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Abstract� State-of-the-art FPGA architectures have millions
of gates in CLBs, Block RAMs, and Multiplier blocks which can
host fairly large designs. While their physical design calls for
�oorplanning, the traditional algorithm for ASIC do not suf�ce.
In this paper, we have proposed an algorithm for uni�ed �oorplan
topology generation and sizing for recent heterogeneous FPGAs.
Experimental results on a set of benchmark circuits show that
our three step �oorplan generation method can produce feasible
solutions very fast with 45% improvement in total half perimeter
wirelength compared to the very few previous approaches.
Keywords: FPGA, �oorplanning, slicing topology, sizing

I. INTRODUCTION

The spectrum of FPGA based systems especially embedded
ones, has become very wide. Modern FPGA architectures have
been aggressively taking over from ASICs in certain areas.
These FPGA architectures are signi�cantly different from
those that were available in the last decade. Earlier, CLBs,
a homogeneous resource, were arranged in rows and columns
uniformly, with Primary Input and Outputs (PI and PO) at
the boundaries. Recent FPGA architecture comprises not only
the CLBs and PI/POs, but also Multipliers (MUL), Block
RAMs, DSP and microprocessor cores. Few columns of RAM-
MUL pairs are evenly interspersed among CLB columns.
Moreover, large design with millions of gates are partitioned
into smaller modules for greater demand on performance and
also reduction of compilation time for place and route. This
necessitates a �oorplanning step for hierarchical designs in
the physical design �ow of FPGAs. Though a large volume of
work exists for ASIC �oorplanning, it is generally skipped
to map designs onto the earlier sea-of-gates style FPGAs.
In a typical FPGA physical design �ow, after technology-
mapping, a �attened CLB netlist is directly placed [1] and
routed without any �oorplanning. Of course for hierarchical
designs, modules or macros consisting of CLBs only were
�oorplanned/placed using various bin packing techniques [2].
But, for modules with heterogeneous resource requirements,
neither this technique nor the traditional �oorplanners for
ASICs adapted to FPGA, are adequate [3]. Hence there is
a pressing need for fast �oorplanning techniques that consider
the heterogeneous logic and routing resources of modern
FPGAs.

The literature on FPGA �oorplanning is merely a hand-
ful. Emmert et al. [4] devised a macro based �oorplanning
methodology for earlier generation sea-of-gates style FPGAs.
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Fig. 1. Spartan-3 XC3S5000 FPGA Architecture

The method uses clustering techniques to combine macros into
clusters, and then place the clusters with enhanced circuit
routability and performance using Tabu search. Cheng and
Wong [5] proposed the �rst �oorplanning algorithm targeted
for heterogeneous FPGAs that can produce feasible solu-
tion employing simulated annealing to optimize area, half-
perimeter wirelength and the aspect ratios of modules. Yuan et
al. [6] have proposed an algorithm based on Less Flexibility
First (LFF) principle with worst case time complexity of
O(W 2n5 log n), where n is the number of modules and W is
the width of the chip. Recently Feng and Mehta [7] presented
a two step approach based on resource aware �xed outline
simulated annealing starting from a given topology, followed
by max-�ow based constrained �oorplanning to optimize
wirelength.

In this paper, we propose a methodology for uni�ed �oor-
plan topology generation and sizing. The experimental results
show that our method is fast and can produce �oorplans
with improved half-perimeter wirelength when compared to
existing methods. The rest of the paper is organized as follows.
In section II, we brie�y describe the basic FPGA architecture
followed by the problem de�nition and the objective function
to be optimized. Section III presents our proposed method-
ology and time complexity issues. The proposed method is
illustrated with an example in Section IV. Experimental results
are reported in section V and concluding remarks appear in
section VI.

II. BACKGROUND
A. Architecture

While CLBs were arranged in rows and columns with
routing wires laid out between rows and columns of CLBs
earlier, modern FPGA architectures are far more heteroge-
neous with different types of resources to satisfy the varied
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design requirements. Fig. 1 shows a Xilinx Spartan-3 FPGA
where the CLBs are arranged in columns interleaved with
columns of RAM-Multiplier pair at certain intervals. Each
small square represents a CLB. A pair of shaded rectangular
blocks, spanning 4 CLB rows represents the RAM-MUL
pair. Henceforth, we assume this architecture, although the
methodology is applicable to other similar ones.

