
Meeting Points: Using Thread Criticality to Adapt
Multicore Hardware to Parallel Regions

Qiong Cai1, José González1, Ryan Rakvic2, Grigorios Magklis1, Pedro Chaparro1 and
Antonio González1

1 Intel Barcelona Research Center, Intel Labs-UPC, Barcelona, Spain
{qiongx.cai, pepe.gonzalez, grigorios.magklis, pedro.chaparro.monferrer, antonio.gonzalez}@intel.com

2 United States Naval Academy, Annapolis, Maryland, USA
rakvic@usna.edu

ABSTRACT

We present a novel mechanism, called meeting point thread
characterization, to dynamically detect critical threads in a parallel
region. We define the critical thread the one with the longest
completion time in the parallel region. Knowing the criticality of
each thread has many potential applications. In this work, we
propose two applications: thread delaying for multi-core systems
and thread balancing for simultaneous multi-threaded (SMT)
cores. Thread delaying saves energy consumptions by running the
core containing the critical thread at maximum frequency while
scaling down the frequency and voltage of the cores containing
non-critical threads. Thread balancing improves overall
performance by giving higher priority to the critical thread in the
issue queue of an SMT core. Our experiments on a detailed
microprocessor simulator with the Recognition, Mining, and
Synthesis applications from Intel research laboratory reveal that
thread delaying can achieve energy savings up to more than 40%
with negligible performance loss. Thread balancing can improve
performance from 1% to 20%.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Multiple Data Stream
Architectures – parallel processors.

General Terms

Performance, Design

Keywords

Meeting point thread characterization, Critical threads, Thread
delaying, Thread balancing, Multi-threaded Application,
Microarchitecture, Low-power, Energy-aware

1. INTRODUCTION
In recent years, chip multiprocessors (CMPs) [31] have become
increasingly important and common in the computer industry
[3][11][21]. The design of CMP processors takes advantage of
thread-level parallelism (TLP) to address the problem of limited
instruction-level parallelism (ILP) in serial applications.
Moreover, it is believed that future applications will be compute-

intensive and highly parallel [10]. For example, the Intel Tera-
scale research [11] aims at integrating tens or hundreds of cores in
a future microprocessor, to run highly parallel workloads such as
Recognition, Mining, and Synthesis (RMS) applications [10].

High energy consumption will be one of the major hurdles in the
design of such systems. The workload imbalance among cores in
a CMP chip is one source of energy inefficiency. For example, in
a fork-join parallel execution model such as OpenMP [2], a
parallel loop usually has a barrier at the joint point of the loop that
synchronizes all threads. In the best case, all cores reach this
barrier at the same time. However, in a normal situation, some
threads reach the barrier earlier than others and spend a large
amount of time waiting for slower ones. Fast threads have been
executed at the maximum possible speed and power consumption,
which leads to energy inefficiency. In order to reduce energy, one
possible solution is to put fast threads to sleep as soon as they
arrive to the barrier and then shut down the core. This is a feasible
approach if the waiting time is long enough so that the energy
saved in sleep mode pays off the energy/performance wasted by
putting the cores to sleep and waking them up. We propose an
alternative solution in this paper. If a thread is known beforehand
to reach the synchronization point early, the voltage and
frequency of the core running that thread could be reduced
dynamically without compromising performance.

As we will demonstrate later in this work, dynamic voltage and
frequency scaling (DVFS) achieves greater energy reduction
compared to putting a core to sleep due to the cubic relationship
of power to voltage/frequency. One of the main challenges in this
approach is the detection of the critical and non-critical threads.
We use the slack as a proxy to know the criticality level of a
parallel thread. We define slack for a parallel thread as the amount
of time a thread can be delayed with no impact on final
performance. The critical thread is the one with zero slack, which
means that if it gets delayed, the overall execution time is
increased. Non-critical threads are those that could be delayed
with no impact on performance. The level of criticality is
determined by the amount of slack that each thread has. Detecting
such critical threads and the level of criticality is challenging,
since one could not know a priori whether a thread is going to be
the last one to reach the barrier.

In this paper, we present a novel mechanism called meeting point

thread characterization that identifies the critical thread of a
single multi-threaded application as well as the amount of the
slacks of non-critical threads. To do that, each thread has a
counter to accumulate the number of iterations executed for the
parallel loop. At specific intervals of time, all threads broadcast

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10...$5.00.

this information so they can know the number of iterations being
executed by each one of them. With that information, the slack of
a thread can be estimated as the difference between its own
iteration counter and the counter of the slowest one. We believe
that the meeting point mechanism is a powerful tool that enables
many interesting optimizations. In this work, we focus on two of
such optimizations that dynamically adapt the hardware resources
to the application behavior: thread delaying and thread

balancing.

The goal of thread delaying is to reduce overall energy
consumption by dynamically scaling down the voltage and the
frequency of the cores executing non-critical threads. At specific
intervals of time, each core utilizes meeting point thread
characterization to estimate the slack of the parallel thread. Then,
it computes the voltage/frequency for the next interval of time so
that the energy is minimized but the expected arrival time to the
barrier does not exceed that of the current critical thread.

