
Gigapixel-size Real-time Interactive Image Processing with Parallel Computers

Donald R. Jones, Elizabeth R. Jurrus, Brian D. Moon, and Kenneth A. Perrine
Pacific Northwest National Laboratory*

Abstract
The Parallel Computational Environment for Imaging

Science, PiCEIS, is an image processing package
designed for efficient execution on massively parallel
computers. Through effective use of the aggregate
resources of such computers, PiCEIS enables much larger
and more accurate production processing using existing
off the shelf hardware. Goals of PiCEIS are to decrease
the difficulty of writing scalable parallel programs,
reduce the time to add new functionalities, and provide
for real-time interactive image processing. In part this is
accomplished by the PiCEIS architecture, its ability to
easily add additional modules, and the use of a shared-
memory programming model based upon one-sided
access to distributed shared memory. In this paper, we
briefly describe the PiCEIS architecture and our shared
memory programming tools and examine some typical
techniques and algorithms. Initial image-processing
performance testing is encouraging—for very large image
files, processing time is less than 10 seconds.

1. Introduction

With the advent of high-resolution and multi-spectra
cameras from sources such as satellites, nuclear magnetic
resonance, and the Transmission Electron Microscope
(TEM), large images are now pervasive. Images from
satellite image companies such as IKONOS, Digital
Imagery, Space Digital Imaging, and SPOT are
commercially available. With the availability of low-cost
commercial parallel computers, it is possible to process
many large images quickly and effectively. However,
some of the fundamental problems and requirements for
improving processing of satellite images remain
unchanged since the 1960s. For example, image size is

determined by spatial and spectral resolution, radiometric
resolution, network and memory bandwidth constraints,
and display output requirements [8]. Also, similar issues
concerning bandwidth for moving and processing massive
amounts of pixels exist.

As more advanced satellites are put into place†, timely
post-processing beyond workstations and small shared-
memory computers becomes imperative. Although high-
performance serial processing is becoming pervasive with
availability of software [1, 7, 17] and the relatively low
cost of high-end processors, such as Pentium-4, Athlon,
and Itanium-2, these systems are not sufficient to process
very large images. In addition, specialized “custom”
parallel image processing hardware solutions which can
handle large images are unable to be used for multiple
applications without significant hardware and software
development costs. Parallel computers consisting of
clusters of off-the-shelf hardware may be more cost-
effective, but the development of software is still in its
infancy for large images that are not perfectly parallel.

We describe an efficient and portable parallel
programming methodology and associated implementa-
tions for processing images using commercial distributed
shared-memory massively parallel computers: an IBM SP
and a Linux cluster. We apply a scalable parallel
computing approach that is based on a portable library,
using shared memory techniques, for in-core and out-of-
core computations, visualization, and parallel I/O. During
processing and visualization, the image is fully distributed
to the remote processing units in contrast to many of the
current master-slave models in image processing.

In general, we apply domain-decomposition method-
ologies and software used in solving partial differential
equations, computational chemistry [6], and parallel
rendering. This permits an easy interface for processing
tiles of images with user-specified routines as well as
using existing libraries of serial software such as OpenCV
[11], Python Imaging Library [15], and Java toolkits. In
addition, for a specific processor, optimized low-level
libraries supplied by the processor vendors, such as Intel’s
custom image processing library or IBM’s ESSL library,
are used.

Data rearrangement and movement can be time-
consuming to program and cause reliability concerns
regarding message passing. This can be avoided by using

* Address: W. R. Wiley Environmental Molecular Sciences Laboratory,
PNNL, P.O. Box 999, Richland, WA 99352. For further information, e-
mail Donald Jones at dr.jones@pnl.gov.