B. FPGA Floorplanning Problem
First, the basic terminology is given below.
Modules and Signal nets: Let M = {m1, m2, · · ·, mn} be a

set of n distinct modules. Let S = {s1, s2, · · ·, sq} be a set of
q signals. A set of distinct modules Msi

= {mj | mj ∈ M}
is associated with each signal si ∈ S. si is called a signal
net, and the set S is called a netlist. Msi = Msj implies that
there are two distinct signal nets connecting the same set of
modules.

Resource Requirement Vector [5]: A 3-tuple vector
Rm=(mclb, mram, mmul) represents the number of CLBs,
RAMs and MULs required by module m.

Target Architecture: Let W and H be the width and height
of a target architecture, where the units are the width and
height of a CLB respectively. A coordinate system (0, 0,W,H)
with top-left corner at (0, 0) and bottom-right corner at (W,H)
is assumed for the given chip. In Fig. 1, it is (0, 0, 87, 103)
Each resource on the architecture is identi�ed by its coordinate
position (x, y), where 0 ≤ x ≤ W and 0 ≤ y ≤ H .

FPGA Floorplanning Problem : Given a target architec-
ture (0, 0,W,H) with its resource locations, a set of modules
M , the resource requirement vectors Rmi

for each mi ∈ M ,
and the netlist S, assign regions (xmin, ymin, xmax, ymax) to
each module such that
(i) 0 ≤ xmin ≤ xmax ≤ W and 0 ≤ ymin ≤ ymax ≤ H ,
(ii) no two modules overlap with each other,
(iii) Rmi is satis�ed for each module mi,
(iv) a particular cost function is optimized.

A �oorplan is feasible if it satis�es condition (i), (ii) and
(iii). In this paper, the cost function used is the total half-
perimeter wirelength, measured as in [7].

III. PROPOSED METHOD

Our �oorplanning methodology as shown in Fig. 2, consists
of: construction of a bi-partition tree, generation of �oorplan
topology [8][9] and realization of the topology using the
resource requirements.

In the �rst phase, the target FPGA architecture is approx-
imated to a 2D array of rectangular basic tiles. We generate
a set of possible rectangular shapes (in terms of tiles) which
satis�es the resource requirements and then bi-partition the
netlist to obtain a binary partition tree of modules.

In the second phase, a list of candidate �oorplan slicing
topologies and corresponding module shapes are generated in
polynomial time by appropriate sizing of the nodes in the bi-
partition tree in postorder.

In the third phase, for every slicing tree obtained in the
previous step, a rectangular region within (0, 0,W,H) is

Module Netlist,
 FPGA Basic Tile Architecture 
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Fig. 2. Flow of our Floorplanning Method

assigned to every module which respects the cut direction
and the resource requirements. Finally, the realization with
the minimum wirelength among all the topologies generated
is reported as the optimized �oorplan.

A. Phase I: Generation of partition tree
In order to explain this step, we de�ne the following terms.
De�nition 1: A Basic FPGA Tile A = (aclb, aram, amul)

is a 3-tuple vector that represents the minimum number of
CLBs, RAMs, MULs that constitute a basic tile which can be
repeated horizontally and vertically to cover all the rows and
columns of a given target architecture.
The given architecture is thus composed of, say, Tw × Th

basic tiles arranged in h rows and w columns. In Fig. 1, the
basic tile A = (96, 1, 1) consists of 24×4 CLBs, 1 RAM and
1 MUL. The entire architecture (Spartan-3) shown in Fig. 1
can be covered by 26 rows and 4 columns of basic tile A.

