
Abstract—Wireless sensor networks (WSNs) are typically
composed of very small, battery-operated devices (sensor nodes)
containing simple microprocessors with few computational
resources. However, the rapidly increasing popularity of WSNs
has placed increased computational demands upon these
systems, due to increasingly complex operating environments
and enhanced data-sensing technology. Whereas introducing
more powerful microprocessors into sensor nodes addresses
these demands, sensor nodes do not contain sufficient energy
reserves to support these microprocessors. In this paper, we
present a partially reconfigurable FPGA-based architecture and
methodology to provide increased WSN flexibility and
computational resources, resulting in superior power
consumption and performance compared to a microprocessor
capable of satisfying similar demands.

Keywords - Kalman filter; virtual architecture; reconfigurable
computing; FPGA; partial reconfiguration

I. INTRODUCTION AND MOTIVATING EXAMPLE
Wireless sensor networks (WSNs) are composed of a

sensing array (multiple sensor nodes) distributed across an
area with the purpose of observation and data collection. Each
sensor node consists of a microprocessor coupled with
wireless communication technology and a sensor, both of
whose ranges determine a node’s communication and sensing
boundaries. Within these boundaries, a sensor node may be
responsible for detecting, tracking, and/or monitoring single or
multiple environmental points-of-interest (targets) using
specialized algorithms or applications (modules).

Growing demands for more efficient WSNs have forced
WSN designers to explore onboard processing solutions [2].
Onboard processing reduces wireless communication
bandwidth, and thus power consumed due to this
communication, by performing data processing on the sensor
node, and transmitting only the results. One option, field-
programmable gate arrays (FPGAs), have become the focus of
recent research [6]. FPGAs offer increased performance
compared to microprocessors and increased flexibility
compared to ASICs [7], while maintaining low power
consumption.

However, an FPGA-based system that considers multiple
modules is more difficult to design than a microprocessor-
based system. Since WSN environments are dynamic in

nature, the quantity and type of targets may change frequently,
requiring many system reconfigurations – situation-based
reconfiguration. Thus, modular systems are required to
provide flexibility with respect to executing module quantity
and type. However, even though FPGAs are reconfigurable in
nature, such modular dynamics are not inherent, since
reconfiguration typically does not occur during execution.
Many other challenges exist when taking full advantage of
parallelism in modular FPGA-based sensor nodes.

Considering an environment’s dynamic nature, the primary
challenge lies in choosing how many modules and which types
of modules to include on a sensor node. One potential solution
creates many predefined module mixes for different situations
and a bitstream (i.e., FPGA configuration file) for each
situation. Choosing an appropriate module mix is non-trivial,
as the number of combinations is exponential. Additionally,
FPGA runtime reconfiguration between different module
mixes interrupts execution. Fortunately, partial reconfiguration
(PR) in FPGAs addresses many of these limitations [4]. PR
enables selective region reconfiguration without system
disruption. This module isolation reduces bitstream storage
and communication requirements, since only the data
associated with the particular PRR is required.

In this paper, we propose a methodology and modular
architectural framework for situation-based reconfiguration in
WSNs using PR-capable FPGAs. Using a Kalman filter as the
base computational kernel, results show clear benefits for a
PR-based FPGA implementation over a microprocessor or
static FPGA system implementations. These benefits include
power consumption reductions, consistent performance when
tracking multiple targets, and significant cost savings.

II. RELATED WORK
Both WSNs and FPGAs have been popular disjoint

research topics, but their combination is an emerging field [7],
and thus there exists little research. New and innovative WSN
applications demand longer battery life, faster responses, and
enhanced results. FPGAs, and in particular PR-capable
FPGAs, provide a logical next step to satisfy these demands by
providing a great balance of performance, parallelism, cost,
and power.

Exploiting Partially Reconfigurable FPGAs
for Situation-Based Reconfiguration

in Wireless Sensor Networks
Rafael Garcia, Ann Gordon-Ross, and Alan D. George

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL

{garcia, ann, george}@chrec.org

A. Wireless Sensor Networks
The first step towards situation-based FPGA

reconfiguration is a state-of-the-art method to support
situation-based reconfiguration via microprocessors. Agilla [3]
is an architecture and methodology enabling WSN users to
create special programs called mobile agents (a.k.a. modules)
that wirelessly migrate across the sensor node network,
performing application-specific tasks. Each sensor node
consists of a MICA2 mote with an 8MHz Atmel 128
microprocessor and 4KB of data memory. Even though the
goal of their test system is wildfire tracking, Agilla is
applicable to other WSNs. However, since Agilla
microprocessors are low power and have limited processing
capabilities, Agilla is unable to process advanced sensor data,
such as video feeds, which are quite common in target tracking
and identification.