† OrbView-4, from Orbital Imaging Corporation, with 200+ bands each
with 8 to 11 bits per pixel with a spectral range of 450-2500 nm at 8 m
spatial resolution. Although this satellite did not survive launch it sets a
point for future developments.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the Global Arrays shared memory model [10] that has a
direct interface to parallel dense and sparse linear and
eigensystem solvers (ScaLAPACK [3], PeIGS [4], PETSc
[2]), global minimization software (TOM), and integral
transformations (e.g. FFTs). Complex global
communication patterns can be implemented easily in
Global Arrays. Users can also add their customized
image-processing routines without knowledge of data
distribution, memory hierarchies, or programming
models. Load-balancing schemes can also be easily
adapted to different scenarios because the complexity of
message passing is moved to the library level and is
completely handled by Global Arrays. Parallel input and
output and out-of-core processing that is coupled with the
in-core parallel computation is also available. By
applying these methodologies, we have seen a significant
acceleration of image processing. Tasks that previously
would have taken several minutes to hours to process can
now run in a few seconds to near real-time. Depending
on the image processing routines and the size of the
image, applications often can run interactively. As
processing takes place, the user sees updated images.
Users can display the output either to their monitors or to
the IBM Scalable Graphics Engine attached to the
communication switch.

One advantage of moving the complicated indexing
task to Global Arrays is that clusters of heterogeneous
nodes, with different amounts of memory and processing
power, can be used efficiently by allocating different sizes
of data to each node. No special algorithm or code is
required. We can perform dynamic load balancing by
tracking the computational time over key loops over a
number of iterations.

Experimental results are presented to demonstrate the
parallel acceleration obtained on the Pacific Northwest
National Laboratory (PNNL), Molecular Science
Computational Facility [9] (MSCF) computation
resources. The images can be displayed on either an X11
Display or an IBM Scalable Graphics Engine with four
network adapters connected to a high-resolution IBM
T221 monitor with 3840 by 2400 pixels.

2. Scalability issues

PiCEIS has a modular design using many concepts
from object-oriented programming (OOP). The
advantage of modular design is that it allows orderly and
logical access to data, independent of why and when a
given module requires the data. In addition, it permits
considerable flexibility in the manipulation and
distribution of data on shared memory, distributed
memory, and massively parallel hardware architectures,
which is needed in a shared-memory approach to parallel
computation.

One of PiCEIS’s design goals is to enable effective use
of all of the resources of massively parallel architectures,
including CPUs, memory, disk, and network. With this
goal, distributing the data across all of the nodes becomes
necessary. To facilitate portability while avoiding low-
level message passing to manage distributed data, PiCEIS
uses a shared-memory programming model that explicitly
recognizes the shared-memory characteristics of modern
sequential and parallel computers. Just as a workstation
has various levels of memory (e.g., registers, multiple
levels of cache, main memory, and disk) with varying
sizes and access speed, remote memory may be regarded
and used as another level in the memory hierarchy. The
programmer must be aware of this extra level of memory
access when designing parallel algorithms in any code to
obtain efficient and scalable code. A critical aspect of this
shared-memory model is one-sided access to shared data.
The ability of enabling processes to access any shared
data at any time without the explicit involvement of other
process greatly simplifies the writing of parallel programs
and greatly increases scalability through increased
asynchronous execution.

The Global Arrays tools provides much of the
underlying support for the parallelism in PiCEIS. These
tools include the Memory Allocator for access to local
memory; Global Arrays to provide portable globally
addressable shared-memory programming on distributed
shared-memory computers; the Aggregate Remote
Memory Copy Interface (ARMCI) to provide general-
purpose, portable, and efficient remote memory copy
operations (one-sided communication) optimized for non-
contiguous (strided, scatter/gather, I/O vector) data
transfer; and the Parallel I/O (ParIO) and Disk Resident
Array (DRA) tool to extend the shared memory model to
disk. Global Arrays and ARMCI interoperate with
message passing interface (MPI) [16] for message passing
and can be considered an extension of MPI-2 [5].