Thread balancing is a hardware scheme that works for
simultaneous multithreading processors running parallel threads.
These architectures usually implement fair policies regarding
shared resources. For instance, it is common to share the issue
slots in such a way that, if both threads have ready instructions,
both are allowed to issue the same number of them. The goal of
thread balancing is to reduce the overall execution time by
speeding up the critical thread. To do that, the critical thread is
given priority in the utilization of the issue slots. This approach is
radically different from the issue policies already proposed in the
literature [5][12][17][20][32][34]. Previous works assume that
the threads are from different applications, and the proposed issue
algorithms try to maximize bandwidth utilization as well as
fairness. However, our approach is completely different because
threads come from the same parallel application. The only way to
improve overall performance is to accelerate the critical thread.
Therefore, in our approach, higher priority is given to the critical
thread.

We have evaluated thread delaying and thread balancing in cycle-
accurate CMP and SMT simulators respectively. Our experiments
with several Recognition, Mining and Synthesis (RMS) workloads
show that thread delaying on a CMP system can greatly reduce
energy (from 4% to 44%) with negligible performance penalty.
For example, for PageRank, which represents an important
category of emerging applications such as Google's web search
engine, thread delaying can achieve more than 40% energy
savings without any performance loss on an eight-core system. It
is important to note that the baseline is very aggressive, since we

assume that, once a thread arrives to a barrier, its core is set
instantaneously to deep sleep state [13], consuming zero power.
Moreover, the experiments on an SMT in-order core show that
our thread balancing mechanism can improve performance for
various RMS workloads, from 1% to 20%.

In the rest of paper, we first describe the mechanism of identifying
critical threads in parallel applications in Section 2. The thread
delaying and thread balancing techniques are explained in detail
in Sections 3 and 4, respectively. Section 5 describes our
simulation framework and shows the performance results of
thread delaying and thread balancing. We also discuss the related
work in Section 6. The paper concludes in Section 7.

2. IDENTIFICATION OF CRITICAL

THREADS
The meeting point thread characterization aims at detecting
dynamically the workload imbalance of parallel applications.
Figure 1 demonstrates that even very regular parallel programs
may exhibit workload imbalance during execution. Figure 1(a)
shows the main parallel loop from PageRank-lz77 (a RMS
workload). The code is already written in such a way that the
input data set is partitioned to achieve workload balance.
However, Figure 1 (b) shows that workload imbalance still exists
on a two-core system (each core contains one thread). The x-axis
in Figure 1 (b) represents the number of iterations of the
outermost loop that each core executes. The y-axis represents the
cumulative execution time of this parallel loop for each core. We
can see that core 1 is slower than core 0. In this particular case,
the reason is that core 1 suffers many more cache misses than core
0 does. Other reasons for workload imbalance could be that
parallel threads follow different control path in the parallel loop,
or that the application exploits task-level parallel, rather than loop
level. We refer to this slow thread as the critical thread because
the other threads must wait for it due to the barrier at the end of
the parallel section.

We propose to identify the critical thread dynamically during
program execution by checking the workload balance at
intermediate points of a parallel loop. We call these check points
meeting points. A natural location of a meeting point is at the
back edge of a parallel loop, because the back edge of a loop is
visited many times by all threads at runtime. It should be noted
that the total number of times each thread visits the meeting point
should be roughly the same, which means that the total amount of
work assigned to each thread should be the same. Otherwise, the

Figure 1 A motivational example. (a) A parallelized loop from PageRank (lz77 method) (b) Performance results for two cores (c)

Insertion of a meeting point

0

20

40

60

80

100

120

1 11 21 31 41 51 61 71 81 91 101

T
im

e
 (

in
 m

il
li

s
e

c
o

n
d

s
)

Number of Iterations

CPU0 CPU1

critical thread cannot be identified based on the number of times
the threads visit a meeting point. In the case of the OpenMP
programming model [2], this assumption is usually true if static
scheduling is applied.

In the OpenMP programming model, if parallel codes are
extremely irregular, dynamic scheduling can be used. Our critical
thread identification is not suitable for this scenario. However,
dynamic scheduling has large runtime overheads and static
scheduling is recommended as the first scheduling option,
especially when the number of threads is increased [37]. The
decision whether to use static or dynamic scheduling in a parallel
is out of the scope of this paper.

The process of our meeting point thread characterization normally
consists of the following three steps.

• Insertion of meeting points: One candidate for a meeting
point is the place in a parallel region that is visited by all
threads many times during parallel execution. For example,
in Figure 1(c), we have a program using the parallel for
construct of the OpenMP programming model. As the code is
regular, it is easy to see that the last statement of the
outermost loop (or the parallelized loop) satisfies our criteria.

The insertion of a meeting point can be done by the
hardware, the compiler or the programmer. A hardware-only
approach, although it is completely transparent and maintains
binary compatibility, it requires extra hardware structure to
detect a suitable meeting point among repeated instructions
in a parallel execution (hardware schemes for backward loop
detection could be used [29]).

• Identification of critical threads: Every time a core decodes
an instruction encoding a meeting point, a thread-private
counter (located in the processor frontend) is incremented.
This counter is a proxy for the aforementioned slack. The
most critical thread is the one with the smallest counter, and
the slack of a thread can be estimated as the difference of its
counter and the counter of the slowest counter.

Depending on the usage of our meeting point thread
characterization, a software only identification mechanism
could be adopted. For example, the application is rewritten
so that it includes an array of counters indexed by thread
identifiers. Each thread increments its own counter every
time it arrives the end of the parallel section.

