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Abstract 
The Parallel Computational Environment for Imaging 

Science, PiCEIS, is an image processing package 
designed for efficient execution on massively parallel 
computers.  Through effective use of the aggregate 
resources of such computers, PiCEIS enables much larger 
and more accurate production processing using existing 
off the shelf hardware.  Goals of PiCEIS are to decrease 
the difficulty of writing scalable parallel programs, 
reduce the time to add new functionalities, and provide 
for real-time interactive image processing.  In part this is 
accomplished by the PiCEIS architecture, its ability to 
easily add additional modules, and the use of a shared-
memory programming model based upon one-sided 
access to distributed shared memory.  In this paper, we 
briefly describe the PiCEIS architecture and our shared 
memory programming tools and examine some typical 
techniques and algorithms.  Initial image-processing 
performance testing is encouraging—for very large image 
files, processing time is less than 10 seconds.  
 
 
1.  Introduction 
 

With the advent of high-resolution and multi-spectra 
cameras from sources such as satellites, nuclear magnetic 
resonance, and the Transmission Electron Microscope 
(TEM), large images are now pervasive.  Images from 
satellite image companies such as IKONOS, Digital 
Imagery, Space Digital Imaging, and SPOT are 
commercially available.  With the availability of low-cost 
commercial parallel computers, it is possible to process 
many large images quickly and effectively.  However, 
some of the fundamental problems and requirements for 
improving processing of satellite images remain 
unchanged since the 1960s. For example, image size is 

determined by spatial and spectral resolution, radiometric 
resolution, network and memory bandwidth constraints, 
and display output requirements [8].  Also, similar issues 
concerning bandwidth for moving and processing massive 
amounts of pixels exist.  

As more advanced satellites are put into place†, timely 
post-processing beyond workstations and small shared-
memory computers becomes imperative.  Although high-
performance serial processing is becoming pervasive with 
availability of software [1, 7, 17] and the relatively low 
cost of high-end processors, such as Pentium-4, Athlon, 
and Itanium-2, these systems are not sufficient to process 
very large images.  In addition, specialized “custom” 
parallel image processing hardware solutions which can 
handle large images are unable to be used for multiple 
applications without significant hardware and software 
development costs.  Parallel computers consisting of 
clusters of off-the-shelf hardware may be more cost-
effective, but the development of software is still in its 
infancy for large images that are not perfectly parallel. 

We describe an efficient and portable parallel 
programming methodology and associated implementa-
tions for processing images using commercial distributed 
shared-memory massively parallel computers: an IBM SP 
and a Linux cluster.  We apply a scalable parallel 
computing approach that is based on a portable library, 
using shared memory techniques, for in-core and out-of-
core computations, visualization, and parallel I/O.  During 
processing and visualization, the image is fully distributed 
to the remote processing units in contrast to many of the 
current master-slave models in image processing. 

In general, we apply domain-decomposition method-
ologies and software used in solving partial differential 
equations, computational chemistry [6], and parallel 
rendering.  This permits an easy interface for processing 
tiles of images with user-specified routines as well as 
using existing libraries of serial software such as OpenCV 
[11], Python Imaging Library [15], and Java toolkits.  In 
addition, for a specific processor, optimized low-level 
libraries supplied by the processor vendors, such as Intel’s 
custom image processing library or IBM’s ESSL library, 
are used. 

Data rearrangement and movement can be time-
consuming to program and cause reliability concerns 
regarding message passing.  This can be avoided by using 
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† OrbView-4, from Orbital Imaging Corporation, with 200+ bands each 
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point for future developments. 
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the Global Arrays shared memory model [10] that has a 
direct interface to parallel dense and sparse linear and 
eigensystem solvers (ScaLAPACK [3], PeIGS [4], PETSc 
[2]), global minimization software (TOM), and integral 
transformations (e.g. FFTs). Complex global 
communication patterns can be implemented easily in 
Global Arrays.  Users can also add their customized 
image-processing routines without knowledge of data 
distribution, memory hierarchies, or programming 
models.  Load-balancing schemes can also be easily 
adapted to different scenarios because the complexity of 
message passing is moved to the library level and is 
completely handled by Global Arrays.  Parallel input and 
output and out-of-core processing that is coupled with the 
in-core parallel computation is also available.  By 
applying these methodologies, we have seen a significant 
acceleration of image processing.  Tasks that previously 
would have taken several minutes to hours to process can 
now run in a few seconds to near real-time.  Depending 
on the image processing routines and the size of the 
image, applications often can run interactively.  As 
processing takes place, the user sees updated images.  
Users can display the output either to their monitors or to 
the IBM Scalable Graphics Engine attached to the 
communication switch. 