Global Arrays supports the shared-memory model by
allowing nodes to share arrays between processes as if the
memory is physically shared while providing separate
mechanisms to access shared data (Fig. 1). It provides the
programmer with simple routines to access and
manipulate data in the shared memory using one-sided
communication that allows for the overlap of computation
and communication. However, the programmer must still
be aware that access to shared data will be slower than
access to local data. Algorithm optimization should be
performed with this knowledge. ARMCI is implemented
in a platform-specific manner using any and all available
mechanisms to achieve the best possible performance for
one-sided communication for noncontiguous data
transfers. It uses hybrid communication protocols such as
active messages, threads, local memory copies, and
remote memory copies to minimize the amount of
communication between processors (Fig. 2).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

The ParIO and DRA libraries allow the programmer to
effectively use the shared-memory model to create files
that are either local to the CPU or distributed among file
systems. This allows the programmer to perform parallel
I/O in the most efficient manner for a particular algorithm
or particular hardware. The DRA extends the shared
memory programming model to include disk and uses
optimized parallel asynchronous I/O. The DRA library
encapsulates the details of data layout, addressing, and
I/O transfer in disk arrays objects. DRA resembles Global
Arrays except that data resides on the disk instead of
random access memory.

3. Design and implementation

Images are processed using a medium grain to a coarse

grain computer architecture where the cost of inter-node
communication is relatively high, compared to the cost of
threading or to the peak performance of the processor.
Clusters of workstations, such as the HP Linux Itanium 2,
128 node cluster are an example of this class of computer.
A large class of image-processing tasks requires compu-
tation on a given portion of the image with associated
output that is spatially localized. For example, an output
image is computed by processing a window of pixels of
the input image. Hence if the “bordering” pixels of each
window are addressed appropriately, the output pixels can

Logical Distribution Physical Distribution

Figure 1: Global Arrays presents a global logical view of memory and the actual physical layout.

Node i

Get Access

Global Array

Library

ARMCI

Node j

ga_get(ptr*,x,y)

armci_get()

Address Translation:

(x,y) j,0xD8

Node i

Put Access

Global Array

Library

ARMCI

Node j

ga_put(ptr*,x,y)

armci_put()

Address Translation:

(x,y) j,0xD8

Figure 2: Global Arrays provides remote memory access on distributed shared memory computers.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Director /GUI

Script

Parallel I/O

Image Analysis Engine

OpenCV

Display Manager
Display

Data Controller

Data DriverOSSIM Algorithms

ImageJ, PIL, others…

Computational GRID

ISAT Algorithms

Local File System

Workstation

IBM SGE/T221

Hi-Space

…

P1

P2

Pn ……

P1

P2

Pn

GA_Put/Get

Global Arraysfloat*

be computed in a perfectly parallel fashion. The differ-
ence between a fine grain and a coarse grain parallel
decomposition is in the size of the block of the input
image that is being distributed among the processor and
the workload. The approach PiCEIS uses for analysis is
to divide an image into tiles with extended overlap
regions and have each computational node perform
computations on a subset of the tiles. For PiCEIS, this
depends on the particular architecture characterized by the
latency of communication between the CPUs and the
nodes versus flop performance.

PiCEIS is implemented using objected-oriented C++,
allowing for componentization and encapsulation of the
more complicated computational aspects. The
architecture is divided into several distinct components:
file input and output, computation, and display (Fig. 3).
The computational components use encapsulation,
separating the analysis from the communication. For
local processing, each computational component is
implemented as a serial algorithm. The communication
layer and data distributions are handled at a higher level
so developers can easily integrate new algorithms into the
architecture. As a result, PiCEIS contains a variety of
serial algorithms, some native to PiCEIS and some from
other libraries, which can interact with each other in
parallel.

For example, PiCEIS integrates the Canny algorithm
as a computational component from OpenCV, Intel’s
Open Source Computer Vision Library. To correspond
with the interface, PiCEIS initializes the OpenCV image
structure, IplImage, and populates the structure with a
chunk of image data. Other parameters, such as the low
and high threshold values, are read in from text files
containing key-value parameter pairs. Because the
division of the data is done before calling any of the
computational functions, PiCEIS only has to call the
OpenCV library function. OpenCV handles the
computation and the resulting computed data structure is
then extracted from the OpenCV data structure. This is
passed back into the Global Array objects. By enclosing
the Canny algorithm in PiCEIS’s computational
component, the ability to integrate and encapsulate
different imaging operations is demonstrated. PiCEIS
gains access to the many functions available in the
OpenCV library while still allowing for computations on
large datasets across many processors.