In this work, the user inserts the meeting point by means of a
pragma and the counters are implemented in hardware. The
compiler translates the pragma into a new instruction that,
once decoded, increments the private hardware counter of the
thread.

• Usage of criticality information: The usage of thread
criticality (or slack estimation) depends on what
optimizations we want to apply. For example, we will
demonstrate two applications in later sections. One, called
thread delaying, minimizes energy consumption by slowing
down the fast threads. The other application, called thread
balancing, optimizes performance by accelerating the slowest
thread.

In the next sections, we will describe two specific applications of
the meeting point technique. More importantly, we will show how
criticality information can be effectively used for different
purposes, either for energy savings or for performance speedups.

3. THREAD DELAYING
As we discussed in Section 2, parallel applications exhibit
workload imbalance among threads at runtime. In a fork-join
parallel programming model such as OpenMP, workload
imbalance means that non-critical threads finish their jobs earlier
than their critical counterparts do. Since there is a barrier at the
join point of a parallelized loop, non-critical threads will have to
wait (doing nothing) for the critical thread to finish its work,
before they can proceed. In modern systems, the CPUs, of the
non-critical threads, can be put into deep sleep mode, which
consumes almost zero energy [13]. However, this is not the most
energy-efficient approach to deal with workload imbalance. Due
to the cubic relationship of power to frequency/voltage, it is better
to make non-critical threads run at a lower frequency/voltage level
such that all threads arrive at the barrier at the same time.

3.1 Energy Savings due to DVFS
Assume that the critical thread finishes its work in T time units,

and a non-critical thread can finish its work in only 0.7T time

units. If the non-critical thread works at full speed for 0.7T time

units and then it is put to deep sleep mode with zero energy
consumption for the rest 0.3T time units, the total consumption

from this non-critical thread is given by the following formula:

TfVcE ddf 7.0max

2

max
×××=

Alternatively, the core running the non-critical thread can have
its frequency scaled-down to 0.7fmax (and the voltage to

0.875Vdd, see Figure 2 (b)) and it would meet the barrier on time

anyway. In this case, the total consumption for the non-critical
thread is as follows:

max
765.0)7.0()875.0(max

22

fddddf ETfVVcE
scaled

=××××=

From the above deductions, we can clearly see the advantage of
doing DVFS on non-critical threads. There are two main
challenges by applying DVFS in this scenario. First, we need a
way to identify non-critical and critical threads at runtime.
Second, we need to select appropriate frequency and voltage
levels for non-critical threads. In this section, we will describe a
new algorithm, called thread delaying, which solves these two
problems by combing the meeting point thread characterization
technique and an estimation formula for predicting the
frequency/voltage levels for each thread.

3.2 A CMP Microarchitecture with Multiple

Clock Domains
Figure 2(a) shows the baseline of our CMP microarchitecture.
Our CMP processor consists of many Intel64/IA32 cores, and
each core is a single-threaded in-order core (with bandwidth of 2
instructions per cycle) due to power and temperature constraints.
Every core contains a private first-level instruction cache, a
private first-level data cache and a private second-level unified
cache. A shared third-level cache (L3) is connected to all cores
through a bus network. A MESI cache protocol is used to keep
data coherent (further parameters of the microarchitecture will be
detailed in the Section 5).

Each core with associated L1 and L2 caches belongs to a separate
clock domain. Moreover, the unified L3 cache with the
interconnect forms a separate clock domain as well. Each clock
domain has its own local clock network that receives as input a
reference clock signal and distributes it to all the circuits of the
domain. In our design, we assume that the phase relationship (i.e.,
the skew) between the domain reference clocks can be arbitrary.
This allows firstly to run each domain at a different frequency and
secondly to adapt the frequency of each domain dynamically and
independently of the others. Since domains operate
asynchronously to each other, interdomain communication must
be synchronized correctly to avoid meta-stability [7]. We use the
mixed-clock FIFO design of Chelcea and Nowick to communicate
values safely between domains [9].

Each one of the microprocessor domains can operate at a distinct
voltage and frequency. Moreover, voltage and frequency can be
changed dynamically and independently for each domain. We
assume domains can execute through voltage changes, similar to
previous studies [19][28][33][36] and some commercial designs
[15]. We assume a limited range of voltages and frequencies, as
shown in Figure 2(b).

Having so few levels allows us to switch between them very
quickly. We assume a single, external PLL for the whole chip.
Each domain includes an on-chip digital clock multiplier
connected to the external PLL [14][30]. Frequency changes per
domain are effected by changing the multiplication factor of the
domain clock multiplier; the external PLL frequency is fixed. This
allows extremely fast frequency changes, but it also means that (a)
only a few frequency levels are available, and (b) all frequencies
must be multiples of a base frequency.

3.3 Implementation of Thread Delaying
In order to implement thread delaying, each core contains two
tables shown in Figure 2(c) to handle meeting points (recall that
the user inserts meeting points, which are represented by special
instructions):

• MP-COUNTER-TABLE has as many entries as number of

cores in the processor. Each entry contains a 32-bit counter
that keeps track of the number of times each core has reached
the given meeting point. This table is consistent among all
cores in the system.

