
Fixed Segmented LRU Cache Replacement Scheme with Selective Caching

Kathlene Morales and Byeong Kil Lee
Department of Electrical and Computer Engineering

University of Texas at San Antonio
San Antonio, United States
kathlene.morales@ieee.org

Abstract— Cache replacement policies are an essential part of
the memory hierarchy used to bridge the gap in speed between
CPU and memory. Most of the cache replacement algorithms
that can perform significantly better than LRU (Least Recently
Used) replacement policy come at the cost of large hardware
requirements [1][3]. With the rise of mobile computing and
system-on-chip technology, these hardware costs are not
acceptable. The goal of this research is to design a low cost
cache replacement algorithm that achieves comparable
performance to existing scheme. In this paper, we propose two
enhancements to the SLRU (Segmented LRU) algorithm: (i)
fixing the number of protected and probationary segments
based on effective segmentation ratio with increasing the
protected segments, and (ii) implementing selective caching, to
achieve more effective eviction, based on preventing dead
blocks from entering the cache. Our experiment results show
that we achieve a speed up to 14.0% over LRU and up to
12.5% over standard SLRU.

Keywords-cache, replacement policy, cache bypassing, segmented
LRU, dead blocks.

I. INTRODUCTION

 Cache replacement policies are an essential part of the
memory hierarchy used to bridge the gap in speed between
CPU and memory [4]. Recently, SLRU, which was originally
proposed as a cache management scheme for disk systems, is
applied to the processor cache replacement [1]. The basic
idea of the SLRU replacement policy is that if a line has
been accessed while occupying the cache space, it should be
more difficult to be evicted than a line that has never been
accessed. This scheme is implemented by adding a reference
bit onto each cache line. This bit divides the cache set into
two segments: the protected segment and the probationary
segment. All lines entering the cache are initially part of the
probationary segments. If a cache hit occurs on a line in the
probationary segment, that line is then promoted to the
protected segment. All victims are selected from the
probationary segment using LRU replacement policy. Cache
lines in the protected segment are only victimized if the
probationary segment is empty. The advantage of SLRU
over LRU is that it better exploits the temporal locality of
lines by protecting more frequently used lines. Gao et al has
shown that SLRU has the potential to perform better than
LRU by adding enhancements such as aging, random
promotion and cache bypassing [1][2].
 In this paper, we propose two enhancements to the SLRU
algorithm. First, in Section II, we apply the fixed number of
lines in the protected and probationary segments to
emphasize on protected segments. Second, in Section III, for

more effective eviction, we add a selective caching method
to the proposed scheme that prevents predicted dead blocks
from entering the cache. We discuss the performance
improvements from the proposed enhancements in Section
IV, and outline the hardware costs required to implement it
in Section V. Section VI summarizes the proposed work and
discusses possible future work.

II. SLRU WITH FIXED SEGMENTED SIZES

 Based on our observation with the SLRU algorithm, we
found that often, only one or two lines occupied the
protected segment. We propose a SLRU algorithm with a
constant number of protected and probationary ways, called
fixed SLRU to increase the protected segments and avoid
dynamic segmentation cost. In contrast to SLRU, the
proposed scheme handles the eviction of lines from the
protected segment. For example, when a cache hit occurs in
the probationary segment, it is promoted to the protected
segment. To maintain the fixed ratio, a line from the
protected segment must be evicted. This victim is chosen
using LRU replacement policy.
 To describe the fixed SLRU policy, we use the notation
N:P, where N is the number of protected segments, and P is
the number of probationary segments. N + P must be equal
the associativity of the cache. The ratio between protected
and probationary segments affects the cache performance.
In order to find the optimum ratio, multiple simulations
were performed using the SPEC 2006 benchmarks with the
default cache configuration laid out by [5]: a 1K 16-way set
associative cache, with 64 bit block size. All traces were
simulated for 100 million instructions, after fast-forwarded
40 billion instructions.

TABLE I. BEST SEGMENTATION RATIO OF THE PROBATIONARY AND
PROTECTED SEGMENTS

Benchmark Best Segmentation Ratio
bzip2 11:5
mcf 15:1

hmmer 14:2
gcc None

sjeng 9:7 – 15:1
namd 11:5

groamcs 14:2
milc None

soplex 11:5
povray 8:8 – 14:2

199978-1-4673-4883-6/12/$31.00 ©2012 IEEE

 Table 1 shows the best performing segmentation ratios
for the benchmarks. Three benchmarks such as bzip2, milc
and namd have their lowest CPI with the ratio of 11:5. Two
benchmarks (sjeng and povray) have their lowest CPI over a
range of segment ratios, which included 11:5. Three other
benchmarks including hmmer, mcf and gromacs have their
lowest CPI at a segment ratio over 11:5, but overall, higher
segment ratios performed better for these benchmarks. For
two benchmarks (milc and gcc), the segment ratio did not
affect the CPI. Based on our experimental results, we
determined 11:5 to be the optimum ratio, and we use it in
our proposed algorithm as a fixed segmentation ratio.