PiCEIS uses the shared-memory, Global Arrays
programming model, where the storage of a large image
may be physically distributed among the processors or
nodes of processors (Fig. 4). Once the data is read into a
Global Arrays data structure, Global Arrays handles all
the low-level data indexing and addressing among all the
processors in a parallel fashion. Thus, from a program-
mer’s point of view, the image is accessible as if it resided
on a single processor, block indices.

The Global Arrays toolkit provides an efficient and
portable globally addressable, shared-memory-like
programming interface for distributed shared-memory
computers. Each process in a MIMD parallel program can
asynchronously access logical blocks of physically
distributed dense multi-dimensional arrays, without need
for explicit calls to message passing. Unlike other shared-
memory environments, the Global Arrays model exposes
the programmer to the shared memory and hierarchical
hardware characteristics of the high-performance com-

Figure 3: Modular design of PiCEIS. The three
major components are driven by a script file
read at run time to determine which analysis

algorithm is going to be displayed, what device
the display will use, and how the data will be

read and written from disk.

Figure 4: Each processor uses GA_Put and
GA_Get methods to access pointers to the data

in memory from the Global Arrays data
structure.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

P1

P2

Pn

…..

Global Arrayfloat* Disk Resident Array

GA_Put/Get DRA_Read/Write

P1

puters and acknowledges that access to a remote portion
of the shared data is slower than to the local portion. The
locality information for the shared data is available and
direct access to the local portions of shared data is
provided.

Global Arrays have been designed to complement
rather than substitute the message-passing programming
model. The programmer is free to use both the shared-
memory and message-passing paradigms in the same
program, and to take advantage of existing message-
passing software libraries. Global Arrays is compatible
with MPI.

The following pseudo-code shows how data is
accessed and analyzed using Global Arrays and serial
analysis algorithms.

void runAnalysis(GlobalData* inputDataObj,

GlobalData* outputDataObj,
ComputeFunction* compute)

{
// Get the indices for the data
long indices[ndim];

// loop over all the data
while (blocking_function(indices))
{

// Read data from Global Arrays
float* input_data = dataObj->get(indices);

// Analyze the data
float* output_data =

compute->analyze(input_data, indices);

// Write data to back to Global Arrays
OutputDataObj->put(indices, input_data);

}
)

The serial algorithms and data-access methods are
wrapped with an abstract C++ interface allowing for a
simplified modular architecture. Each serial algorithm is
derived from ComputeFunction, which has a single
method for analysis. This object needs only the indices
that the algorithm is operating on and a pointer to the data
to perform the computation. The data access
implementation is abstracted from a class called
GlobalData. This allows for a convenient object-oriented
implementation of Global Arrays. It also allows for other
possible data access implementations. For example, when
data is too large to fit into memory, DRA is needed to
store data out-of-core, on disk (Fig. 5). Access is the
same as the Global Array implementation shown above.
The methods accessing data using Global Arrays and
DRA are abstracted from the class GlobalData and
initialized early in the program. Through the use of these
two abstractions, the type of data access method and
algorithm can be determined at run time using a series of
parameter files.

3.1 Input/output

The parallel input method is straightforward. The

name of the file to be processed and its location are read
from a file accessible to all of the processors. Each
processor p stores n/p parts of an image with a total of n
parts. If a parallel file system is available (e.g., IBM
GPFS, Linux PVFS, SGI XFS, etc.) each processor can
open a given file separately as read-only and move the file
pointers to its part of the file and read and store the data
locally. The algorithms implemented are block-based and
data can be redistributed dynamically, as needed. This
data movement and realignment is usually difficult to
write using straight message passing.

The image is stored as a cube of floating-point
numbers in which each pixel position has a corresponding
vector of spectral information. This is stored in a blocked,
distributed format to preserve image continuity and gain
performance in the parallel environment.

