Floorplanning in Modern FPGAs

Pritha Banerjee, Susmita Sur-Kolay

Advanced Computing and Microelectronics Unit

Indian Statistical Institute
203 B. T. Road, Kolkata, India
{pritha_r,ssk } @isical.ac.in

Abstract— State-of-the-art FPGA architectures have millions
of gates in CLBs, Block RAMs, and Multiplier blocks which can
host fairly large designs. While their physical design calls for
floorplanning, the traditional algorithm for ASIC do not suffice.
In this paper, we have proposed an algorithm for unified floorplan
topology generation and sizing for recent heterogeneous FPGAs.
Experimental results on a set of benchmark circuits show that
our three step floorplan generation method can produce feasible
solutions very fast with 45% improvement in total half perimeter
wirelength compared to the very few previous approaches.

Keywords: FPGA, floorplanning, slicing topology, sizing

I. INTRODUCTION

The spectrum of FPGA based systems especially embedded
ones, has become very wide. Modern FPGA architectures have
been aggressively taking over from ASICs in certain areas.
These FPGA architectures are significantly different from
those that were available in the last decade. Earlier, CLBs,
a homogeneous resource, were arranged in rows and columns
uniformly, with Primary Input and Outputs (PI and PO) at
the boundaries. Recent FPGA architecture comprises not only
the CLBs and PI/POs, but also Multipliers (MUL), Block
RAMSs, DSP and microprocessor cores. Few columns of RAM-
MUL pairs are evenly interspersed among CLB columns.
Moreover, large design with millions of gates are partitioned
into smaller modules for greater demand on performance and
also reduction of compilation time for place and route. This
necessitates a floorplanning step for hierarchical designs in
the physical design flow of FPGAs. Though a large volume of
work exists for ASIC floorplanning, it is generally skipped
to map designs onto the earlier sea-of-gates style FPGAs.
In a typical FPGA physical design flow, after technology-
mapping, a flattened CLB netlist is directly placed [1] and
routed without any floorplanning. Of course for hierarchical
designs, modules or macros consisting of CLBs only were
floorplanned/placed using various bin packing techniques [2].
But, for modules with heterogeneous resource requirements,
neither this technique nor the traditional floorplanners for
ASICs adapted to FPGA, are adequate [3]. Hence there is
a pressing need for fast floorplanning techniques that consider
the heterogeneous logic and routing resources of modern
FPGA:s.

The literature on FPGA floorplanning is merely a hand-
ful. Emmert et al. [4] devised a macro based floorplanning
methodology for earlier generation sea-of-gates style FPGAs.

Arijit Bishnu
Dept. of Computer Science and Engg.
Indian Institute of Technology
Kharagpur-721 302, India
Arijit.Bishnu @iitkgp.ac.in

[cs

| XY Timue it

Fig. 1. Spartan-3 XC3S5000 FPGA Architecture

The method uses clustering techniques to combine macros into
clusters, and then place the clusters with enhanced circuit
routability and performance using Tabu search. Cheng and
Wong [5] proposed the first floorplanning algorithm targeted
for heterogencous FPGAs that can produce feasible solu-
tion employing simulated annealing to optimize area, half-
perimeter wirelength and the aspect ratios of modules. Yuan et
al. [6] have proposed an algorithm based on Less Flexibility
First (LFF) principle with worst case time complexity of
O(W?2n®logn), where n is the number of modules and W is
the width of the chip. Recently Feng and Mehta [7] presented
a two step approach based on resource aware fixed outline
simulated annealing starting from a given topology, followed
by max-flow based constrained floorplanning to optimize
wirelength.