III. SLRU WITH SELECTIVE CACHING

 Our second enhancement to SLRU is a selective caching
method which selects instructions to be bypassed based on
their reference history. Jimenez et al has shown that
bypassing “dead” blocks, which are blocks that are replaced
in the cache before they are accessed, can effectively
increase performance [3]. We predict that blocks that were
considered dead when they last occupied the cache, will
tend to be “dead” blocks the next time they occupy the
cache. By bypassing these blocks, the cache does not have
to needlessly evict lines that are more likely to be accessed
to make room for dead blocks.
 To implement this to the fixed SLRU, an additional one
bit per cache line is required. This bit will represent whether
a line has been accessed at least once while in the cache. If
it has not, its tag will be updated to a table, called the bypass
table. Based on our experiments, we found the bypass table
to be most effective when it held a maximum of 16 tags.
After a tag has been used to bypass the cache once, the line
is cleared from the table. Tags were first written to any
empty lines in the table. If no empty lines are available, tags
are overwritten to the first line in the table. Selective
caching can be implemented without increasing cache
access latency by treating the bypass table as an extra way
in the cache.

IV. RESULTS AND ANALYSIS

 Our proposed algorithm, fixed SLRU with selective
caching, was compared to both LRU and standard SLRU. It
was tested using five floating point benchmarks and five
integer benchmarks. Simulations were performed with the
proposed replacement algorithm applied to the LLC (Last
Level Cache). All other level of caches applied with LRU.
A 1M 16-way set-associative LLC cache with 64 bit block
size was used. The traces were executed for 100 million
instructions after skipping an initial 40 billion instructions.
 The results of our simulations can be seen in Figure 1. For
single core simulations, we achieve an average speed up of
1.67% over LRU (maximum up to 14.0%), and 1.85% over
standard SLRU (maximum up to 12.5%). Only one
benchmark (hmmer) experienced a significant decrease in
CPI versus LRU. This work has shown that fixed SLRU
with selective caching has a potential as a replacement
algorithm. Additional enhancements to this algorithm could
result in a better performance replacement algorithm.

Figure 1. Simulation Results for Proposed Scheme.

V. HARDWARE COSTS

 For a 16-way cache, an additional six bits per cache line
is required. Four bits are required to indicate the stack
position, one bit is used to distinguish between the
probationary and protected segment, and one bit is used to
mark whether a line has been referenced while in the cache.
The bypass table we used held 16 tags. Jimenez has shown
that a partial tag of 16 bits can accurately represent 64 bit
data [3], so the bypass table requires 256 bits of memory. In
total, single core implementation for a 16-way cache
requires 96 bits per cache set and 256 bits for the bypass
table.
 Compared to other replacement policies, the hardware
requirements for this algorithm are relatively low. For
example, the dueling segmented SLRU policy proposed by
Gao et al achieved speedups over LRU up to 8.6%, but at
the cost of 102 bits per set, plus another 23.4K of additional
hardware. This algorithm would only be feasible in high
performance and high cost machines, but not in mobile or
system-on-chip implementation. Compared to LRU, our
proposed algorithm only requires an extra 32 bits per set,
and 256 bits for the bypass table.

VI. CONCLUSION

 Our proposed algorithm has shown its potential for high
performance. With the rise of mobile technology, and
system-on-chip, low cost replacement algorithms are
essential. Since our proposed algorithm did not use the ideal
segment ratio for every benchmark, an enhancement that
adjusts the segment ratio based on performance could
improve speed up.

ACKNOWLEDGEMENTS
 This work was supported in part by the National Science
Foundation under awards CCF-1063106.

REFERENCES
[1] H. Gao and C. Wilkerson,“A dueling segmented LRU replacement

algorithm with adaptive bypassing,” 1st JILP: Cache Replacement
Championship, France, 2010.

[2] R. Pendse and R. Bhagavathula, “Pre-fetching with the segmented
LRU algorithm,” The 42nd Midwest Symposium on Circuits and
Systems, 2000.

[3] D. Jimenez, “Dead block replacement and bypass with a sampling
predictor,” 1st JILP: Cache Replacement Championship, France,
2010.

[4] D. A. Patterson, and J. L. Hennesey, “Computer architecture: a
quantitative approach,” Morgan Kaufmann, 2003.

[5] 1st JILP Workshop on Computer Architecture Competitions (JWAC-
1): Cache Replacement Championship. http://www.jilp.org/jwac-1/,
June, 2010.

200