De�nition 2: For a given basic tile A, the Tile Requirement
Tmi of a module mi with resource requirement vector Rmi ,
is the minimum number of basic tiles it requires. This is given
by

Tmi = dmax(
mclb

aclb
,
mram

aram
,
mmul

amul
)e (1)

Min cut Partitioning of Module Netlist : In order to min-
imize the wirelength of the feasible �oorplan, the module
netlist is bi-partitioned recursively based on min-cut. The
partitions are weight balanced across the cut edges according
to the tile requirements of each module. We employ a state-of-
the-art hypergraph partitioning tool hMetis [10] to obtain the
weight balanced min-cut partitioning of the module netlist.
This yields the relative ordering of the circuit modules which
is the baseline of the �oorplan generation.

The input to the hMetis tool is a netlist, which is a
hypergraph H = (V, E). Each vertex v ∈ V corresponds to a
module mi, i = 1, 2 · · ·n. An hyperedge e = {v1, v2, ....} ∈ E
corresponds to Msi . If {Msi ,Msj , · · ·Msl

} are identical for
signal net si, sj , · · ·, sl then each of si, sj , · · · sl corresponds
to the same hyperedge with number of such signals as the
weight of the hyperedge. The minimum number of tiles Tmi ,
is the weight of the vertex v ∈ V . The hypergraph H thus
generated, is bi-partitioned recursively to n parts, generating
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a binary partition tree with its leaves corresponding to n
modules.

B. Phase II: Floorplan topology generation
In this step, a set of sliceable �oorplan topologies (i.e., slic-

ing trees) is generated by appropriate horizontal and vertical
node sizing of a set of possible shapes (in terms of basic tiles)
for each module.

1) Generation of Module Shapes:
De�nition 3: A list D = { (w1, h1), (w2, h2) · · · (wt, ht)

} of irredundant shapes of a module m, is a list of t possible
shapes of m, where (wi, hi) denotes the width and height of
the ith shape of m in terms of basic tiles. D is said to be
irredundant if each individual wi and hi are distinct [8].
By making individual wi and hi distinct as in Def. 3, a shape
with smaller height is chosen from two implementations with
same width. Thus an inferior shape is always excluded from
D. A set of possible irredundant rectangular shapes for mi

is generated by factorizing Tmi
. As we are considering only

rectangular shapes, there may not be many choices such that
width ∗ height = Tmi . A few more shapes, i.e., (width,height)
pairs for a module are generated by factorizing all composite
integers from Tmi to Tmax(mi), where Tmax(mi) is the
smallest square integer greater than or equal to Tmi .

Let α be a positive integer denoting the maximum aspect
ratio de�ned for any module. A set of (wi,hi) pair is generated
for each module such that,

wi

hi
≤ α, if wi ≥ hi or hi

wi
≤ α, if hi ≥ wi

Thus, for each module mj , j = 1, 2, · · ·n, we generate a set
of tj possible irredundant shapes Dj = {(w1, h1), (w2, h2),
· · ·, (wi, hi), · · · (wtj , htj )}. The following lemma gives the
time required for generating all different shapes.

Lemma 1: If d = max{tj} is the maximum number of
shapes generated for any module mj , then it would require
O(nd) time for �nding the values of all the shapes for n
modules.

2) Node sizing: A subtree rooted at an internal node p
corresponds to a sub-�oorplan. The sub-�oorplan at p is
generated by joining (wi, hi) ∈ Dl and (wj , hj) ∈ Dr

vertically or horizontally, where Dl and Dr are ith shape of
left child (left sub-�oorplan) and jth shape of right child (right
sub-�oorplan) of p. If p is the parent of leaves, then the left and
right sub-�oorplans are the shapes of the modules themselves.

Vertical Cut: We use the vertical node sizing algorithm of
[11] to generate a sub-�oorplan with vertical cut. Let Dl = {
(wl1 , hl1), (wl2 , hl2), · · ·, (wls , hls) }, with |Dl| = s and Dr

= { (wr1 , hr1), (wr2 , hr2), · · ·, (wrt , hrt) }, with |Dr| = t, be
the set of possible irredundant shapes of the left sub�oorplan
(module) and the right sub�oorplan (module) respectively, of
a node in the partition tree. Dl is sorted such that,

wl1 < wl2 < · · · < wls and hl1 > hl2 > · · · > hls

Dr is also sorted as above. If (wli , hli) and (wrj
, hrj

)
are merged vertically, the resultant �oorplan size becomes

(wvk
,hvk

) = (wli + wrj
,max(hli , hrj

)). The number of re-
sultant irredundant shapes is at most s + t− 1 [8].