• HISTORY-TABLE includes an entry for each possible

frequency level. Each entry contains a two-bit up-down
saturating counter used to determine the next frequency the
core must run at. The table is initialized so that the entry
corresponding to the maximum frequency level has the
highest value (i.e. all cores start running at maximum
frequency).

When a core decodes a meeting point, the counter corresponding
to its assigned thread in the MP-COUNTER-TABLE is

incremented by 1. Every 10 execution of the meeting point
instruction, the core broadcasts the value of the counter to the rest
of the cores (ideally, one would like to broadcast that information
at every meeting point visit; however the interconnection may be
overloaded). This is done by means of a special network message.
When the network interface of a core receives such message, the
MP-COUNTER-TABLE is accessed to increment by 10 the

counter associated with the thread identifier of the sender. We
choose 10 since it gives enough precision to the thread delaying
with no impact on the interconnect performance.

Each core manages its own frequency and voltage independently,
based on the value of the counter associated to its local thread in
the MP-COUNTER-TABLE and the lowest value of all counters in

the table (which corresponds to the critical thread, since it has
executed the lowest number of iterations of the parallel loop).
Therefore, we can say that the difference between both counters is
an estimation of the slack of a thread.

Every 10 executions of the meeting point instruction, the
processor frontend stops fetching instructions and inserts a
microcode (stored in a local ROM) to execute the thread delaying
control algorithm. This microcode has dozens of instructions and
its overhead has no impact on final performance. That microcode
has as input both the MP-COUNTER-TABLE and the HISTORY-

TABLE and its output is the frequency fi for the next interval.

The microcode first computes the frequency that better matches
the current slack using the following formula:

FREQUENCYMAX
C

C
f

i

critical
temp _×=

)(___ tempi ffrequencyvalidclosestsearchf =

where Ccritical and Ci are the counters from the critical thread

and non-critical thread i, respectively. After ftemp is obtained, fi

is calculated by finding the minimum frequency supported in the

Figure 2 (a) Our CMP microarchitecture (b) Voltage-Frequency Table (c) Two tables are required to implement thread delaying

system, whose value is equal or greater to ftemp. In our current

model, voltage scaling is not implemented as a continuous
function but a discrete one with 13 frequency levels
[8][14][27][30].
Once the frequency level for fi is obtained, the HISTORY-

TABLE is updated properly (each entry contains a two bit up-

down saturating counter). If the frequency level for fi is k, entry

k is incremented and every other entry is decremented. Finally,

the frequency chosen by the microcode for the next interval is the
one with the largest counter in the HISTORY-TABLE.

Note that the purpose of HISTORY-TABLE is used to reduce the

effect of temporal noise in the estimation of the slack, which may
drive to the utilization of frequencies that are too aggressive (too
low). This may cause a non-critical thread to become a critical
one.

We have adopted the solution of inserting microcode in the
processor to compute the next frequency since this computation is
not done very often and the overall performance is not affected. If
this computation is critical, it could be done by pure hardware by
adding the required functional units and control in the processor
frontend. However, it is very difficult to justify the area increase
to perform just this task and nothing else.

4. THREAD BALANCING
In Section 3, we have described a method to reduce energy
consumption by slowing down non-critical threads. In this section,
we focus on speeding up a parallel application running more than
one thread on a single 2-way SMT core by accelerating the critical
thread.

In an SMT core, the issue bandwidth is limited and shared among
threads. There are a lot of issue policies in the literature
[12][17][20][32][34], most of which assume that threads come
from different applications (multi-programmed workloads). The
baseline issue logic we have implemented works as follow (our
microarchitecture is two-way in-order SMT with an issue
bandwidth of two instructions per cycle): if both threads have
ready instructions, each one of them is allowed to issue 1
instruction. If one thread has ready instructions and the other does
not, the one with ready instruction can issue up to two per cycle.
This algorithm tries to maximize bandwidth and fairness.

However, if both threads belong to the same parallel application,
fairness may not be the best option. After all, what we want is to
speed up the parallel application and not a single thread. In this
case, it is very important to identify the critical thread and give to
it more priority in the issue logic: that is the purpose of our thread
balancing mechanism.

Figure 3 shows the implementation of thread balancing in
hardware. Note that the scheme we propose regarding thread
balancing works at the core level. Given two threads in a SMT
core, it determines which is the critical one and gives more
priority to this thread in the issue logic.

The hardware required to support thread balancing is simpler than
thread delaying. Two hardware counters located in the processor
frontend suffice to detect the critical thread between two threads
running in the same core.

Every time the processor decodes a meeting point (inserted by the
user, as aforementioned) the counter associated with that thread is
increased. Every 10 executions of the meeting point instruction,
both counters are compared. If the difference is greater than a
given delta, the thread with the lowest counter value is designated
as the critical thread, and that information is forwarded to the
issue logic in the core.

The issue logic implements the fair policy detailed at the
beginning of the section. However, if the frontend informs the
issue logic that a given thread is critical, the issue policy is
changed. If the critical thread has two ready instructions, it is
allowed to issue both instructions regardless of the number of
ready instructions the non-critical thread has. If it does not have
two ready instructions, the base policy is applied.

 Our thread balancing mechanism has potential speedup benefits
when each thread follows different control paths from the same
parallelized region. The critical thread (or the slowest thread) has
more work to perform before reaching the meeting point than the
non-critical thread has. In other words, when the critical thread is
not slowed down by cache misses, thread balancing can speed up
the whole application on an SMT core.