One advantage of moving the complicated indexing 
task to Global Arrays is that clusters of heterogeneous 
nodes, with different amounts of memory and processing 
power, can be used efficiently by allocating different sizes 
of data to each node.  No special algorithm or code is 
required.  We can perform dynamic load balancing by 
tracking the computational time over key loops over a 
number of iterations. 

Experimental results are presented to demonstrate the 
parallel acceleration obtained on the Pacific Northwest 
National Laboratory (PNNL), Molecular Science 
Computational Facility [9] (MSCF) computation 
resources.  The images can be displayed on either an X11 
Display or an IBM Scalable Graphics Engine with four 
network adapters connected to a high-resolution IBM 
T221 monitor with 3840 by 2400 pixels. 

 
2.  Scalability issues 
 

PiCEIS has a modular design using many concepts 
from object-oriented programming (OOP).  The 
advantage of modular design is that it allows orderly and 
logical access to data, independent of why and when a 
given module requires the data.  In addition, it permits 
considerable flexibility in the manipulation and 
distribution of data on shared memory, distributed 
memory, and massively parallel hardware architectures, 
which is needed in a shared-memory approach to parallel 
computation. 

One of PiCEIS’s design goals is to enable effective use 
of all of the resources of massively parallel architectures, 
including CPUs, memory, disk, and network.  With this 
goal, distributing the data across all of the nodes becomes 
necessary.  To facilitate portability while avoiding low-
level message passing to manage distributed data, PiCEIS 
uses a shared-memory programming model that explicitly 
recognizes the shared-memory characteristics of modern 
sequential and parallel computers.  Just as a workstation 
has various levels of memory (e.g., registers, multiple 
levels of cache, main memory, and disk) with varying 
sizes and access speed, remote memory may be regarded 
and used as another level in the memory hierarchy.  The 
programmer must be aware of this extra level of memory 
access when designing parallel algorithms in any code to 
obtain efficient and scalable code.  A critical aspect of this 
shared-memory model is one-sided access to shared data.  
The ability of enabling processes to access any shared 
data at any time without the explicit involvement of other 
process greatly simplifies the writing of parallel programs 
and greatly increases scalability through increased 
asynchronous execution. 

The Global Arrays tools provides much of the 
underlying support for the parallelism in PiCEIS.  These 
tools include the Memory Allocator for access to local 
memory; Global Arrays to provide portable globally 
addressable shared-memory programming on distributed 
shared-memory computers; the Aggregate Remote 
Memory Copy Interface (ARMCI) to provide general-
purpose, portable, and efficient remote memory copy 
operations (one-sided communication) optimized for non-
contiguous (strided, scatter/gather, I/O vector) data 
transfer; and the Parallel I/O (ParIO) and Disk Resident 
Array (DRA) tool to extend the shared memory model to 
disk.  Global Arrays and ARMCI interoperate with 
message passing interface (MPI) [16] for message passing 
and can be considered an extension of MPI-2 [5]. 