Horizontal Cut: To merge sub�oorplans using horizontal
cut, we use the same irredundant lists Dl and Dr described
above. But the lists are sorted in increasing order of height
and decreasing order of width i.e.

hl1 < hl2 < · · · < hls and wl1 > wl2 > · · · > wls

Merging (wli , hli) ∈ Dl and (wrj , hrj ) ∈ Dr horizontally,
the resultant size of the �oorplan becomes (whk

,hhk
) =

(max(wli , wrj
), hli + hrj

). As in case of vertical cut, the
number of resultant irredundant shapes is atmost s + t− 1.

3) Generation of Slicing Trees: For each internal node p of
the partition tree, a vertical list V and a horizontal list H are
constructed from the child sub �oorplans using the algorithms
described in Section III-B.2. A combined list M of irredundant
shapes is constructed at p by merging V and H such that,

w1 < w2 < · · · < wk and h1 > h2 > · · · > hk

is satis�ed. Here, k is the number of irredundant shapes at
each internal node.

Lemma 2: If s and t are the cardinalities of the shape-
list Dl and Dr of left and right sub�oorplans of a node u
respectively, then the number of shapes at node u is atmost
2(s + t− 1).

Proof: As we are merging the vertical and horizontal lists
according to the condition mentioned above, the size might at
most grow by a factor of 2 than in [8].

The combined list Ml and Mr created at left and right
child of the node p is used for sub-�oorplan generation at
its parent node p. Thus, the nodes of the tree are processed
post-order generating a set of sub�oorplans at every internal
node p. We store the sub�oorplan at p as a 5-tuple vector
(wi, hi, cuti, ll, rr), where (wi, hi) is the ith shape of node p
which is generated by merging (ll)th shape of left child l and
(rr)th shape of right child r using cuti. cuti is either vertical
or horizontal.

Lemma 3: By horizontal or vertical node sizing atmost nd−
(log2 n+1), i.e., O(nd) shapes/slicing trees can be generated
at the root of the tree where n is the number of modules and
d the maximum number of shapes for a module.

Proof: At any node at level i (i = 1, . . . log n) of the
slicing tree, the size of the list is 2id−2i+1. With i = log2 n
at the root, the number of shapes is O(dn).
During the postorder processing of nodes, we also calculate
the resource requirement Rp = (pclb, pram, pmul) at every
node p by summing up the resources Rl and Rr required by
its left and right child respectively. The requirement vector
is used for realization of the slicing tree in Phase III of our
method.

Thus, at the root we get a set of �oorplan shapes F =
{(Twi ,Thi)} where Twi and Thi are respectively the width and
the height of the �oorplan in terms of tiles. Each shape of F
corresponds to a distinct slicing tree/ �oorplan. Further, F is
in increasing order of width and decreasing order of height
by our method of construction. Thus, an appropriate �oorplan
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shape could be chosen from this list according to the given
aspect ratio and/or �oorplan area requirement.

Lemma 4: The time taken to generate the O(dn) slicing
trees is atmost O(dn).

Proof: The number of slicing trees generated is O(dn)
(see Lemma 3). A slicing tree of depth i is produced in (2id−
2i+1) time. Therefore, the total time is

∑log2 n
i=1 (2id−2i+1)

= O(dn).
Thus, to sum up, we process the tree once bottom-up gen-
erating merged lists discussed in Section III-B.3. We do not
decide the cut line in this step. In the next phase (discussed
below), starting from root, we proceed top-down deciding the
cut line (horizontal or vertical), thus reaching the leaves.

C. Phase III: Realization of Slicing tree on Target FPGA
For every slicing tree generated in the previous step, now

we assign coordinate position to each module. This consists of
two steps: Allocation of a rectangular region which satis�es
the CLB requirements followed by allocation of RAM and
MUL within and outside this region without any discontinuity.

