 
that wirelessly migrate across the sensor node network, 
performing application-specific tasks. Each sensor node 
consists of a MICA2 mote with an 8MHz Atmel 128 
microprocessor and 4KB of data memory. Even though the 
goal of their test system is wildfire tracking, Agilla is 
applicable to other WSNs. However, since Agilla 
microprocessors are low power and have limited processing 
capabilities, Agilla is unable to process advanced sensor data, 
such as video feeds, which are quite common in target tracking 
and identification. 

FPGA implementations of Kalman filters (a popular target 
tracking kernel) demonstrate excellent performance [5]. In [1], 
a system that combined feature selection and Kalman filtering 
in an FPGA completed the tracking process for hundreds of 
features within 2-12 milliseconds, resulting in an average rate 
of 20 microseconds per feature. However, these 
implementations did not consider targets with different 
characteristics, such as widely varying speeds and tracking 
criticality, which would significantly increase processing time.  

B. FPGA Partial Reconfiguration 
PR provides a method to reconfigure selected regions of 

the FPGA fabric while the remainder of the device remains 
active. The FPGA fabric is partitioned into two or more 
partially reconfigurable regions (PRRs) (that can load arbitrary 
modules) plus one static region that does not change. In 
contrast to full FPGA device configuration, which requires full 
bitstreams (configuration data for the entire device), PR-
capable FPGAs use partial bitstreams, only specifying the 
configuration data for a particular PRR. 

The most significant PR benefit is PRR reconfiguration 
without halting execution of the entire device. This isolated 
reconfiguration is beneficial when critical system tasks such as 
communication links, timers, managers, etc. must remain 
operational at all times. In the case of WSNs, active modules 
could be tracking critical targets and should not be halted 
while loading new modules.  

III. TARGET TRACKING AND KALMAN FILTERS 
Target tracking is a path/trajectory prediction method for 

environmental targets such as vehicles, missiles, animals, 
hostiles, or even unidentified objects. In order to make this 
prediction, sensors measure and record target characteristics 
such as speed, past trajectory, acceleration, etc. However, the 
prediction accuracy is only as reliable as the measured data 
and this data is frequently noisy. Fortunately, Kalman filtering 
provides a method to reduce sensor measurement noise, and 
thus provides a more accurate prediction of a target’s future 
path. In this section, we will give a brief example and 
background on Kalman filtering, discuss variations in Kalman 
filtering, and PR-capable, FPGA-specific filtering benefits. 

A. Example and Background 
A Kalman filter’s main purpose is to estimate dynamic 

system state in a noisy environment. Specifically, we will 
examine a dynamic system consisting of a moving target. 
Figure 1 shows an example of how noise can affect a target’s 
predicted path. The solid bold line represents the target’s 
actual path. The numbered circles represent sequential sensor 
samples representing the locations where the sensor believes 
the target is. Samples 4 and 6 are noisy (incorrect) samples. 
Using these noisy samples, interpolation results in the dashed 
line (unfiltered path) as the target’s predicted path. However, 
using a Kalman filter removes the noisy samples and results in 
the thin solid line (filtered path) as the improved predicted 
path.  

The Kalman filter can work independently of the other 
sensor nodes if required, although additional information from 
neighboring sensor nodes produces enhanced results. Since 
WSNs can be unreliable at times, due to insufficient power 
reserves or harsh environmental conditions, this inter-node 
cooperation is a favorable aspect. 

B. Situation-Based Kalman Filter Variations 
Table I shows a small subset of situation-based Kalman 

filter variations (module type), conditions where each module 
would be most effective (use conditions), and how each 
module deviates from the base Kalman filter module 
(deviation from base module). For some Kalman filters, 
computational terms such as the Kalman gain and matrix 
covariance can be pre-computed for certain target types, 
further increasing both module variation and performance. 

TABLE I: SITUATION-BASED KALMAN FILTER VARIATIONS 
Module type Use conditions Deviation from 

base module 
Base Kalman  Generic None 
Low power Standby, slow targets Clock frequency, 

sample rate 
High power Fast moving, high 

priority targets 
Clock frequency, 

sample rate 
Airborne-

target module 
Airborne target 

tracking 
Stereo camera for 

3D coordinates 

Noisy-target 
module 

High-noise readings: 
defective sensor, rainy 

day, night tracking 

Fixed Kalman gain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Example depicting how Kalman filtering improves path 
prediction by removing noise (sensor samples 4 and 6). 
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IV. ARCHITECTURAL FRAMEWORK 
In order to establish communication between arbitrary 

module PRRs as the system configuration changes, a flexible 
module communication architecture is required to facilitate 
dynamic module loading and unloading. We developed a 
virtual architecture that facilitates inter-module 
communication, regardless of module location, size, or clock 
domain.  