Global Arrays supports the shared-memory model by 
allowing nodes to share arrays between processes as if the 
memory is physically shared while providing separate 
mechanisms to access shared data (Fig. 1).  It provides the 
programmer with simple routines to access and 
manipulate data in the shared memory using one-sided 
communication that allows for the overlap of computation 
and communication.  However, the programmer must still 
be aware that access to shared data will be slower than 
access to local data.  Algorithm optimization should be 
performed with this knowledge.  ARMCI is implemented 
in a platform-specific manner using any and all available 
mechanisms to achieve the best possible performance for 
one-sided communication for noncontiguous data 
transfers.  It uses hybrid communication protocols such as 
active messages, threads, local memory copies, and 
remote memory copies to minimize the amount of 
communication between processors (Fig. 2).  
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The ParIO and DRA libraries allow the programmer to 
effectively use the shared-memory model to create files 
that are either local to the CPU or distributed among file 
systems.  This allows the programmer to perform parallel 
I/O in the most efficient manner for a particular algorithm 
or particular hardware.  The DRA extends the shared 
memory programming model to include disk and uses 
optimized parallel asynchronous I/O.  The DRA library 
encapsulates the details of data layout, addressing, and 
I/O transfer in disk arrays objects. DRA resembles Global 
Arrays except that data resides on the disk instead of 
random access memory. 

3.  Design and implementation 
 
Images are processed using a medium grain to a coarse 

grain computer architecture where the cost of inter-node 
communication is relatively high, compared to the cost of 
threading or to the peak performance of the processor.  
Clusters of workstations, such as the HP Linux Itanium 2, 
128 node cluster are an example of this class of computer.  
A large class of image-processing tasks requires compu-
tation on a given portion of the image with associated 
output that is spatially localized.  For example, an output 
image is computed by processing a window of pixels of 
the input image.  Hence if the “bordering” pixels of each 
window are addressed appropriately, the output pixels can 

Logical Distribution Physical Distribution

Figure 1: Global Arrays presents a global logical view of memory and the actual physical layout. 
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Figure 2: Global Arrays provides remote memory access on distributed shared memory computers.
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be computed in a perfectly parallel fashion.  The differ-
ence between a fine grain and a coarse grain parallel 
decomposition is in the size of the block of the input 
image that is being distributed among the processor and 
the workload.  The approach PiCEIS uses for analysis is 
to divide an image into tiles with extended overlap 
regions and have each computational node perform 
computations on a subset of the tiles.  For PiCEIS, this 
depends on the particular architecture characterized by the 
latency of communication between the CPUs and the 
nodes versus flop performance.   

PiCEIS is implemented using objected-oriented C++, 
allowing for componentization and encapsulation of the 
more complicated computational aspects.  The 
architecture is divided into several distinct components: 
file input and output, computation, and display (Fig. 3).  
The computational components use encapsulation, 
separating the analysis from the communication.  For 
local processing, each computational component is 
implemented as a serial algorithm.  The communication 
layer and data distributions are handled at a higher level 
so developers can easily integrate new algorithms into the 
architecture.  As a result, PiCEIS contains a variety of 
serial algorithms, some native to PiCEIS and some from 
other libraries, which can interact with each other in 
parallel. 

For example, PiCEIS integrates the Canny algorithm 
as a computational component from OpenCV, Intel’s 
Open Source Computer Vision Library. To correspond 
with the interface, PiCEIS initializes the OpenCV image 
structure, IplImage, and populates the structure with a 
chunk of image data.  Other parameters, such as the low 
and high threshold values, are read in from text files 
containing key-value parameter pairs.  Because the 
division of the data is done before calling any of the 
computational functions, PiCEIS only has to call the 
OpenCV library function.  OpenCV handles the 
computation and the resulting computed data structure is 
then extracted from the OpenCV data structure.  This is 
passed back into the Global Array objects.  By enclosing 
the Canny algorithm in PiCEIS’s computational 
component, the ability to integrate and encapsulate 
different imaging operations is demonstrated.  PiCEIS 
gains access to the many functions available in the 
OpenCV library while still allowing for computations on 
large datasets across many processors. 

PiCEIS uses the shared-memory, Global Arrays 
programming model, where the storage of a large image 
may be physically distributed among the processors or 
nodes of processors (Fig. 4).  Once the data is read into a 
Global Arrays data structure, Global Arrays handles all 
the low-level data indexing and addressing among all the 
processors in a parallel fashion.  Thus, from a program-
mer’s point of view, the image is accessible as if it resided 
on a single processor, block indices.  

