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Abstract— Cache replacement policies are an essential part of 
the memory hierarchy used to bridge the gap in speed between 
CPU and memory. Most of the cache replacement algorithms 
that can perform significantly better than LRU (Least Recently 
Used) replacement policy come at the cost of large hardware 
requirements [1][3]. With the rise of mobile computing and 
system-on-chip technology, these hardware costs are not 
acceptable. The goal of this research is to design a low cost 
cache replacement algorithm that achieves comparable 
performance to existing scheme. In this paper, we propose two 
enhancements to the SLRU (Segmented LRU) algorithm: (i) 
fixing the number of protected and probationary segments 
based on effective segmentation ratio with increasing the 
protected segments, and (ii) implementing selective caching, to 
achieve more effective eviction, based on preventing dead 
blocks from entering the cache. Our experiment results show 
that we achieve a speed up to 14.0% over LRU and up to 
12.5% over standard SLRU.  
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I.     INTRODUCTION 

    Cache replacement policies are an essential part of the 
memory hierarchy used to bridge the gap in speed between 
CPU and memory [4]. Recently, SLRU, which was originally 
proposed as a cache management scheme for disk systems, is 
applied to the processor cache replacement [1]. The basic 
idea of the SLRU replacement policy is that if a line has 
been accessed while occupying the cache space, it should be 
more difficult to be evicted than a line that has never been 
accessed. This scheme is implemented by adding a reference 
bit onto each cache line. This bit divides the cache set into 
two segments: the protected segment and the probationary 
segment. All lines entering the cache are initially part of the 
probationary segments. If a cache hit occurs on a line in the 
probationary segment, that line is then promoted to the 
protected segment. All victims are selected from the 
probationary segment using LRU replacement policy. Cache 
lines in the protected segment are only victimized if the 
probationary segment is empty. The advantage of SLRU 
over LRU is that it better exploits the temporal locality of 
lines by protecting more frequently used lines. Gao et al has 
shown that SLRU has the potential to perform better than 
LRU by adding enhancements such as aging, random 
promotion and cache bypassing [1][2].  
    In this paper, we propose two enhancements to the SLRU 
algorithm. First, in Section II, we apply the fixed number of 
lines in the protected and probationary segments to 
emphasize on protected segments. Second, in Section III, for 

more effective eviction, we add a selective caching method 
to the proposed scheme that prevents predicted dead blocks 
from entering the cache. We discuss the performance 
improvements from the proposed enhancements in Section 
IV, and outline the hardware costs required to implement it 
in Section V. Section VI summarizes the proposed work and 
discusses possible future work.  
 

II.      SLRU WITH FIXED SEGMENTED SIZES 

    Based on our observation with the SLRU algorithm, we 
found that often, only one or two lines occupied the 
protected segment. We propose a SLRU algorithm with a 
constant number of protected and probationary ways, called 
fixed SLRU to increase the protected segments and avoid 
dynamic segmentation cost. In contrast to SLRU, the 
proposed scheme handles the eviction of lines from the 
protected segment. For example, when a cache hit occurs in 
the probationary segment, it is promoted to the protected 
segment. To maintain the fixed ratio, a line from the 
protected segment must be evicted. This victim is chosen 
using LRU replacement policy.  
    To describe the fixed SLRU policy, we use the notation 
N:P, where N is the number of protected segments, and P is 
the number of probationary segments. N + P must be equal 
the associativity of the cache. The ratio between protected 
and probationary segments affects the cache performance. 
In order to find the optimum ratio, multiple simulations 
were performed using the SPEC 2006 benchmarks with the 
default cache configuration laid out by [5]: a 1K 16-way set 
associative cache, with 64 bit block size. All traces were 
simulated for 100 million instructions, after fast-forwarded 
40 billion instructions. 