In this paper, we propose a methodology for unified floor-
plan topology generation and sizing. The experimental results
show that our method is fast and can produce floorplans
with improved half-perimeter wirelength when compared to
existing methods. The rest of the paper is organized as follows.
In section II, we briefly describe the basic FPGA architecture
followed by the problem definition and the objective function
to be optimized. Section III presents our proposed method-
ology and time complexity issues. The proposed method is
illustrated with an example in Section IV. Experimental results
are reported in section V and concluding remarks appear in
section VL

II. BACKGROUND
A. Architecture

While CLBs were arranged in rows and columns with
routing wires laid out between rows and columns of CLBs
earlier, modern FPGA architectures are far more heteroge-
neous with different types of resources to satisfy the varied

IEF l-

COMPUTER
SOCIETY

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007 IEEE

design requirements. Fig. 1 shows a Xilinx Spartan-3 FPGA
where the CLBs are arranged in columns interleaved with
columns of RAM-Multiplier pair at certain intervals. Each
small square represents a CLB. A pair of shaded rectangular
blocks, spanning 4 CLB rows represents the RAM-MUL
pair. Henceforth, we assume this architecture, although the
methodology is applicable to other similar ones.

B. FPGA Floorplanning Problem

First, the basic terminology is given below.

Modules and Signal nets: Let M = {my, ma, - -+, my } be a
set of n distinct modules. Let S = {s1, s2, - - -, s4} be a set of
q signals. A set of distinct modules M, = {m; | m; € M}
is associated with each signal s; € S. s; is called a signal
net, and the set S is called a netlist. My, = M, implies that
there are two distinct signal nets connecting the same set of
modules.

Resource Requirement Vector [5]: A 3-tuple vector
R=(mcip, Mram, Mmur) tepresents the number of CLBs,
RAMs and MULs required by module m.

Target Architecture: Let W and H be the width and height
of a target architecture, where the units are the width and
height of a CLB respectively. A coordinate system (0,0, W, H)
with top-left corner at (0, 0) and bottom-right corner at (W, H)
is assumed for the given chip. In Fig. 1, it is (0,0, 87,103)
Each resource on the architecture is identified by its coordinate
position (z,y), where 0 <z < W and 0 <y < H.

FPGA Floorplanning Problem : Given a target architec-
ture (0,0, W, H) with its resource locations, a set of modules
M, the resource requirement vectors R,,, for each m; € M,
and the netlist S, assign regions (Zmin, Ymins Tmazs Ymaz) 1O
each module such that
(1) 0 S Tmin S Tmax S W and 0 S Ymin S Ymazx S H,

(i1) no two modules overlap with each other,
(iii) R, is satisfied for each module m;,
(iv) a particular cost function is optimized.

A floorplan is feasible if it satisfies condition (i), (ii) and
(iii). In this paper, the cost function used is the total half-
perimeter wirelength, measured as in [7].

III. PROPOSED METHOD

Our floorplanning methodology as shown in Fig. 2, consists
of: construction of a bi-partition tree, generation of floorplan
topology [8][9] and realization of the topology using the
resource requirements.

In the first phase, the target FPGA architecture is approx-
imated to a 2D array of rectangular basic tiles. We generate
a set of possible rectangular shapes (in terms of tiles) which
satisfies the resource requirements and then bi-partition the
netlist to obtain a binary partition tree of modules.

In the second phase, a list of candidate floorplan slicing
topologies and corresponding module shapes are generated in
polynomial time by appropriate sizing of the nodes in the bi-
partition tree in postorder.

In the third phase, for every slicing tree obtained in the
previous step, a rectangular region within (0,0, W, H) is

Phase | :

For each m; find min. number
of tiles required from R,

[Module Netlist,] >
FPGA Basic Tile Architecture

Bi-Partition module netlist

Phase I11 : or each slicing tr based on balanced min-cut
Partition
> Tree

Allocate rectangular region to each
module by level-order traversal

Phase 11 :

Generate shapes in
terms of # of tiles

Set of

Slicing

Allocate coordinates to RAM/MUL i rees
by min. wt. bipartite matching

]

Report

Generate shapes by vertical
and horizontal node sizing
while traversing the
tree postorder

feasible floorplan

Fig. 2. Flow of our Floorplanning Method

assigned to every module which respects the cut direction
and the resource requirements. Finally, the realization with
the minimum wirelength among all the topologies generated
is reported as the optimized floorplan.

A. Phase I: Generation of partition tree

In order to explain this step, we define the following terms.