1) Allocation of rectangular region to a module: Each
slicing tree is traversed level-order and a rectangular region
(xp

min, yp
min, xp

max, yp
max) is allocated to every node p using

the cut direction and the number of CLBs required at p.
Suppose the region contains rclb rows and cclb columns of
CLBs. If the CLB requirements at node p, its left child l and
its right child r are pclb, lclb and rclb respectively, pcol the
number of CLB columns at p, then if p represents a vertical
cut, the number of CLB columns allocated to l is

lcol =
lclb

pclb
.pcol (2)

So (pcol− lcol) columns are allocated to its right child r. The
number of rows required to satisfy lclb and rclb at l and r is
simply lclb

lcol
and rclb

rcol
respectively. For a horizontal cut at p with

prow rows of CLB, the number of CLB rows allocated to l is

lrow =
lclb

pclb
.prow (3)

The right child node r is allocated (prow−lrow) columns. The
number of columns required to satisfy lclb and rclb at l and r
is lclb

lrow
and rclb

rrow
. The number of columns and rows required

(width and height) to implement a sub-�oorplan corresponding
to each node of the slicing tree, are computed using this
strategy.

The position of each region corresponding to a node is
assigned as follows. As the root node of the slicing tree cor-
responding to the entire �oorplan is allocated to (0, 0,W,H),
the left child l always inherits its top-left corner (xl

min, yl
min)

from its parent p and the bottom-right corner (xl
max, yl

max) is
derived from the width and height calculation described in the
previous paragraph. So, for a vertical cut at parent p,

xl
max = xl

min + lcol; yl
max = yp

max (4)

and for a horizontal cut at p,

xl
max = xp

max; yl
max = yp

min + lrow (5)

The top-left corner (xr
min, yr

min) of the right child r is calcu-
lated as follows: if the cut at p is vertical,

xr
min = xl

max + 1; yr
min = yl

min (6)

and if the cut at p is horizontal, then

xr
min = xl

min; yr
min = yl

max + 1 (7)

(xr
max, yr

max) of node r is calculated analogous to Equations
4 and 5 for vertical and horizontal cuts respectively. Thus,
each leaf of the tree corresponding to a module has a rectangle
assigned to it and its CLB requirement is satis�ed by the CLB
locations within the rectangle.

2) Allocation of RAM and MUL: A rectangle assigned to
a module mi may have suf�cient CLBs but not RAM/MUL
positions required by it. So, RAM/MULs may have to be
placed exterior to the (top and bottom) boundary of the
rectangle, which falls in a rectangle assigned to a neighbouring
module mj . If the RAM/MUL requirement of mj is also
not satis�ed fully within its rectangle, then there may be a
con�ict. Therefore, the violations in RAM/MUL requirement
constraints are resolved globally by formulating it as a mini-
mum weighted bipartite matching (MWBM) problem, so that
a module is not realized in disconnected regions.

Let G = {U = U1 ∪ U2, Z} (U1 ∩ U2 = φ) be
a weighted bipartite graph, where U1 represents the RAM
units required by the modules and U2, the candidate RAM
locations. For a module m with RAM requirement mram,
there are mram vertices in U1. Suppose the rectangle R
= (xmin, ymin, xmax, ymax) has been assigned to m. Then
for each RAM column intersecting R, a RAM strip is said
to include the RAM locations within R, along with mram

locations above its top boundary and mram locations below
its bottom boundary. There is a vertex in U2 for every RAM
location in each RAM strip with respect to rectangle R. There
is an edge (ui, uj) ∈ Z if ui corresponds to a RAM unit
required by a module m and uj corresponds to a candidate
RAM location with respect to R assigned to m. In order to
enforce connectedness of a module, the weight of edge (ui, uj)
is chosen as the vertical distance from the center of rectangle
R to that of the RAM location for uj .