TABLE I.  BEST SEGMENTATION RATIO OF THE PROBATIONARY AND 
PROTECTED SEGMENTS 

Benchmark Best Segmentation Ratio 
bzip2 11:5 
mcf 15:1

hmmer 14:2
gcc None

sjeng 9:7 – 15:1
namd 11:5

groamcs 14:2 
milc None

soplex 11:5
povray 8:8 – 14:2
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    Table 1 shows the best performing segmentation ratios 
for the benchmarks. Three benchmarks such as bzip2, milc 
and namd have their lowest CPI with the ratio of 11:5. Two 
benchmarks (sjeng and povray) have their lowest CPI over a 
range of segment ratios, which included 11:5. Three other 
benchmarks including hmmer, mcf and gromacs have their 
lowest CPI at a segment ratio over 11:5, but overall, higher 
segment ratios performed better for these benchmarks. For 
two benchmarks (milc and gcc), the segment ratio did not 
affect the CPI. Based on our experimental results, we 
determined 11:5 to be the optimum ratio, and we use it in 
our proposed algorithm as a fixed segmentation ratio.  
 

III.      SLRU WITH SELECTIVE CACHING 

    Our second enhancement to SLRU is a selective caching 
method which selects instructions to be bypassed based on 
their reference history. Jimenez et al has shown that 
bypassing “dead” blocks, which are blocks that are replaced 
in the cache before they are accessed, can effectively 
increase performance [3]. We predict that blocks that were 
considered dead when they last occupied the cache, will 
tend to be “dead” blocks the next time they occupy the 
cache. By bypassing these blocks, the cache does not have 
to needlessly evict lines that are more likely to be accessed 
to make room for dead blocks. 
    To implement this to the fixed SLRU, an additional one 
bit per cache line is required. This bit will represent whether 
a line has been accessed at least once while in the cache. If 
it has not, its tag will be updated to a table, called the bypass 
table. Based on our experiments, we found the bypass table 
to be most effective when it held a maximum of 16 tags. 
After a tag has been used to bypass the cache once, the line 
is cleared from the table. Tags were first written to any 
empty lines in the table. If no empty lines are available, tags 
are overwritten to the first line in the table. Selective 
caching can be implemented without increasing cache 
access latency by treating the bypass table as an extra way 
in the cache.   
 

IV.      RESULTS AND ANALYSIS 
 

    Our proposed algorithm, fixed SLRU with selective 
caching, was compared to both LRU and standard SLRU. It 
was tested using five floating point benchmarks and five 
integer benchmarks. Simulations were performed with the 
proposed replacement algorithm applied to the LLC (Last 
Level Cache). All other level of caches applied with LRU. 
A 1M 16-way set-associative LLC cache with 64 bit block 
size was used. The traces were executed for 100 million 
instructions after skipping an initial 40 billion instructions.      
    The results of our simulations can be seen in Figure 1. For 
single core simulations, we achieve an average speed up of 
1.67% over LRU (maximum up to 14.0%), and 1.85% over 
standard SLRU (maximum up to 12.5%). Only one 
benchmark (hmmer) experienced a significant decrease in 
CPI versus LRU. This work has shown that fixed SLRU 
with selective caching has a potential as a replacement 
algorithm. Additional enhancements to this algorithm could 
result in a better performance replacement algorithm.  

 
Figure 1. Simulation Results for Proposed Scheme. 

 

V.      HARDWARE COSTS    
 

    For a 16-way cache, an additional six bits per cache line 
is required. Four bits are required to indicate the stack 
position, one bit is used to distinguish between the 
probationary and protected segment, and one bit is used to 
mark whether a line has been referenced while in the cache. 
The bypass table we used held 16 tags. Jimenez has shown 
that a partial tag of 16 bits can accurately represent 64 bit 
data [3], so the bypass table requires 256 bits of memory. In 
total, single core implementation for a 16-way cache 
requires 96 bits per cache set and 256 bits for the bypass 
table.  
    Compared to other replacement policies, the hardware 
requirements for this algorithm are relatively low. For 
example, the dueling segmented SLRU policy proposed by 
Gao et al achieved speedups over LRU up to 8.6%, but at 
the cost of 102 bits per set, plus another 23.4K of additional 
hardware. This algorithm would only be feasible in high 
performance and high cost machines, but not in mobile or 
system-on-chip implementation. Compared to LRU, our 
proposed algorithm only requires an extra 32 bits per set, 
and 256 bits for the bypass table. 
 

VI.      CONCLUSION 
 

    Our proposed algorithm has shown its potential for high 
performance. With the rise of mobile technology, and 
system-on-chip, low cost replacement algorithms are 
essential. Since our proposed algorithm did not use the ideal 
segment ratio for every benchmark, an enhancement that 
adjusts the segment ratio based on performance could 
improve speed up. 
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