Definition 1: A Basic FPGA Tile A = (acp, Qrams Gmul)
is a 3-tuple vector that represents the minimum number of
CLBs, RAMs, MULSs that constitute a basic tile which can be
repeated horizontally and vertically to cover all the rows and
columns of a given target architecture.
The given architecture is thus composed of, say, T, x T}
basic tiles arranged in h rows and w columns. In Fig. 1, the
basic tile A = (96, 1, 1) consists of 24 x 4 CLBs, 1 RAM and
1 MUL. The entire architecture (Spartan-3) shown in Fig. 1
can be covered by 26 rows and 4 columns of basic tile A.

Definition 2: For a given basic tile A, the Tile Requirement
T, of a module m; with resource requirement vector R,,,,
is the minimum number of basic tiles it requires. This is given
by

Mely Meram Mmul

ey

T, = [max(

i

’ ?
Gclb Qram Gmul

Min cut Partitioning of Module Netlist : In order to min-
imize the wirelength of the feasible floorplan, the module
netlist is bi-partitioned recursively based on min-cut. The
partitions are weight balanced across the cut edges according
to the tile requirements of each module. We employ a state-of-
the-art hypergraph partitioning tool AMetis [10] to obtain the
weight balanced min-cut partitioning of the module netlist.
This yields the relative ordering of the circuit modules which
is the baseline of the floorplan generation.

The input to the hMetis tool is a netlist, which is a
hypergraph H = (V, E). Each vertex v € V corresponds to a
module m;, i = 1,2---n. An hyperedge e = {v1,v9,....} € E
corresponds to M. If {M,,, M,,--- My} are identical for
signal net s;, s;, ---, s; then each of s;, s;,---s; corresponds
to the same hyperedge with number of such signals as the
weight of the hyperedge. The minimum number of tiles T,,,,,
is the weight of the vertex v € V. The hypergraph H thus
generated, is bi-partitioned recursively to n parts, generating

IEF l-

COMPUTER
SOCIETY

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007 IEEE

a binary partition tree with its leaves corresponding to n
modules.

B. Phase II: Floorplan topology generation

In this step, a set of sliceable floorplan topologies (i.e., slic-
ing trees) is generated by appropriate horizontal and vertical
node sizing of a set of possible shapes (in terms of basic tiles)
for each module.

1) Generation of Module Shapes:

Deﬁnition 3: Alist D = { (w1, h1), (wa, ho) -+ (wy, hy)

} of irredundant shapes of a module m, is a list of ¢ possible
shapes of m, where (w;, h;) denotes the width and height of
the i*" shape of m in terms of basic tiles. D is said to be
irredundant if each individual w; and h; are distinct [8].
By making individual w; and h; distinct as in Def. 3, a shape
with smaller height is chosen from two implementations with
same width. Thus an inferior shape is always excluded from
D. A set of possible irredundant rectangular shapes for m;
is generated by factorizing 7},,. As we are considering only
rectangular shapes, there may not be many choices such that
width * height =T,,,. A few more shapes, i.e., (width,height)
pairs for a module are generated by factorizing all composite
integers from T,,, 0 Tphae(m;), where Tppa.(m;) is the
smallest square integer greater than or equal to T,,.

Let a be a positive integer denoting the maximum aspect
ratio defined for any module. A set of (w;,h;) pair is generated
for each module such that,

%ga,ifwiZhi or g—iga,ith-Zwi

Thus, for each module m;, j = 1,2,---n, we generate a set
of t; possible irredundant shapes D; = {(w1,h1), (w2, ha),

-+ (Wi, i), -+ (wy;, he,)}. The following lemma gives the
time required for generating all different shapes.

Lemma 1: If d = max{t;} is the maximum number of
shapes generated for any module m;, then it would require
O(nd) time for finding the values of all the shapes for n
modules.

2) Node sizing: A subtree rooted at an internal node p
corresponds to a sub-floorplan. The sub-floorplan at p is
generated by joining (w;,h;) € D; and (w;,h;) € D,
vertically or horizontally, where D; and D, are i*" shape of
left child (left sub-floorplan) and j*" shape of right child (right
sub-floorplan) of p. If p is the parent of leaves, then the left and
right sub-floorplans are the shapes of the modules themselves.