FPGA implementations of Kalman filters (a popular target
tracking kernel) demonstrate excellent performance [5]. In [1],
a system that combined feature selection and Kalman filtering
in an FPGA completed the tracking process for hundreds of
features within 2-12 milliseconds, resulting in an average rate
of 20 microseconds per feature. However, these
implementations did not consider targets with different
characteristics, such as widely varying speeds and tracking
criticality, which would significantly increase processing time.

B. FPGA Partial Reconfiguration
PR provides a method to reconfigure selected regions of

the FPGA fabric while the remainder of the device remains
active. The FPGA fabric is partitioned into two or more
partially reconfigurable regions (PRRs) (that can load arbitrary
modules) plus one static region that does not change. In
contrast to full FPGA device configuration, which requires full
bitstreams (configuration data for the entire device), PR-
capable FPGAs use partial bitstreams, only specifying the
configuration data for a particular PRR.

The most significant PR benefit is PRR reconfiguration
without halting execution of the entire device. This isolated
reconfiguration is beneficial when critical system tasks such as
communication links, timers, managers, etc. must remain
operational at all times. In the case of WSNs, active modules
could be tracking critical targets and should not be halted
while loading new modules.

III. TARGET TRACKING AND KALMAN FILTERS
Target tracking is a path/trajectory prediction method for

environmental targets such as vehicles, missiles, animals,
hostiles, or even unidentified objects. In order to make this
prediction, sensors measure and record target characteristics
such as speed, past trajectory, acceleration, etc. However, the
prediction accuracy is only as reliable as the measured data
and this data is frequently noisy. Fortunately, Kalman filtering
provides a method to reduce sensor measurement noise, and
thus provides a more accurate prediction of a target’s future
path. In this section, we will give a brief example and
background on Kalman filtering, discuss variations in Kalman
filtering, and PR-capable, FPGA-specific filtering benefits.

A. Example and Background
A Kalman filter’s main purpose is to estimate dynamic

system state in a noisy environment. Specifically, we will
examine a dynamic system consisting of a moving target.
Figure 1 shows an example of how noise can affect a target’s
predicted path. The solid bold line represents the target’s
actual path. The numbered circles represent sequential sensor
samples representing the locations where the sensor believes
the target is. Samples 4 and 6 are noisy (incorrect) samples.
Using these noisy samples, interpolation results in the dashed
line (unfiltered path) as the target’s predicted path. However,
using a Kalman filter removes the noisy samples and results in
the thin solid line (filtered path) as the improved predicted
path.

The Kalman filter can work independently of the other
sensor nodes if required, although additional information from
neighboring sensor nodes produces enhanced results. Since
WSNs can be unreliable at times, due to insufficient power
reserves or harsh environmental conditions, this inter-node
cooperation is a favorable aspect.

B. Situation-Based Kalman Filter Variations
Table I shows a small subset of situation-based Kalman

filter variations (module type), conditions where each module
would be most effective (use conditions), and how each
module deviates from the base Kalman filter module
(deviation from base module). For some Kalman filters,
computational terms such as the Kalman gain and matrix
covariance can be pre-computed for certain target types,
further increasing both module variation and performance.

TABLE I: SITUATION-BASED KALMAN FILTER VARIATIONS
Module type Use conditions Deviation from

base module
Base Kalman Generic None
Low power Standby, slow targets Clock frequency,

sample rate
High power Fast moving, high

priority targets
Clock frequency,

sample rate
Airborne-

target module
Airborne target

tracking
Stereo camera for

3D coordinates

Noisy-target
module

High-noise readings:
defective sensor, rainy

day, night tracking

Fixed Kalman gain

Figure 1. Example depicting how Kalman filtering improves path
prediction by removing noise (sensor samples 4 and 6).

2
3 5

6 8

Path taken by
target

Path reported by sensor
(unfiltered path)
Path estimated by Kalman
filter (filtered path)

Sensor
sample

1

4

7

IV. ARCHITECTURAL FRAMEWORK
In order to establish communication between arbitrary

module PRRs as the system configuration changes, a flexible
module communication architecture is required to facilitate
dynamic module loading and unloading. We developed a
virtual architecture that facilitates inter-module
communication, regardless of module location, size, or clock
domain.

A. Virtual Architecture
VAPRES (pronounced “vapors”, the Virtual Architecture

for Partially Reconfigurable Embedded Systems) is a virtual
architecture developed for PR-capable FPGAs to provide a
flexible and dynamic module communication layer. Each PRR
represents a different clock domain, such that each PRR can be
independently clocked. The VAPRES system control region
includes a soft processor to serve as the central controlling
agent, a flash controller core to read and store module partial
bitstreams, and numerous peripherals for external device
communication. In addition, real-world WSNs would include
wireless communication controllers, battery monitoring cores,
and digital clock managers for multiple clock domain
management. Since these components would not change at
runtime, they reside in the FPGA’s static region along with
any other non-reconfigurable critical system components.