The Global Arrays toolkit provides an efficient and 
portable globally addressable, shared-memory-like 
programming interface for distributed shared-memory 
computers. Each process in a MIMD parallel program can 
asynchronously access logical blocks of physically 
distributed dense multi-dimensional arrays, without need 
for explicit calls to message passing. Unlike other shared-
memory environments, the Global Arrays model exposes 
the programmer to the shared memory and hierarchical 
hardware characteristics of the high-performance com-

Figure 3: Modular design of PiCEIS.  The three 
major components are driven by a script file 
read at run time to determine which analysis 

algorithm is going to be displayed, what device 
the display will use, and how the data will be 

read and written from disk. 

Figure 4: Each processor uses GA_Put and 
GA_Get methods to access pointers to the data 

in memory from the Global Arrays data 
structure. 
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puters and acknowledges that access to a remote portion 
of the shared data is slower than to the local portion. The 
locality information for the shared data is available and 
direct access to the local portions of shared data is 
provided.  

Global Arrays have been designed to complement 
rather than substitute the message-passing programming 
model. The programmer is free to use both the shared-
memory and message-passing paradigms in the same 
program, and to take advantage of existing message-
passing software libraries. Global Arrays is compatible 
with MPI. 

The following pseudo-code shows how data is 
accessed and analyzed using Global Arrays and serial 
analysis algorithms. 
 
void runAnalysis(GlobalData* inputDataObj,

GlobalData* outputDataObj,
ComputeFunction* compute)

{
// Get the indices for the data
long indices[ndim];

// loop over all the data
while (blocking_function(indices))
{

// Read data from Global Arrays
float* input_data = dataObj->get(indices);

// Analyze the data
float* output_data =

compute->analyze(input_data, indices);

// Write data to back to Global Arrays
OutputDataObj->put(indices, input_data);

}
)

The serial algorithms and data-access methods are 
wrapped with an abstract C++ interface allowing for a 
simplified modular architecture.  Each serial algorithm is 
derived from ComputeFunction, which has a single 
method for analysis.  This object needs only the indices 
that the algorithm is operating on and a pointer to the data 
to perform the computation.  The data access 
implementation is abstracted from a class called 
GlobalData.  This allows for a convenient object-oriented 
implementation of Global Arrays.  It also allows for other 
possible data access implementations.  For example, when 
data is too large to fit into memory, DRA is needed to 
store data out-of-core, on disk (Fig. 5).  Access is the 
same as the Global Array implementation shown above.  
The methods accessing data using Global Arrays and 
DRA are abstracted from the class GlobalData and 
initialized early in the program.  Through the use of these 
two abstractions, the type of data access method and 
algorithm can be determined at run time using a series of 
parameter files. 

 

3.1  Input/output 
 
The parallel input method is straightforward.  The 

name of the file to be processed and its location are read 
from a file accessible to all of the processors.  Each 
processor p stores n/p parts of an image with a total of n 
parts.  If a parallel file system is available (e.g., IBM 
GPFS, Linux PVFS, SGI XFS, etc.) each processor can 
open a given file separately as read-only and move the file 
pointers to its part of the file and read and store the data 
locally.  The algorithms implemented are block-based and 
data can be redistributed dynamically, as needed.  This 
data movement and realignment is usually difficult to 
write using straight message passing. 

The image is stored as a cube of floating-point 
numbers in which each pixel position has a corresponding 
vector of spectral information. This is stored in a blocked, 
distributed format to preserve image continuity and gain 
performance in the parallel environment. 

The output image can be stored as files in a number of 
ways:  as a collection of individual files labeled with their 
processor number as a name extension, as one large file, 
or as a DRA file, which can be read and manipulated 
using parallel I/O methods [10]. 