Vertical Cut: We use the vertical node sizing algorithm of
[11] to generate a sub-floorplan with vertical cut. Let D; = {
(’wll,hll), (wl27hl2)’ RN (wls7hls) }, with ‘Dl| =sand D,
= { (w’f’l) h’f’l)’ (w7‘27h’7"2)’) (w’f‘m hT‘r,) }’ with |D7‘ =t,be
the set of possible irredundant shapes of the left subfloorplan
(module) and the right subfloorplan (module) respectively, of
a node in the partition tree. D; is sorted such that,

wy, <w, << wyg and h11>h12>-~->h1S

D, is also sorted as above. If (wy,,h;,) and (w,,,h.,)
are merged vertically, the resultant floorplan size becomes

(Wyysho,) = (wi; + wy,, max(hy,, hy,)). The number of re-
sultant irredundant shapes is at most s +¢ — 1 [8].

Horizontal Cut: To merge subfloorplans using horizontal
cut, we use the same irredundant lists D; and D, described
above. But the lists are sorted in increasing order of height
and decreasing order of width i.e.

h11<h12<--'<hls and Wy > Wy, > -0 > Wy,

Merging (wi;, ;) € Dy and (wy,, h,;) € D, horizontally,
the resultant size of the floorplan becomes (wp,.hp,) =
(max(wy,, wy,), i, + hy;). As in case of vertical cut, the
number of resultant irredundant shapes is atmost s +¢ — 1.
3) Generation of Slicing Trees: For each internal node p of
the partition tree, a vertical list V' and a horizontal list H are
constructed from the child sub floorplans using the algorithms
described in Section III-B.2. A combined list M of irredundant
shapes is constructed at p by merging V' and H such that,

wy <wg <---<wp and hy > hy > - > hy

is satisfied. Here, k is the number of irredundant shapes at
each internal node.

Lemma 2: If s and t are the cardinalities of the shape-
list D; and D, of left and right subfloorplans of a node
respectively, then the number of shapes at node u is atmost
2(s+t—1).

Proof: As we are merging the vertical and horizontal lists
according to the condition mentioned above, the size might at
most grow by a factor of 2 than in [8]. |

The combined list M; and M, created at left and right
child of the node p is used for sub-floorplan generation at
its parent node p. Thus, the nodes of the tree are processed
post-order generating a set of subfloorplans at every internal
node p. We store the subfloorplan at p as a 5-tuple vector
(w;, by, cuty, Iy, r,.), where (w;, h;) is the it" shape of node p
which is generated by merging (1;)!" shape of left child / and
(r,)t" shape of right child r using cut;. cut; is either vertical
or horizontal.

Lemma 3: By horizontal or vertical node sizing atmost nd—
(logyn+1), i.e., O(nd) shapes/slicing trees can be generated
at the root of the tree where n is the number of modules and
d the maximum number of shapes for a module.

Proof: At any node at level ¢ (i = 1,...logn) of the
slicing tree, the size of the list is 2¢d — 2i + 1. With i = logy n
at the root, the number of shapes is O(dn). |
During the postorder processing of nodes, we also calculate
the resource requirement 12, = (Peips Pram,> Pmul) at €very
node p by summing up the resources R; and R, required by
its left and right child respectively. The requirement vector
is used for realization of the slicing tree in Phase III of our
method.

Thus, at the root we get a set of floorplan shapes F' =
{(Tw,; Th,)} where T, and T}, are respectively the width and
the height of the floorplan in terms of tiles. Each shape of F’
corresponds to a distinct slicing tree/ floorplan. Further, F' is
in increasing order of width and decreasing order of height
by our method of construction. Thus, an appropriate floorplan

IEF l-

COMPUTER
SOCIETY

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007 IEEE

shape could be chosen from this list according to the given
aspect ratio and/or floorplan area requirement.

Lemma 4: The time taken to generate the O(dn) slicing
trees is atmost O(dn).