The output image can be stored as files in a number of
ways: as a collection of individual files labeled with their
processor number as a name extension, as one large file,
or as a DRA file, which can be read and manipulated
using parallel I/O methods [10].

3.2 Visualization and display output

One of the key problems of processing large,

distributed data is the onerous compute-intensive and
time-consuming task of gathering all of the distributed
pieces to a central location and rendering for display. The
output mechanism for PiCEIS couples the parallel
processing with parallel rendering to take advantage of
parallel frame buffer and compositing hardware. The
IBM SP at PNNL is equipped with an IBM Scalable
Graphics Engine (SGE) [14]. The SGE is a scalable high-
performance graphics frame buffer that is directly
connected to the GigE network communication switch
fabric by 4 links (16 is the maximum number). These

Figure 5: Data access using DRA to store data
on disk.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

parallel switch links provide very high bandwidth from
the compute nodes to the frame buffer. Each link is
theoretically capable of a bandwidth of 45 mega-
pixels/sec.; 24-bit color, full-motion, parallel image
output using the SGE has been benchmarked [12].

The PiCEIS manager communicates with the software
that synchronizes with the SGE, allowing each completed
output image to be displayed (Fig. 6). Interaction with the
data is achievable through various interface tools [13].

4. Performance and experimental results

PiCEIS demonstrates scalable performance on two

platforms at the MSCF [9]. Figure 7 shows PiCEIS
executing on an IBM SP2. The IBM SP2 test machine is
a distributed shared-memory computer with 26, 4-CPU
nodes. Each CPU is an IBM Power 3 processor executing

at 375 MHz. Each node has 3 GB of memory. In this
case, the input file is a Landsat 300 Mbyte image. Figure
8 shows PiCEIS executing on a new HP Linux cluster
with a 500 Mbyte Landsat image. This machine is a 128-
node/256 Itanium-2 processors (McKinley processors)
with 1 Tflop peak theoretical performance and 1.5 Tbytes
of RAM. On both machines, the image is converted to 8-
byte floating-point format, and then two algorithms,
Texture and Modified Radon Transform, are performed.
Scalability is shown in both implementations. The bump
in the HP timings is due to a new, evolving system
architecture.

5. Conclusion

This paper addresses a number of issues associated

with parallel scaling (to large numbers of processors) in

Node 3

Node 1

Node 2

Node 0

Buffer 3

Buffer 1

Buffer 2

Buffer 0

Image

SGE

Switch

IBM T221 Display

SGE

(DVI Video)

Image

Node 3

...

...
...

Node 2

Node 1

Node 0

Figure 6: Display interconnect and distribution of images using the IBM SGE.

Figure 8: Timings from an HP Linux cluster. Figure 7: Timings from an IBM SP2.

PiCEIS Timings (Read, Texture, MRT, Write)

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50
Processors

Ti
m

e
P

er
 P

ro
ce

ss
o

r
(s

ec
s)

PiCEIS Timings (Read, Texture, MRT, Write)

0

10

20

30

40

50

60

70

10 15 20 25 30 35 40 45 50
Processors

Ti
m

e
P

er
 P

ro
ce

ss
o

r
(s

ec
s)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

image processing. A key contribution to the scalability is
the use of the Global Arrays tools to enable the shared-
memory programming model with one-sided
communication and asynchronous parallel I/O. These
tools enable effective overlap of computation and I/O
communications. Use of an object-oriented framework
provides developers with an easier framework to develop
scalable software for massively parallel computers. The
performance numbers indicate we are approaching our
goal of real-time image processing of very large image
files. The goal is to be able to process large image files
(greater than 75 megapixels) under 10 seconds. The
initial results are very encouraging. We feel we can
achieve this goal by continuing to optimize the current
process and working on the I/O subsystem.