 
3.2  Visualization and display output 

 
One of the key problems of processing large, 

distributed data is the onerous compute-intensive and 
time-consuming task of gathering all of the distributed 
pieces to a central location and rendering for display.  The 
output mechanism for PiCEIS couples the parallel 
processing with parallel rendering to take advantage of 
parallel frame buffer and compositing hardware.  The 
IBM SP at PNNL is equipped with an IBM Scalable 
Graphics Engine (SGE) [14].  The SGE is a scalable high-
performance graphics frame buffer that is directly 
connected to the GigE network communication switch 
fabric by 4 links (16 is the maximum number).  These 

Figure 5: Data access using DRA to store data 
on disk. 
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parallel switch links provide very high bandwidth from 
the compute nodes to the frame buffer.  Each link is 
theoretically capable of a bandwidth of 45 mega-
pixels/sec.; 24-bit color, full-motion, parallel image 
output using the SGE has been benchmarked [12]. 

The PiCEIS manager communicates with the software 
that synchronizes with the SGE, allowing each completed 
output image to be displayed (Fig. 6).  Interaction with the 
data is achievable through various interface tools [13].   

 

4.  Performance and experimental results 
 
PiCEIS demonstrates scalable performance on two 

platforms at the MSCF [9]. Figure 7 shows PiCEIS 
executing on an IBM SP2.  The IBM SP2 test machine is 
a distributed shared-memory computer with 26, 4-CPU 
nodes.  Each CPU is an IBM Power 3 processor executing 

at 375 MHz.  Each node has 3 GB of memory.  In this 
case, the input file is a Landsat 300 Mbyte image.  Figure 
8 shows PiCEIS executing on a new HP Linux cluster 
with a 500 Mbyte Landsat image. This machine is a 128-
node/256 Itanium-2 processors (McKinley processors) 
with 1 Tflop peak theoretical performance and 1.5 Tbytes 
of RAM.  On both machines, the image is converted to 8-
byte floating-point format, and then two algorithms, 
Texture and Modified Radon Transform, are performed.  
Scalability is shown in both implementations.  The bump 
in the HP timings is due to a new, evolving system 
architecture. 

 
5.  Conclusion 

 
This paper addresses a number of issues associated 

with parallel scaling (to large numbers of processors) in 
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Figure 6: Display interconnect and distribution of images using the IBM SGE. 

Figure 8: Timings from an HP Linux cluster. Figure 7: Timings from an IBM SP2. 
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image processing.  A key contribution to the scalability is 
the use of the Global Arrays tools to enable the shared-
memory programming model with one-sided 
communication and asynchronous parallel I/O.  These 
tools enable effective overlap of computation and I/O 
communications.  Use of an object-oriented framework 
provides developers with an easier framework to develop 
scalable software for massively parallel computers.  The 
performance numbers indicate we are approaching our 
goal of real-time image processing of very large image 
files.  The goal is to be able to process large image files 
(greater than 75 megapixels) under 10 seconds.  The 
initial results are very encouraging.  We feel we can 
achieve this goal by continuing to optimize the current 
process and working on the I/O subsystem. 

 
6.  Future directions 

 
Currently, PiCEIS uses a unique set of script files to 

read the input and define the program execution flow.  
These files are read in using a simple loop.  Each file 
contains commands and parameters for a task module in 
the PiCEIS framework.  If we were to use the Python 
scripting language, this process could be translated into a 
series of Python objects, allowing more flexible and 
dynamic control of the program execution.  In particular, 
the user would have more control over the path of data 
flow and could define the flow path interactively and 
more maturely.  Many of the current commands that 
Python would call would be implemented at a high level, 
allowing for the Python control to remain separate from 
interprocessor communication or processor-specific 
function calls.  This would increase the use and flexibility 
of PiCEIS, while keeping the scalability and ease of use 
of new algorithm integration. 

Other future directions include analysis and viewing of 
3-dimensional data.  Although PiCEIS is implemented to 
handle 3-dimension data, it is currently designed for 
optimal performance with 2-dimensional image data.  
Incorporating more complicated 3-dimensional data 
would extend the current capabilities of PiCEIS to other 
areas of research. 
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