Proof: The number of slicing trees generated is O(dn)

(see Lemma 3). A slicing tree of depth ¢ is Produced in (2*d—
2i+ 1) time. Therefore, the total time is >, 2% " (2'd — 2i + 1)
= O(dn). [|
Thus, to sum up, we process the tree once bottom-up gen-
erating merged lists discussed in Section III-B.3. We do not
decide the cut line in this step. In the next phase (discussed
below), starting from root, we proceed top-down deciding the
cut line (horizontal or vertical), thus reaching the leaves.

C. Phase III: Realization of Slicing tree on Target FPGA

For every slicing tree generated in the previous step, now
we assign coordinate position to each module. This consists of
two steps: Allocation of a rectangular region which satisfies
the CLB requirements followed by allocation of RAM and
MUL within and outside this region without any discontinuity.

1) Allocation of rectangular region to a module: Each
slicing tree is traversed level-order and a rectangular region
(@b b ab o yP) is allocated to every node p using
the cut direction and the number of CLBs required at p.
Suppose the region contains 7. rows and cqp columns of
CLBs. If the CLB requirements at node p, its left child [and
its right child r are p.p, lp and 7¢p respectively, peo; the
number of CLB columns at p, then if p represents a vertical
cut, the number of CLB columns allocated to [is

= —Pcol (2)
Deidv

S0 (Peot — leor) columns are allocated to its right child r. The
number of rows required to satisfy l. and 7. at [and 7 is
simply % and :—’:’ respectively. For a horizontal cut at p with
Prow Tows of CLB, the number of CLB rows allocated to [is
lrow = lci~prmu (3)
Deib
The right child node 7 is allocated (pyow —lrow) columns. The
number of columns required to satisfy I, and r¢p at [and r
is llf% and % The number of columns and rows required
(width and height) to implement a sub-floorplan corresponding
to each node of the slicing tree, are computed using this
strategy.

The position of each region corresponding to a node is
assigned as follows. As the root node of the slicing tree cor-
responding to the entire floorplan is allocated to (0,0, W, H),
the left child [always inherits its top-left corner (z!,;,,, ! ;.)
from its parent p and the bottom-right corner (z',,,., %", ..) is
derived from the width and height calculation described in the
previous paragraph. So, for a vertical cut at parent p,

l l . l _
Tmaz = Tmin + lCOly Ymaz = yfnaz (4)
and for a horizontal cut at p,
l . l _
Tmaz = mfnaz’ Ymaz = yfnzn + l”’OW (5)

r

The top-left corner (z] ,,,, Yy, .,;,,) of the right child r is calcu-
lated as follows: if the cut at p is vertical,

x Ynin = Yrnin (6)

l .
747711'n = Tmaz + 1’
and if the cut at p is horizontal, then

r 1 .
Timin = Lmins

y’l:’“;n = yinaw +1 (7)

(T7 0> Ymaz) Of node 7 is calculated analogous to Equations
4 and 5 for vertical and horizontal cuts respectively. Thus,
each leaf of the tree corresponding to a module has a rectangle
assigned to it and its CLB requirement is satisfied by the CLB
locations within the rectangle.

2) Allocation of RAM and MUL: A rectangle assigned to
a module m; may have sufficient CLBs but not RAM/MUL
positions required by it. So, RAM/MULs may have to be
placed exterior to the (top and bottom) boundary of the
rectangle, which falls in a rectangle assigned to a neighbouring
module m;. If the RAM/MUL requirement of m; is also
not satisfied fully within its rectangle, then there may be a
conflict. Therefore, the violations in RAM/MUL requirement
constraints are resolved globally by formulating it as a mini-
mum weighted bipartite matching (MWBM) problem, so that
a module is not realized in disconnected regions.