5. EXPERIMENTS
The simulation framework used in our study contains a full-
system functional simulator and a performance simulator.
SoftSDV [35] for Intel64/IA32 processors is our functional
simulator, and it can simulate not only multithreaded primitives
including locks and synchronization operations but also shared
memory and events. Therefore, it is ideal to simulate our
cooperative workload at the functional level. Redhat 3.0 EL is
booted as the guest operating system in SoftSDV. In all of our
simulations, only less than 1% of simulated instructions are from
the operating system, and thus the impact of the operating system
is minimal.

Figure 3 Implementation of Thread Balancing Logic

Table 1 The architectural parameters

Process Model In-order

Intel64/IA32

L1 Instruction Cache (private) 32KB, 4-ways

L1 Data Cache (private) 32KB, 8-ways

L2 Cache (unified and private) 512KB, 16-ways

L3 Cache (unified and shared)
8MB, 16-ways

Network Protocol MESI

Benchmark Application

Gauss Financial Analysis

PageRank (sparse) Search Engine

PageRank (lz77) Search Engine

Summarization Text Data Mining

FIMI Data Mining

Rsearch Bioinformatics

SVM Bioinformatics

The functional simulator feeds Intel64/IA32 instructions into the
performance simulator, which provides a cycle accurate
simulation. The performance simulator also incorporates a power
model based on activity counters and energy per access, similar to
Wattch [4]. In our evaluation, the energy includes dynamic
energy, idle energy and leakage energy. The baseline assumes
that every core is running at full speed and stops when it is
completed. Once the core stops, it consumes zero power.

Meeting point thread characterization, thread delaying and thread
balancing are implemented in our cycle-accurate performance
simulator for a CMP or SMT system. Since thread delaying and
thread balancing pursue different purposes and their effects are
orthogonal, both techniques are evaluated independently. Thread
delaying is evaluated for multi-core systems where each core
contains only one thread while thread balancing is evaluated for a
single SMT core (each core contains two threads). The simple in-
order core is low power and is suitable for a many-core chip such
as Sun’s Niagara [21]. The detailed architectural parameters are
shown in Table 1.

5.1 Benchmarks
The Recognition, Mining, and Synthesis (RMS) workloads from
Intel are a set of emerging multi-threaded applications for Tera-
scale systems [3][10]. The RMS workload includes highly
compute-intensive and highly parallel applications including
computer vision, data mining on text and media, bio-informatics
and physical simulation.

From the RMS benchmark suite, we have chosen those that
clearly show workload imbalance and one benchmark called
Gauss, which is relatively balanced workload. Gauss is chosen for
testing the robustness of thread delaying algorithm. These
benchmarks are depicted in Table 2. Gauss is a Gauss-Seidel
iterative solver of a system of partial differential equations. The
kernel of PageRank performs multiple matrix multiplications on a
large and sparse matrix. The matrix can be stored in memory
either in a native sparse or a compressed way. The compression is
a simplified LZ77-based method. Summarization is a text data
mining workload, which finds and ranks documents in a web
search engine. FIMI analyzes a set of data transactions,
determining the rules related to the data. Both Rsearch and SVM
are used in bioinformatics to search in a database for both a
homologous RNA and a disease gene pattern respectively.

All of these workloads are already parallelized by using either
pthreads or OpenMP to achieve maximal scalability. The
benchmarks were developed by expert programmers and
parallelized by hand (i.e. OpenMP primitives are inserted by the

programmer). However, they still exhibit different degrees of
workload imbalance and therefore inefficiency in the energy
consumption.

The simulated section for each benchmark is chosen by first
profiling its single-threaded counterpart and then selecting the
hottest region, which normally is a parallel loop. For all of the
benchmarks except FIMI, the selected parallel regions represent
almost 99% of total execution time. FIMI has 28% coverage. In
our simulation, each thread runs a fixed number of iterations (say
N) and when the slowest thread has executed N iterations, the
simulation is finished. The value of N varies depending on the
benchmark. At least 100 million instructions (sum of instructions
from all threads) are executed before a simulation is terminated.

5.2 Performance Results for Thread Delaying
Figure 4 shows that thread delaying achieves significant energy
reduction for selected RMS benchmarks under three different
hardware configurations: two, four (We had difficulty to run the
simulation for four cores PageRank (lz77). So this configuration is
excluded from our experiment.) and eight cores, ranging from 4%
to 44% energy savings. In this experiment, each core executes one
thread.

For most configurations, there is little performance loss, ranging
from 1% to 2%. Moreover, there is even a case when thread
delaying obtains speedups. Since all cores except the one
containing the critical thread have their frequencies and voltages
reduced, their cache misses are more spread out over time,
allowing the critical thread to have more priority in the
interconnection. This side effect of per-core DVFS accelerates
the critical thread and thus reduces the total execution time.