VAPRES and the underlying communication architecture
provide an essential enabling methodology for dynamic,
situation-based PR. Whereas our current VAPRES
architecture is not PR-specific, we are currently developing the
PR-based enhancements.

B. Situation-Based Reconfiguration Methodology - Dynamic
Module Loading and Unloading
The VAPRES central controlling agent orchestrates

module loading and unloading, which involve making runtime
decisions on when to place a module inside the PRRs (online
scheduling) and which specific PRR implementation to use
(online placement). Inter-module communication is necessary
when a module optimized for noisy measurements has
determined the correct target type and wants to transmit
information to a new module that can better track the target.
VAPRES is able to seamlessly handle this inter-module
communication.

While the sensor node is not actively tracking a target, a
target detection module is responsible for new target detection.

When a new target is detected, the central controlling agent
loads an appropriate module and initiates necessary
communication establishment based upon three possible
scenarios:

1. A basic tracking module processes the sensor input
for new targets. New targets are evaluated and the appropriate
specialized module is loaded. The basic module then returns to
standby mode and waits for a new target.

2. The central controlling agent loads all potential
tracking modules in succession into a single PRR, and each
module tracks the target for a short evaluation period. The
module that best tracked the new target is reloaded and
responsible for tracking that target.

3. The controlling agent loads all possible modules in
parallel. After a short evaluation time, the module that best
tracks the target would remain loaded.

Scenarios 2 and 3 rely on loading tracking modules for
module evaluation before determining the most appropriate
module. Scenario 1 performs target evaluation without loading
evaluation modules, eliminating module evaluation overhead.
Since each of these scenarios has tradeoffs in terms of power
consumption, latency, tracking accuracy, and resource usage,
VAPRES enables designers to make these tradeoff decisions
based on system goals.

V. RESULTS
In this section, we evaluate the VAPRES architecture and

situation-based reconfiguration using three metrics: processing
performance, power consumption, and resource utilization.
Even though we implemented the Kalman filter on a high-end
FPGA, which might not be used in a real-world application,
our results are equally applicable to low-end FPGAs and
provide motivation for power, performance, and resource
utilization improvements.

A. Experimental Setup
Our experimental setup used a Xilinx Virtex-4 FX100

FPGA. Although Virtex-5 FPGAs offer better performance
and power, we used a Virtex-4 due to its PR design flow
maturity. We measured power consumption using the Xilinx
XPower analysis tool. We assumed a 12% average signal
activity. Since typical design activity ranges from 6-12%, our
power estimates are pessimistic.

For our WSN system, we modeled a situation with a
maximum of five simultaneously tracked targets, thus the
system contained five PRRs for filter modules. Our system
design contained only the VAPRES architecture and Kalman
filters. Image processing hardware, sensor interface, and
communication interface requirements were assumed to be
necessary components regardless of the system configuration,
and are therefore not included in our measurements.

In order to provide FPGA resource requirements for a
variety of system situations, we constructed two PR design test
cases. PR design one (PR-D1) used dedicated FPGA
multiplier units, and PR design two (PR-D2) implemented
multiplication using logic. The base system consisted of five
copies of design one without the VAPRES architecture.

Figure 2: Power consumption normalized to the base system for PR designs
one and two for a varying number of modules.

Breakeven
point

B. Processing Performance, Power Consumption, and
Resource Utilization
Since the VAPRES system enables multiple clock

domains, we evaluate the maximum attainable clock frequency
for the architecture independently from the PRRs. Since all
PRRs have similar layouts (equal number of allocated
resources), all PRRs have the same maximum attainable clock
frequency, which is independent of the filter modules.

The VAPRES maximum attainable clock frequency is 209
MHz, while the Kalman filter modules reach 87 MHz and 68
MHz for PR-D1 and PR-D2, respectively. Since processing
one input sample takes two clock cycles, the maximum clock
frequency represents half the maximum sample processing
rate. Whereas Agilla’s [3] sample processing times reached 6-
7 seconds, our sample processing times range from 23-30
nanoseconds.