Fig. 3 shows the candidate RAM/ MUL locations for
allocating the RAM/MUL required by module mi. Suppose
mi requires 3 RAMs, but the region allocated to mi has only
2 RAMs. In the �gure, the RAM locations within RAM strip 1
and RAM strip 2 are the RAM locations chosen for assigning
the 3 RAMs required by mi. The corresponding bi-partite
graph is also shown, where from each of r1 , r2, r3 there
are edges to all the RAM locations 1a, · · · 1g, 2a, · · · 2g.

Now, we solve MWBM on G to assign unassigned RAMs
to available RAM locations. If there is no assignment, there is
no feasible solution. MULs are also assigned to the physical
locations similarly by solving a separate MWBM.

This process of CLB assignment followed by RAM and
MUL assignment is carried out for every slicing tree generated
in phase II. The half-perimeter wirelength is calculated for
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Fig. 3. Candidate RAM/ MUL location for a module

each �oorplan generated. The �oorplan with no discontinuity
and least wirelength is chosen as the �nal �oorplan.

D. Complexity of our approach
Theorem 1: The time complexity of our approach excluding

Phase I is O(n2 log n + H1.5n log n), where H is the height
of the chip.

Proof: By Lemma 4, the time taken for generating the
O(dn) slicing trees is O(dn). For each of the slicing trees,
we traverse the tree of size O(n) from root to leaves to �x
the rectangular regions of the CLBs in O(n) time. Then,
we solve a MWBM to assign RAM/MULs in O(|Z|

√
|U |)

time [13]. As the number of RAM/MULs are proportional
to within a constant factor of the height H of the chip, the
number of vertices U in the bipartite graph is O(H). In the
bipartite graph, the edges are assigned to RAM/MUL locations
that intersect the x-span of the CLB rectangle. The CLB
rectangles being non-overlapping, the number of edges |Z|
is again O(H). Thus, MWBM takes O(H1.5). The total time
complexity is O(dn(n + H1.5)). With d = O(log n) [11], the
time complexity result follows.
Phase I is iterative because of the use of hMeTis. But, the
authors of hMetis in [12] claims that time taken by hMeTis is
almost linear in the number of hyperedges, i.e., netlists. Thus,
our method, in terms of time complexity compares favourably
against that of [6] which takes O(W 2n5 log n) time.

IV. AN EXAMPLE

The method described in Section III is explained with a
small example. We considered a circuit from [5] with 20
modules and constructed an appropriate netlist for comparison
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Fig. 5. Floorplan of the example circuit

purpose. Fig. 4 shows the binary partition tree obtained in
Phase I of our method. The integers 0 · · · 19 written just
below the leaves indicate module indices. A set of slicing
trees is generated in Phase II. One such slicing tree with
its vertical and horizontal cut lines marked at every internal
node is shown here. Finally, the realization of the slicing tree
onto the coordinates of the target architecture in terms of
(xmin, ymin, xmax, ymax) are reported in a vertical box below
every node. For example, the root is realized as (0,0,87,103),
i.e., the entire target architecture. Within the �oorplan area, a
module, say m11, is realized as (0, 64, 21, 83). Fig 5 shows the
�nal allocation for each module on Spartan-3 (XC3S5000).

V. EXPERIMENTAL RESULTS

We have implemented the proposed method in C on 1.2GHz
SunBlade 2000 workstation with SunOS Release 5.8. Our
method is tested on Xilinx XC3S5000 (Spartan-3) FPGA with

TABLE I
Floorplan results for 20-module example [5]

Idx 1 2 3 4 5
Tw ,Th 1, 104 2, 52 3, 39 4, 26 5, 22
WL 392 560 728 816 618

Idx 6 7 8 9 10
Tw ,Th 6, 20 7, 17 8, 14 9, 13 10, 11
WL 946 594 768 971 854
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TABLE II
Benchmark Circuits, C: CLB, R:RAM, M:MUL, WL: wirelength