Let G = {U = U, UU,Z} (U NUz = ¢) be
a weighted bipartite graph, where U; represents the RAM
units required by the modules and Us, the candidate RAM
locations. For a module m with RAM requirement M4,
there are m,q,, vertices in Uj. Suppose the rectangle R
= (Tmin, Ymins Tmazs Ymaz) has been assigned to m. Then
for each RAM column intersecting R, a RAM strip is said
to include the RAM locations within R, along with 7,4,
locations above its top boundary and m,.q,, locations below
its bottom boundary. There is a vertex in Us for every RAM
location in each RAM strip with respect to rectangle R. There
is an edge (u;,u;) € Z if u; corresponds to a RAM unit
required by a module m and u; corresponds to a candidate
RAM location with respect to R assigned to m. In order to
enforce connectedness of a module, the weight of edge (u;, u;)
is chosen as the vertical distance from the center of rectangle
R to that of the RAM Ilocation for u;.

Fig. 3 shows the candidate RAM/ MUL locations for
allocating the RAM/MUL required by module m;. Suppose
m; requires 3 RAMs, but the region allocated to m; has only
2 RAMs. In the figure, the RAM locations within RAM strip 1
and RAM strip 2 are the RAM locations chosen for assigning
the 3 RAMs required by m;. The corresponding bi-partite
graph is also shown, where from each of r1 , r2, r3 there
are edges to all the RAM locations la,---1g,2a, - - - 2g.

Now, we solve MWBM on G to assign unassigned RAMs
to available RAM locations. If there is no assignment, there is
no feasible solution. MULs are also assigned to the physical
locations similarly by solving a separate MWBM.

This process of CLB assignment followed by RAM and
MUL assignment is carried out for every slicing tree generated
in phase II. The half-perimeter wirelength is calculated for

IEF l-

COMPUTER
SOCIETY

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007 IEEE

la 2a
1b " o3
le 2c d=2

W . 2 (|l |™ O

d=1
le % 4o
1f of 43
1g 2
?t;;\l;';ﬂl Emid point [——JRegion allocated to m; gt:ﬁi\)/lz

RAM Required

RAM locations

Fig. 3. Candidate RAM/ MUL location for a module

each floorplan generated. The floorplan with no discontinuity
and least wirelength is chosen as the final floorplan.

D. Complexity of our approach

Theorem 1: The time complexity of our approach excluding
Phase I is O(n%logn + H'-nlogn), where H is the height
of the chip.

Proof: By Lemma 4, the time taken for generating the
O(dn) slicing trees is O(dn). For each of the slicing trees,
we traverse the tree of size O(n) from root to leaves to fix
the rectangular regions of the CLBs in O(n) time. Then,
we solve a MWBM to assign RAM/MULs in O(|Z|/|U])
time [13]. As the number of RAM/MULSs are proportional
to within a constant factor of the height I of the chip, the
number of vertices U in the bipartite graph is O(H). In the
bipartite graph, the edges are assigned to RAM/MUL locations
that intersect the z-span of the CLB rectangle. The CLB
rectangles being non-overlapping, the number of edges |Z]
is again O(H). Thus, MWBM takes O(H'*). The total time
complexity is O(dn(n + H*%)). With d = O(logn) [11], the
time complexity result follows. |
Phase I is iterative because of the use of hMeTis. But, the
authors of hMetis in [12] claims that time taken by hMeTis is
almost linear in the number of hyperedges, i.e., netlists. Thus,
our method, in terms of time complexity compares favourably
against that of [6] which takes O(W?2n®logn) time.

IV. AN EXAMPLE

The method described in Section III is explained with a
small example. We considered a circuit from [5] with 20
modules and constructed an appropriate netlist for comparison

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007 IEEE

1 (8

O © O 0O

o] [22 0

0 4

2| a3 225 21

& 135l ToTo[22[22] |33
20{40||20(44
21(21/43(43
39/63/|43]63

Fig. 4.

Fig. 5.

Floorplan of the example circuit

purpose. Fig. 4 shows the binary partition tree obtained in
Phase I of our method. The integers 0---19 written just
below the leaves indicate module indices. A set of slicing
trees is generated in Phase II. One such slicing tree with
its vertical and horizontal cut lines marked at every internal
node is shown here. Finally, the realization of the slicing tree
onto the coordinates of the target architecture in terms of
(Xmins Ymin, Tmaz, Ymaz) are reported in a vertical box below
every node. For example, the root is realized as (0,0,87,103),
i.e., the entire target architecture. Within the floorplan area, a
module, say myy, is realized as (0, 64, 21, 83). Fig 5 shows the
final allocation for each module on Spartan-3 (XC3S5000).