A. Virtual Architecture 
VAPRES (pronounced “vapors”, the Virtual Architecture 

for Partially Reconfigurable Embedded Systems) is a virtual 
architecture developed for PR-capable FPGAs to provide a 
flexible and dynamic module communication layer. Each PRR 
represents a different clock domain, such that each PRR can be 
independently clocked. The VAPRES system control region 
includes a soft processor to serve as the central controlling 
agent, a flash controller core to read and store module partial 
bitstreams, and numerous peripherals for external device 
communication. In addition, real-world WSNs would include 
wireless communication controllers, battery monitoring cores, 
and digital clock managers for multiple clock domain 
management. Since these components would not change at 
runtime, they reside in the FPGA’s static region along with 
any other non-reconfigurable critical system components.  

VAPRES and the underlying communication architecture 
provide an essential enabling methodology for dynamic, 
situation-based PR. Whereas our current VAPRES 
architecture is not PR-specific, we are currently developing the 
PR-based enhancements.  

B. Situation-Based Reconfiguration Methodology - Dynamic 
Module Loading and Unloading 
The VAPRES central controlling agent orchestrates 

module loading and unloading, which involve making runtime 
decisions on when to place a module inside the PRRs (online 
scheduling) and which specific PRR implementation to use 
(online placement). Inter-module communication is necessary 
when a module optimized for noisy measurements has 
determined the correct target type and wants to transmit 
information to a new module that can better track the target. 
VAPRES is able to seamlessly handle this inter-module 
communication. 

While the sensor node is not actively tracking a target, a 
target detection module is responsible for new target detection. 

When a new target is detected, the central controlling agent 
loads an appropriate module and initiates necessary 
communication establishment based upon three possible 
scenarios:  

1. A basic tracking module processes the sensor input 
for new targets. New targets are evaluated and the appropriate 
specialized module is loaded. The basic module then returns to 
standby mode and waits for a new target.  

2. The central controlling agent loads all potential 
tracking modules in succession into a single PRR, and each 
module tracks the target for a short evaluation period. The 
module that best tracked the new target is reloaded and 
responsible for tracking that target. 

3. The controlling agent loads all possible modules in 
parallel. After a short evaluation time, the module that best 
tracks the target would remain loaded. 

Scenarios 2 and 3 rely on loading tracking modules for 
module evaluation before determining the most appropriate 
module. Scenario 1 performs target evaluation without loading 
evaluation modules, eliminating module evaluation overhead. 
Since each of these scenarios has tradeoffs in terms of power 
consumption, latency, tracking accuracy, and resource usage, 
VAPRES enables designers to make these tradeoff decisions 
based on system goals.  

V. RESULTS 
In this section, we evaluate the VAPRES architecture and 

situation-based reconfiguration using three metrics: processing 
performance, power consumption, and resource utilization. 
Even though we implemented the Kalman filter on a high-end 
FPGA, which might not be used in a real-world application, 
our results are equally applicable to low-end FPGAs and 
provide motivation for power, performance, and resource 
utilization improvements. 

A. Experimental Setup  
Our experimental setup used a Xilinx Virtex-4 FX100 

FPGA. Although Virtex-5 FPGAs offer better performance 
and power, we used a Virtex-4 due to its PR design flow 
maturity. We measured power consumption using the Xilinx 
XPower analysis tool. We assumed a 12% average signal 
activity. Since typical design activity ranges from 6-12%, our 
power estimates are pessimistic. 

For our WSN system, we modeled a situation with a 
maximum of five simultaneously tracked targets, thus the 
system contained five PRRs for filter modules. Our system 
design contained only the VAPRES architecture and Kalman 
filters. Image processing hardware, sensor interface, and 
communication interface requirements were assumed to be 
necessary components regardless of the system configuration, 
and are therefore not included in our measurements. 