Figure 2 shows power consumption of the two PR designs
normalized to the base system for a varying number of active
filter modules. The base system power consumption was 1.794
Watts. The figure reveals the breakeven point at three active
modules. The breakeven point is the point where the PR
design and the base system have equal power consumption.
PR designs with fewer active modules consume less power
than the base system, while PR designs with more active
modules consume more power than the base system. Figure 2
also reveals that multiplier unit availability has essentially no
impact on power consumption. It is worth noting that the
results from Figure 2 only compare the differences in dynamic
power consumption, since static power across all cases,
regardless of PR, remains the same. The clock to PRRs is
simply disconnected when not in use, eliminating only
dynamic power consumption (and not static power).

These results are somewhat expected. PR provides
enhanced design flexibility at potentially less power and
resource requirements. Since the base system and the PR
designs all contain five filter modules, at full capacity, the PR
designs essentially provide equal functionality as the base
system with additional PR overhead. However, the benefit of
PR for WSNs is that the system will likely not be in high-
power situations very often. Simply because a node provides
the ability to track five targets simultaneously does not mean
that the node will continuously track five targets. Thus, PR
provides both reduced average power consumption and
increased battery life when the system is not at peak operating
capacity. Quantifying these savings is very difficult as they are
entirely dependent on actual environmental situations such as
target frequency, criticality, and complexity.

 Table II shows the number of device resources used
(amount used) and the percentage utilization of these resources

(% of device) on the Virtex-4 FX100 for both PR designs.
These numbers provide an easy method in which to evaluate
alternative FPGA devices to determine if a candidate device
has sufficient resources for a five-module VAPRES system.
We point out that these numbers do not include resources
required for processing hardware, sensor interfaces, and
communication interfaces. Table II shows that the required
resources for PR-D2 is nearly one half of those required for
PR-D1 due to the replacement of dedicated multiplier units
with logic. Despite the increase in LUT usage for PR-D2, the
elimination of dedicated multiplier units provides a 45.4%
reduction in device usage with a 21.8% performance penalty
for this tradeoff.

VI. CONCLUSIONS AND FUTURE WORK
Future WSNs will continue to demand increasingly greater

performance and lower power consumption. FPGAs are prime
candidates to fulfill these requirements. We have presented a
design methodology with architectural support for exploiting
PR-capable FPGAs in situation-based reconfiguration for
WSNs with transparent dynamic module allocation and inter-
module communication establishment. VAPRES provides a
critical stepping-stone for creating powerful, flexible WSN
designs capable of satisfying increasing computational
demands. Results showed that our situation-based
reconfigurable methodology provides fast sample processing
rates in the MHz range with a 5-25% reduction in power
consumption compared to the fixed five-module design with
two or fewer active targets. Furthermore, the low device
utilization of our methodology makes our methodology highly
amenable to small devices.

VII. ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by
Xilinx.

VIII. REFERENCES
[1] Bissacco, A., S. Ghiasi, M. Sarrafzadeh, J. Meltzer, and S. Soatto. "Fast

visual feature selection and tracking in a hybrid reconfigurable
architecture." Proceedings of the Workshop on Applications of
Computer Vision (ACV). 2006.

[2] Dreicer, Jared S., Anders M. Jorgensen, and Eric E. Dors. "Distributed
Sensor Network With Collective Computation For Situational
Awareness." AIP, 2002. 235.

[3] Fok, Chien-Liang, Gruia-Catalin Roman, and Chenyang Lu. "Mobile
Agent Middleware for Sensor Networks: An Application Case Study."
Information Processing in Sensor Networks, 2005, 382-387.

[4] Hymel, R., A. George, and H. Lam, "Evaluating Partial Reconfiguration
for Embedded FPGA Applications," Proc. High-Performance
Embedded Computing Workshop, MIT Lincoln Lab, Lexington, MA,
Sep. 18-20, 2007

[5] Lee, C. R., and Z. Salcic. "A Fully-hardware-type Maximum-parallel
Architecture for Kalman Tracking Filter in FPGAs." International
Conference on Communications and Signal Processing, 1997. 1243-
1247.

[6] Todman, T.J., G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk,
and P.Y.K. Cheung. "Reconfigurable computing: architectures and
design." IEE Proceedings: Computer & Digital Techniques, Vol 152,
No. 2, March 2005. 193-207.

[7] Wemekamp, John. "Emerging Trends in Mil/Aerospace Embedded
Systems." Electronic Component News, May 2007: 27-29

TABLE II: RESOURCE UTILIZATION FOR PR DESIGN ONE (PR-D1) AND
PR DESIGN TWO (PR-D2) ON VIRTEX-4 FX100

Amount used % of device
Resource type PR-D1 PR-D2 PR-D1 PR-D2

Slice Flip Flops 5566 5566 6.6% 6.6%
4-input LUTs 6623 19193 7.9% 22.8%
DSP48 multipliers 70 0 43.8% 0%
Block Ram 20 20 5.3% 5.3%