V. EXPERIMENTAL RESULTS

We have implemented the proposed method in C on 1.2GHz
SunBlade 2000 workstation with SunOS Release 5.8. Our
method is tested on Xilinx XC3S5000 (Spartan-3) FPGA with

TABLE 1
Floorplan results for 20-module example [5]
Idx 1 2 3 4 5
Tw.dn | 1,104 | 2,52 | 3,39 | 4,26 | 5,22
WL 392 560 728 816 618
Idx 6 7 8 9 10
TwTn | 6,20 | 7,17 | 8,14 | 9,13 | 10,11
WL 946 594 768 971 854
IEF l-
COMPUTER

SOCIETY

TABLE 11
Benchmark Circuits, C: CLB, R:RAM, M:MUL, WL: wirelength

Ckt Characteristic Feng-Mehta [7] Our Method % WL Tmprovement
Circuit | #Modules | #Nets #C, R, M) WL | Time(s) WL | Time(s) | Case I Case 11
apte 9 44 | 6614,70,70 — — 213,540 1.22 — —
XErox 10 183 | 6625,66,50 — — 536, 450 1.02 — —
hp 11 44 | 6591, 66,66 — — 113,652 0.96 — —
ami33 33 84 | 6289,61,60 89, 283 2.72 51,356 1.39 42 32
ami49 49 377 | 6300,63,63 | 1,173,000 4.96 | 1,001,462 3.84 15 52
n100a 100 576 | 6352,39,38 358,338 8.87 132,682 1.16 63 28
n200a 200 1585 | 6342,44,34 700, 045 58.24 291,592 2.78 58 31
n300a 300 1893 | 6625,65,54 875,602 177.67 431,855 3.47 51 34

8320 CLBs, 104 RAMs and 104 multipliers. These are ar-
ranged in 88 columns (including 4 RAM-MUL column pairs)
and 104 rows of CLBs. As mentioned earlier, the basic tile size
is chosen as A = (24 x 4,1,1), i.e., 96 CLBs, 1 RAM and 1
MUL. Experimental results on 8§ benchmark circuits derived
from MCNC [5] and GSRC Bookshelf ASIC floorplanning
benchmarks [14], are reported here. ASIC benchmarks are
converted to FPGA benchmarks as in [7] by proportional CLB
requirements.

The effectiveness of our method is demonstrated with the
20-module example circuit in [5], having 16 modules with 400
CLBs, 5 RAMs, 5 MULs and 4 modules with 480 CLBs, 6
RAMs, 6 MULSs to cover the entire target architecture. Table
I shows the result obtained by our method for the example
circuit. The row T, T}, is the width and height (in terms of
basic tiles) of each floorplan topology generated after phase
II. The row marked WL shows the wirelength obtained for
each slicing tree realization after phase III. The time taken to
generate floorplans for all the 10 slicing trees is 2.98 seconds,
which is far less than 88 seconds taken by [S] on a faster
2.4 GHz Intel(R) Xeon CPU. We observed that, our method
could construct the same floorplan reported in [5] with an
appropriate net partition tree. In Table I, the topology for the
column idx = 4, is identical to that reported in [5]. Since [5]
does not report the wirelength, we can not compare it with
ours.