5.3 Analysis of Thread Delaying Performance
The first question that we must answer is where such energy
savings come from. For example, PageRank (sparse) on eight
cores achieves more than 40% energy savings. Figure 5 shows the
runtime behavior of PageRank (sparse) before and after thread
delaying. The x-axis represents the number of iterations of the
parallelized loop that each core executes. The y-axis of Figure
5(a) and (b) represents the cumulative execution time of the loop
iterations in milliseconds, whereas the y-axis in Figure 5(c)
represents the frequency of the core in GHz. We can see that there
are large gaps between the critical thread (cpu0) and the rest of the
threads. All non-critical threads except the one in cpu3 stay at the
lowest frequency after iteration 6600. For cpu3, it stays at the
lowest frequency until iteration 12200 and increases the frequency
afterwards, because the gap between cpu0 and cpu3 is getting
smaller. It is obvious that the big energy savings come from the
large frequency decreases on non-critical threads. Similar

Table 2 The RMS Benchmarks

2p 4p 8p 2p 8p 2p 4p 8p 2p 4p 8p

Gauss PageRank (lz77) PageRank (sparse) Summarization

execution time 0.99 1.00 1.01 1.00 1.02 1.01 1.00 0.98 1.01 1.01 1.02

energy consumption 0.96 0.94 0.93 0.94 0.90 0.90 0.78 0.56 0.94 0.88 0.74

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

li
za

ti
o

n

to
 B

a
se

li
n

e

Figure 4 Performance Results for Thread Delaying

observations are also obtained for the PageRank (sparse)'s 4p
configuration and Summarization's 4p and 8p configurations.

The effectiveness of thread delaying depends on whether the
algorithm can adapt quickly at runtime; in other words, the
algorithm chooses frequencies in a way that reflects the runtime
behavior of the application. To demonstrate this, we use the
example in Figure 6 (the same example used in Figure 1). In
Figure 6 between iteration 10 and iteration 40, the time gap
becomes smaller and smaller and our algorithm increments the
frequency of the non-critical thread slowly. By doing that, the
non-critical thread can avoid staying at a low frequency level for
too long and becoming a false critical thread. If the non-critical
thread became a false critical thread, there would be performance
penalty at the end. At iteration 65, there is a cache miss with long
latency, which results in a time difference between two threads
again. Our algorithm immediately observes this change and starts
to decrement the frequency level of the non-critical thread. The
frequency of cpu1 (the critical thread) is slightly scaled down
from 4 GHz to 3.75 GHz (see iterations between iterations 60-65).
However, our mechanism can quickly correct the mistake once
there is a time gap between these two threads. After iteration 65,
the frequency of critical thread is back to the maximum.

We have demonstrated that large energy savings can be obtained
in imbalanced workloads. Moreover, our thread delaying

algorithm can also save a reasonable amount of energy for
relatively balanced workloads. For example, Gauss is a balanced
workload and it is hard to distinguish which threads are critical or
non-critical (due to space constraints, we are not showing the
graph). However, we still can achieve 6% energy savings without
any performance penalty.

From above observations, we can see that our thread delaying is
robust and effective. It can maximize the energy savings with
negligible performance loss.

5.4 Performance Results for Thread

Balancing
Figure 7 shows the performance benefit of our thread balancing
over the baseline for four RMS workloads. Performance benefit
ranges from 1% to 20%. PageRank (sparse) shows huge
imbalance during parallel execution and thus we have large
amount of energy savings from thread delaying. However, thread
balancing cannot give much performance improvement to
PageRank. The reason is because of cache misses. Prioritizing
the issue of the slow thread results in a shift in pipeline stalls from
the issue stage to the backend of the in-order core because this
benchmark suffers from a significant amount of load misses.

Figure 5 PageRank (sparse) on eight cores (a) runtime behavior of the baseline (b) runtime behavior after applying thread

delaying (c) corresponding frequency level.

Figure 6 PageRank(lz77) on two cores (a) runtime behavior of the baseline (b) runtime behavior after applying thread delaying

(c) corresponding frequency level.

Therefore the performance of the slow thread is not significantly
improved.

Overall, the performance benefit correlates with imbalance levels.
For example, in FIMI, there is a large level of thread imbalance
and a corresponding amount of performance improvement by
administering issue priority to the slower thread. We begin our
analysis by determining the efficacy of this algorithm. We first
present the opportunity, or the percentage of cycles that both
threads have available instructions that are ready to be issued and
a decision must be made between the threads. If the slow thread
does not have available instructions to issue, then shifting priority
to the slow thread will provide no benefit. FIMI and SVM have
the most opportunity to give priority to the slow threads. Figure 7
also shows the correction of imbalance, which is defined to the
percentage of the number of iterations that are caught up by the
slow thread with our thread balancing method. As can be seen
FIMI and SVM have 100% imbalance correction with this
algorithm and are operating in an ideal situation.

6. RELATED WORK
There are some previous works related to thread delaying. Liu et
al. [25] proposed an algorithm, which tracks the time spent by the
faster cores waiting for the slower cores at the end of a parallel
loop and predicts the DVFS level of each core for the next
execution of the same parallel loop. The main difference between
our thread delaying approach and the one proposed by Liu et al.
[25] is that our approach runs at a finer grain, adapting to run-time
behavior inside the execution of the parallel loop. Following from
this key difference, our mechanism can handle the cases that their
mechanism cannot handle because we do not require multiple
instances of a loop. It is not because the loop is insignificant, but
because the parallelized section (not loop) is only executed once
in the whole application. For example, in Summarization, the
parallelized section looks as follows:

This parallelized section is only executed once but it is the hottest
one (99% of total execution). Each thread will execute loop
iterations many times. Our approach can handle this case, but
their mechanism [25] cannot. Additionally our meeting point

algorithm provides an opportunity to apply thread balancing on an
SMT core. The scheme in [25] does not provide this opportunity.