6. Future directions

Currently, PiCEIS uses a unique set of script files to

read the input and define the program execution flow.
These files are read in using a simple loop. Each file
contains commands and parameters for a task module in
the PiCEIS framework. If we were to use the Python
scripting language, this process could be translated into a
series of Python objects, allowing more flexible and
dynamic control of the program execution. In particular,
the user would have more control over the path of data
flow and could define the flow path interactively and
more maturely. Many of the current commands that
Python would call would be implemented at a high level,
allowing for the Python control to remain separate from
interprocessor communication or processor-specific
function calls. This would increase the use and flexibility
of PiCEIS, while keeping the scalability and ease of use
of new algorithm integration.

Other future directions include analysis and viewing of
3-dimensional data. Although PiCEIS is implemented to
handle 3-dimension data, it is currently designed for
optimal performance with 2-dimensional image data.
Incorporating more complicated 3-dimensional data
would extend the current capabilities of PiCEIS to other
areas of research.

Acknowledgements

Development of Global Arrays has been recently

funded by U.S. Department of Energy DOE-2000 ACTS
program and DOE/MICS base program on Scalable
Programming Models.

This research was funded by the Pacific Northwest
National Laboratory’s LDRD Program Computational
Sciences and Engineering Initiative. The computation

was performed in the Molecular Sciences Computing
Facility at the William R. Wiley Environmental
Molecular Sciences Laboratory, PNNL. The MSCF is
funded by the Office of Biological and Environmental
Research in the U.S. Department of Energy. Pacific
Northwest National Laboratory is operated by Battelle
Memorial Institute for the U.S. Department of Energy
under contract DE-AC06-76RL01830.

References

[1] W. E. Alexander, D. S. Reeves, and C. S. Gloster Jr.,
“Parallel processing with the block image data parallel
architecture,” IBM J. Res. Dev. 44:5, 2000.
[2] S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith,
“PETSc users manual,” ANL-95/11-Revision 2.1.3, Argonne
National Laboratory, 2002.
[3] L. S. Blackford, J. Choi, A. Cleary, et. al., ScaLAPACK
User’s Guide, SIAM, Philadelphia, 1997.
[4] G. Fann, “PeIGS V.3 user’s manual,” Pacific Northwest
National Laboratory, 2001.
[5] W. Gropp, S. Huss-Lederman, A. Lumsdaine, et. al., MPI:
The Complete Reference: Volume 2, The MPI-2 Extensions, 2nd
ed., MIT Press, 1998.
[6] High Performance Computational Chemistry Group,
NWChem, A Computational Chemistry Package for Parallel
Computers, Version 4.1 (2002), Pacific Northwest National
Laboratory, Richland, Washington 99352, USA.
http://www.emsl.pnl.gov/pub/docs/nwchem/
[7] Khoral Khoros, http://www.khoral.com
[8] J. Lindgren, “Getting a grip on large images,” Imaging
Notes 16:6, 2001
[9] Molecular Science Computing Facility, http://mscf.emsl
.pnl.gov
[10] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global
Arrays: a nonuniform memory access programming model for
high-performance computers,” The Journal of Supercomputing
10, pp. 197-220, 1996.
[11] OpenCV, http://www.intel.com/research/mrl/research/opencv/
[12] K. A. Perrine, and D. R. Jones, “Parallel graphics and
interactivity with the Scaleable Graphics Engine,” Proc. IEEE
Supercomputing, 2001.
[13] K. A. Perrine, and D. R. Jones, “Interactive Imaging
Science on Parallel Computer: Getting Immediate Results,”
Proc. IPDPS 2003.
[14] K. A. Perrine, D. R. Jones, P. Hochschild, and R. A. Swetz,
“An interactive parallel visualization framework for distributed
data,” Visualization and Data Analysis, R. F. Erbacher, et. al.
eds., Vol. 4665, pp. 196-206, SPIE, 2002.
[15] The Python Imaging Library (PIL), http://www.pythonware
.com/products/pil/
[16] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference: Volume 1, the MPI
Core, 2nd ed., MIT Press, 1998. (See also http://www-
unix.mcs.anl.gov/mpi/).
[17] J. M. Squyers, A. Lumsdaine, and R. L. Stevenson, “A
toolkit for image processing,” preprint 1997, http://www.osl.iu
.edu/research/pipt/

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