Table II has the details of the 8 benchmark circuits, namely
the number of modules, signal nets, total requirements of the
three types of resources, in columns 2, 3 and 4 respectively.
The column 5 and 6 report the wirelength and time taken to
obtain the floorplan reported in [7]. The next two columns
report the same by our method. Note that the time reported in
[7] is on a much faster 3.06Ghz Intel Xeon CPU. As mentioned
in Section II-B, WL is the sum of the semi-perimeters of
all the nets. The wirelength shown in column 7 is computed
assuming the net terminals at the centre of the module whereas
in [7], the location of the terminals (center/boundary) for
computing the wirelength were not explicitly stated. We report
the improvement in wirelength over [7] in column 9 (case I) by
taking the values directly from their paper. We observed that,
on the average, there is 45% improvement in wirelength over
5 circuits. The column 10 shows the improvement over [7]
(case II) when we compare an appropriately scaled estimation
of our wirelengths if the terminals of a module are along its
boundary. There is still 35% improvement in wirelength, on

the average.

The time reported in Table II (column 6 and 8) are on two
different platforms. For comparison purpose, we have scaled
up the time taken by our method using the scaling factors from
[15] and observed that our method is about 2x to 50X faster
than [7] depending on the size of the circuit. This shows the
suitability of our method for fast FPGA floorplanning.

VI. CONCLUDING REMARKS

In this paper, we have developed a fast floorplanning
methodology for FPGAs with heterogeneous resources con-
sisting of CLBs, RAMs and Multipliers as in Spartan-3 FPGA
architectures. The time complexity of our approach excluding
phase I of partitioning, is O(n?logn + H'®nlogn), where
H is the height of the chip and n is the number of modules.
Experimental results show a significant speed-up over exist-
ing methods. The half-perimeter wirelength of the resultant
solution shows 45% improvement over the method reported
in [5].

REFERENCES

[1] P. Banerjee, Subhasis Bhattacharjee, Susmita Sur-Kolay, Sandip Das,
Subhas C. Nandy, “Fast FPGA Placement using Space-filling Curve”.
in Proc. FPL 2005, pp. 415-420, 2005

[2] R. Tessier, “Fast Placement Approaches for FPGAs”, in ACM Transac-
tions on Design Automation of Electronic Systems, vol. 7, no. 2, April
2002, pp 284-305.

[3] M. Wang, A. Ranjan, and S. Raje, “Multi-Million Gate FPGA Physical
Design Challenges,” in Proc. ICCAD, Nov., 2003, pp. 891-898.

[4] J. M Emmert, A. Randhar, D. Bhatia, “Fast Floorplanning for FPGAs”
in Proc. FPL , 1998,pp 129-138.

[5] L. Cheng and Martin D. F. Wong, “Floorplan Design for Multi-Million
Gate FPGAs”, in Proc. ACM ICCAD, Nov., 2004, pp. 292-299.

[6] J. Yuan, S.Q. Dong, X.L.. Hong, and Y.L. Wu, “LFF Algorithm for
Heterogeneous FPGA Floorplanning,” in Proc. ASP-DAC, 2005. pp.
1123-1126. 2005.

[7]1 Y. Feng and D. Mehta, “Heterogeneous Floorplanning for FPGAs” in
Proc. International Conference on VLSI Design, Jan. 2006.

[8] M. Sarrafzadeh, C.K. Wong, “An Introduction to VLSI Physical Design”
Mcgraw Hill, 1996.

[9] Parthasarathi Dasgupta, Susmita Sur-Kolay, Bhargab B. Bhattacharya,

“A Unified Approach to Topology Generation and Optimal Sizing of

Floorplans”, in IEEE Trans. on CAD of Integrated Circuits and Systems,

vol. 17, no. 2, pp. 126-135, 1998.

http://www-users.cs.umn.edu/karypis/metis/hmetis

L. J. Stockmeyer, “Optimal Orientations of Cells in Slicing Floorplan

Designs”, Information and Control, 57(2/3):91-101,1983.

G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel Hy-

pergraph Partitioning: Applications in VLSI domain”, IEEE Trans. on

VLSI, vol. 7, no. 1, pp. 69-79, March, 1999.

M. H. Alsuwaiyel, “Algorithms Design Techniques and Analysis”, World

Scientific, 1999,

http://www.cse.ucsc.edu/research/surf/GSRC/progress.html

http://www.spec.org/cpu/results/cint2000.html

[10]
[11]

[12]

[13]

[14]
[15]

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007 IEEE

IEF l-

COMPUTER

SOCIETY