The second work related to our work is called the thrifty barrier
[24]. The thrifty barrier uses the idleness at the barrier to move
the faster cores to a low power mode. It has been shown that the
DVFS approach outperforms the thrifty barrier approach [25].
Furthermore, our baseline can be considered as an aggressive
version of thrifty barrier since, when a thread arrives to a barrier,
it consumes zero power.

Thread delaying is motivated by the workload imbalance among
parallel threads. This type of performance asymmetry due to
workload imbalance is different from the performance asymmetry
discussed in the literature [1][22][23]. They created a
performance-asymmetric multi-core system, including high-
performance complex core and low-performance simple cores, in
such a way that the complex cores provide good serial
performance and simple cores provide high throughput. However,
in our case, the asymmetry comes from the workload imbalance
among parallel threads from the same parallel region. As the
workload imbalance is mainly due to cache misses from our
experiments, many simple cores are enough for highly parallel
and computationally intensive applications such as RMS and
complex and powerful cores does not help to speed up the
performance or save energy in this case. Therefore we are
addressing the problem different from [1][22][23].

The DVFS algorithm can also be implemented at the operating
system level. Lorch and Smith [26] proposed a scheduling
algorithm, which schedules a task in such a way that the
frequency/voltage of a CPU is scaled down to save energy and
meet the deadline of the task. There are three big differences
between this work and our work. First, the deadline of a task is
not known, and it is decided manually. Our meeting point thread
characterization can select the critical thread dynamically and the
critical thread actually determines the deadline of the whole
parallel execution. Second, the workloads they use are mostly
interactive benchmarks such as word processing and spread sheet,
which are very different from our highly parallel RMS
applications. Third, their algorithm is an OS scheduling algorithm
for only one CPU, whereas our algorithms are lightweight enough
to be implemented in hardware targeting many-core system.

Our work on thread balancing is unique. We are not aware of any
research that is similar to this new mechanism. There has been an
abundance of research focusing on thread prioritization
[6][12][17][20][32][34]. However, the focus is on prioritizing
threads that are ready to execute, i.e. the fast threads. Prior art
does not consider threads that are imbalanced from the same
application. Our goal is the opposite, trying to give priority to the

Figure 7 Performance Results for Thread Balancing

1.20

1.05
1.03

1.01

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

FIMI Rsearch SVM PageRank(sparse)

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

s

#pragma omp parallel

{

while (n < Niterations) {

 #pragma omp barrier
 {}

 // a lot of codes
 }

}

slower threads, noting that the slow threads dictate the overall
performance of the application.

7. CONCLUSION
In this paper, we first present a novel mechanism called meeting
point thread characterization, which dynamically estimates the
criticality of the threads in a parallel execution. Knowing the
criticality of each thread can be used in many different scenarios.
In particular, we designed two novel schemes called thread
delaying and thread balancing by using the thread criticality
information in order to save energy and improve performance,
respectively.

Thread Delaying combines per-core DVFS and meeting point
thread characterization together to reduce energy consumptions on
non-critical threads. Our experiments with several RMS
applications have shown that this thread delaying mechanism is
very effective. For example, for PageRank, which represents an
important category of emerging applications such as Google's web
search engine, the proposed mechanism can achieve up to more
than 40% energy savings without any performance loss for four
and eight-core configurations.

Thread balancing gives higher priority in the issue queue of an
SMT core to the critical thread and by doing so, the overall
performance of parallel regions can be improved. Our
experiments have shown that our thread balancing mechanism can
improve performance for various RMS workloads, ranging from
1% to 20%.

8. ACKNOWLEDGMENTS
This work has been partially supported by the Spanish Ministry of
Education and Science under grants TIN2004-03702 and
TIN2007-61763 and Feder Funds. We would like to thank the
referees for their helpful comments and suggestions.

9. REFERENCES
[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of

performance asymmetry in emerging multicore architectures. In
Proceedings of the 32nd annual international symposium on

Computer Architecture, pages 506–517, Washington, DC, USA,
2005. IEEE Computer Society

[2] OpenMP Architecture Review Board. Openmp application
program interface, 2005.

[3] S. Y. Borkar. Platform 2015: Intel processor and platform
evolution for the next decode. Intel White Paper, 2005

[4] David Brooks, Vivek Tiwari, and Margaret Martonosi.
Wattcy7sh: A framework for architectural-level power analysis
and optimizations. ACM SIGARCH Computer Architec-ture

News, 28, 2000.
[5] T.D. Burd and R.W. Brodersen. Energy efficient cmos

microprocessor design. System Sciences. Proceedings of the

Twenty-Eighth Hawaii International Conference, 1995.
[6] Francisco J. Cazorla, Alex Ramirez, Mateo Valero, and Enrique

Fernandez. Dynamically controlled resource allocation in smt
processors. Microarchitecture, 2004.

[7] T. J. Chaney and C. E. Molnar. Anomalous behavior of
synchronizer and arbiter circuits. IEEE Transactions on

Computer, 22(4), 1973.
[8] P. Chaparro, J. Gonzalez, G. Magklis, Q. Cai, and A. Gonzalez.