In order to provide FPGA resource requirements for a 
variety of system situations, we constructed two PR design test 
cases. PR design one (PR-D1) used dedicated FPGA 
multiplier units, and PR design two (PR-D2) implemented 
multiplication using logic. The base system consisted of five 
copies of design one without the VAPRES architecture.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Power consumption normalized to the base system for PR designs 
one and two for a varying number of modules.  
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B. Processing Performance, Power Consumption, and 
Resource Utilization 
Since the VAPRES system enables multiple clock 

domains, we evaluate the maximum attainable clock frequency 
for the architecture independently from the PRRs. Since all 
PRRs have similar layouts (equal number of allocated 
resources), all PRRs have the same maximum attainable clock 
frequency, which is independent of the filter modules.  

The VAPRES maximum attainable clock frequency is 209 
MHz, while the Kalman filter modules reach 87 MHz and 68 
MHz for PR-D1 and PR-D2, respectively. Since processing 
one input sample takes two clock cycles, the maximum clock 
frequency represents half the maximum sample processing 
rate. Whereas Agilla’s [3] sample processing times reached 6-
7 seconds, our sample processing times range from 23-30 
nanoseconds. 

Figure 2 shows power consumption of the two PR designs 
normalized to the base system for a varying number of active 
filter modules. The base system power consumption was 1.794 
Watts. The figure reveals the breakeven point at three active 
modules. The breakeven point is the point where the PR 
design and the base system have equal power consumption. 
PR designs with fewer active modules consume less power 
than the base system, while PR designs with more active 
modules consume more power than the base system. Figure 2 
also reveals that multiplier unit availability has essentially no 
impact on power consumption. It is worth noting that the 
results from Figure 2 only compare the differences in dynamic 
power consumption, since static power across all cases, 
regardless of PR, remains the same. The clock to PRRs is 
simply disconnected when not in use, eliminating only 
dynamic power consumption (and not static power). 

These results are somewhat expected. PR provides 
enhanced design flexibility at potentially less power and 
resource requirements. Since the base system and the PR 
designs all contain five filter modules, at full capacity, the PR 
designs essentially provide equal functionality as the base 
system with additional PR overhead. However, the benefit of 
PR for WSNs is that the system will likely not be in high-
power situations very often. Simply because a node provides 
the ability to track five targets simultaneously does not mean 
that the node will continuously track five targets. Thus, PR 
provides both reduced average power consumption and 
increased battery life when the system is not at peak operating 
capacity. Quantifying these savings is very difficult as they are 
entirely dependent on actual environmental situations such as 
target frequency, criticality, and complexity.  

 Table II shows the number of device resources used 
(amount used) and the percentage utilization of these resources 

(% of device) on the Virtex-4 FX100 for both PR designs. 
These numbers provide an easy method in which to evaluate 
alternative FPGA devices to determine if a candidate device 
has sufficient resources for a five-module VAPRES system. 
We point out that these numbers do not include resources 
required for processing hardware, sensor interfaces, and 
communication interfaces. Table II shows that the required 
resources for PR-D2 is nearly one half of those required for 
PR-D1 due to the replacement of dedicated multiplier units 
with logic. Despite the increase in LUT usage for PR-D2, the 
elimination of dedicated multiplier units provides a 45.4% 
reduction in device usage with a 21.8% performance penalty 
for this tradeoff.  

VI. CONCLUSIONS AND FUTURE WORK 
Future WSNs will continue to demand increasingly greater 

performance and lower power consumption. FPGAs are prime 
candidates to fulfill these requirements. We have presented a 
design methodology with architectural support for exploiting 
PR-capable FPGAs in situation-based reconfiguration for 
WSNs with transparent dynamic module allocation and inter-
module communication establishment. VAPRES provides a 
critical stepping-stone for creating powerful, flexible WSN 
designs capable of satisfying increasing computational 
demands. Results showed that our situation-based 
reconfigurable methodology provides fast sample processing 
rates in the MHz range with a 5-25% reduction in power 
consumption compared to the fixed five-module design with 
two or fewer active targets. Furthermore, the low device 
utilization of our methodology makes our methodology highly 
amenable to small devices. 
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TABLE II: RESOURCE UTILIZATION FOR PR DESIGN ONE (PR-D1) AND 
PR DESIGN TWO (PR-D2) ON VIRTEX-4 FX100 

Amount used % of device 
Resource type PR-D1 PR-D2 PR-D1 PR-D2 

Slice Flip Flops 5566 5566 6.6% 6.6% 
4-input LUTs 6623 19193 7.9% 22.8% 
DSP48 multipliers 70 0 43.8% 0% 
Block Ram 20 20 5.3% 5.3% 