Ckt Characteristic Feng-Mehta [7] Our Method % WL Improvement
Circuit #Modules #Nets #(C, R, M) WL Time(s) WL Time(s) Case I Case II
apte 9 44 6614, 70, 70 − − 213, 540 1.22 − −
xerox 10 183 6625, 66, 50 − − 536, 450 1.02 − −
hp 11 44 6591, 66, 66 − − 113, 652 0.96 − −
ami33 33 84 6289, 61, 60 89, 283 2.72 51, 356 1.39 42 32
ami49 49 377 6300, 63, 63 1, 173, 000 4.96 1, 001, 462 3.84 15 52
n100a 100 576 6352, 39, 38 358, 338 8.87 132, 682 1.16 63 28
n200a 200 1585 6342, 44, 34 700, 045 58.24 291, 592 2.78 58 31
n300a 300 1893 6625, 65, 54 875, 602 177.67 431, 855 3.47 51 34

8320 CLBs, 104 RAMs and 104 multipliers. These are ar-
ranged in 88 columns (including 4 RAM-MUL column pairs)
and 104 rows of CLBs. As mentioned earlier, the basic tile size
is chosen as A = (24× 4, 1, 1), i.e., 96 CLBs, 1 RAM and 1
MUL. Experimental results on 8 benchmark circuits derived
from MCNC [5] and GSRC Bookshelf ASIC �oorplanning
benchmarks [14], are reported here. ASIC benchmarks are
converted to FPGA benchmarks as in [7] by proportional CLB
requirements.

The effectiveness of our method is demonstrated with the
20-module example circuit in [5], having 16 modules with 400
CLBs, 5 RAMs, 5 MULs and 4 modules with 480 CLBs, 6
RAMs, 6 MULs to cover the entire target architecture. Table
I shows the result obtained by our method for the example
circuit. The row Tw, Th is the width and height (in terms of
basic tiles) of each �oorplan topology generated after phase
II. The row marked WL shows the wirelength obtained for
each slicing tree realization after phase III. The time taken to
generate �oorplans for all the 10 slicing trees is 2.98 seconds,
which is far less than 88 seconds taken by [5] on a faster
2.4 GHz Intel(R) Xeon CPU. We observed that, our method
could construct the same �oorplan reported in [5] with an
appropriate net partition tree. In Table I, the topology for the
column idx = 4, is identical to that reported in [5]. Since [5]
does not report the wirelength, we can not compare it with
ours.

Table II has the details of the 8 benchmark circuits, namely
the number of modules, signal nets, total requirements of the
three types of resources, in columns 2, 3 and 4 respectively.
The column 5 and 6 report the wirelength and time taken to
obtain the �oorplan reported in [7]. The next two columns
report the same by our method. Note that the time reported in
[7] is on a much faster 3.06Ghz Intel Xeon CPU. As mentioned
in Section II-B, WL is the sum of the semi-perimeters of
all the nets. The wirelength shown in column 7 is computed
assuming the net terminals at the centre of the module whereas
in [7], the location of the terminals (center/boundary) for
computing the wirelength were not explicitly stated. We report
the improvement in wirelength over [7] in column 9 (case I) by
taking the values directly from their paper. We observed that,
on the average, there is 45% improvement in wirelength over
5 circuits. The column 10 shows the improvement over [7]
(case II) when we compare an appropriately scaled estimation
of our wirelengths if the terminals of a module are along its
boundary. There is still 35% improvement in wirelength, on

the average.
The time reported in Table II (column 6 and 8) are on two

different platforms. For comparison purpose, we have scaled
up the time taken by our method using the scaling factors from
[15] and observed that our method is about 2× to 50× faster
than [7] depending on the size of the circuit. This shows the
suitability of our method for fast FPGA �oorplanning.

VI. CONCLUDING REMARKS

In this paper, we have developed a fast �oorplanning
methodology for FPGAs with heterogeneous resources con-
sisting of CLBs, RAMs and Multipliers as in Spartan-3 FPGA
architectures. The time complexity of our approach excluding
phase I of partitioning, is O(n2 log n + H1.5n log n), where
H is the height of the chip and n is the number of modules.
Experimental results show a signi�cant speed-up over exist-
ing methods. The half-perimeter wirelength of the resultant
solution shows 45% improvement over the method reported
in [5].
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