Understanding the termal implications of multicore architectures.
IEEE Transactions on Parallel and Distributed Systems, 18(8),
2007.

[9] T. Chelcea and S. M. Nowick. Robust interfaces for mixed-timing
systems with application to latency-insensitive protocols.
Proceedings of the 38th Design Automation Conference, 2001.

[10] Intel Corporation. Computer intenstive, highly parallel application
and uses. Intel Technology Journal, 9(2), 2005.

[11] Intel Corporation. Intel’s tera-scale research prepares for tens,
hundreds of cores, 2006.

[12] A. El-Moursy and D.H. Albonesi. Front-end policies for improved
issue efficiency in smt processors. High-Performance Computer

Architecture, 2003.
[13] S. Fischer. Technical overview of the 45nm next generation intel

core microarchitecture (penryn), 2007.
[14] T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella. A 90-

nm variable frequency clock system for a power-managed itanium
architecture processor. IEEE Journal of Solid-State Circuits, 41,
2006.

[15] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A.
Naveh, A. Saeed, Z. Sperber, and R. Valentine. The intel pentium
m processor: Microarchitecture and performance. Intel

Technology Journal, 7(2), 2003.
[16] P. Hazucha, T. Karnik, B.A. Bloechel, C. Parsons, D. Finan, and

S. Borkar. Area-efficient linear regulator with ultra-fast load
regulation. Solid-State Circuits, IEEE Journal of, 40, 2005.

[17] H. Homayoun, K.F. Li, and S. Rafatirad. Thread scheduling based
on low-quality instruction prediction for simultaneous
multithreaded processors. IEEE-NEWCAS Conference, 2005.

[18] Chenming Hu. Low-voltage cmos device scaling. Solid-State

Circuits Conference, 1994.
[19] Anoop Iyer and Diana Marculescu. Power and performance

evaluation of globally asynchronous locally synchronous
processors. ACM SIGARCH Computer Architecture News, 30,
2002.

[20] R. Jain, C. Hughes, and S. Adve. Soft real-time scheduling on
simultaneous multithreaded processors. In 23rd IEEE

International Real-Time Systems Symposium, 2002.
[21] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way

multithreaded sparc processor. Micro, IEEE, 25, 2005.
[22] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy

Ranganathan, and Dean M. Tullsen. Single-isa heterogeneous
multi-core architectures: The potential for processor power
reduction. In MICRO 36: Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture, page
81, Washington, DC, USA, 2003. IEEE Computer Society.

[23] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,
Norman P. Jouppi, and Keith I. Farkas. Single-isa heterogeneous
multi-core architectures for multithreaded workload performance.
Proceedings of the 31st annual international symposium on

Computer architecture, Washington, DC, USA, 2004. IEEE
Computer Society.

[24] J. Li, J.F. Martinez, and M.C. Huang. The thrifty barrier: energy-
aware synchronization in shared-memory multiprocessors. High

Performance Computer Architecture, 2004.
[25] C. Liu, A. Sivasubramaniam, M. Kandemir, and M.J. Irwin.

Exploiting barriers to optimize power consumption of cmps.
Parallel and Distributed Processing Symposium, 2005.

[26] Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage
scaling algorithms with pace. ACM SIGMETRICS, 2001.

[27] G Magklis, P. Chaparro, J. Gonzalez, and A. Gonzalez.
Independent front-end and back-end dynamic voltage scaling for
a gals microarchitecture. ISLPED, 2006.

[28] G Magklis, J. Gonzalez, and A. Gonzalez. Frontend frequency-
voltage adaptation for optimal energy-delay2. International

Conference on Computer Design, 2004.
[29] Pedro Marcuello, Antonio Gonzlez, and Jordi Tubella.

Speculative multithreaded processors. Supercomputing, 1998.
[30] T. Olsson, P. Nilsson, T. Meincke, A. Hemam, and M. Torkelson.

A digitally controlled low-power clock multiplier for globally
asynchronous locally synchronous designs. ISCAS 2000 Geneva.

[31] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K.
Chang. The case for a single-chip multiprocessor. ACM SIGOPS

Operating Systems Review, 30, 1996.
[32] B. Robatmili, N. Yazdani, S. Sardashti, and M. Nourani. Thread-

sensitive instruction issue for smt processors. Computer

Architecture Letters, IEEE, 3, 2004.
[33] G. Semeraro, D. H. Albonesi, G. Magklis, M. L. Scott, S.

Dropsho, and S. Dwarkadas. Hiding synchronization delays in a
gals processor microarchitecture. Proceedings of the 10th

International Symposium on Asynchronous Circuits and Systems,
2004.

[34] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy,
Jack L. Lo, and Rebecca L. Stamm. Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multithreading

processor. ACM SIGARCH Computer Architecture News, 24,
1996.

[35] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang.
Softsdv: A pre-silicon software development environment for the
ia-64 architecture. Intel Technology Journal, 3(4), 1999.

[36] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark. Voltage and
frequency control with adaptive reaction time in multiple-clock-
domain processors. High-Performance Computer Architecture,
2005.

[37] W. Zhu, J. del Cuvillo, and G. R. Gao. Performance
characteristics of openmp language constructs on a many-core-on-
a-chip architecuture. The 2nd International Workshop on

OpenMP (IWOMP), 2006.

