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ABSTRACT 

We present a novel mechanism, called meeting point thread 
characterization, to dynamically detect critical threads in a parallel 
region. We define the critical thread the one with the longest 
completion time in the parallel region. Knowing the criticality of 
each thread has many potential applications. In this work, we 
propose two applications:  thread delaying for multi-core systems 
and thread balancing for simultaneous multi-threaded (SMT) 
cores. Thread delaying saves energy consumptions by running the 
core containing the critical thread at maximum frequency while 
scaling down the frequency and voltage of the cores containing 
non-critical threads. Thread balancing improves overall 
performance by giving higher priority to the critical thread in the 
issue queue of an SMT core.  Our experiments on a detailed 
microprocessor simulator with the Recognition, Mining, and 
Synthesis applications from Intel research laboratory reveal that 
thread delaying can achieve energy savings up to more than 40% 
with negligible performance loss. Thread balancing can improve 
performance from 1% to 20%. 

Categories and Subject Descriptors 

C.1.2 [Computer Systems Organization]: Multiple Data Stream 
Architectures – parallel processors.  

General Terms 

Performance, Design 

Keywords 

Meeting point thread characterization, Critical threads, Thread 
delaying, Thread balancing, Multi-threaded Application, 
Microarchitecture, Low-power, Energy-aware 

1. INTRODUCTION 
In recent years, chip multiprocessors (CMPs) [31] have become 
increasingly important and common in the computer industry 
[3][11][21].  The design of CMP processors takes advantage of 
thread-level parallelism (TLP) to address the problem of limited 
instruction-level parallelism (ILP) in serial applications.   
Moreover, it is believed that future applications will be   compute-

intensive and highly parallel [10].  For example, the Intel Tera-
scale research [11] aims at integrating tens or hundreds of cores in 
a future microprocessor, to run highly parallel workloads such as 
Recognition, Mining, and Synthesis (RMS) applications [10]. 

High energy consumption will be one of the major hurdles in the 
design of such systems.  The workload imbalance among cores in 
a CMP chip is one source of energy inefficiency. For example, in 
a fork-join parallel execution model such as OpenMP [2], a 
parallel loop usually has a barrier at the joint point of the loop that 
synchronizes all threads. In the best case, all cores reach this 
barrier at the same time. However, in a normal situation, some 
threads reach the barrier earlier than others and spend a large 
amount of time waiting for slower ones. Fast threads have been 
executed at the maximum possible speed and power consumption, 
which leads to energy inefficiency. In order to reduce energy, one 
possible solution is to put fast threads to sleep as soon as they 
arrive to the barrier and then shut down the core. This is a feasible 
approach if the waiting time is long enough so that the energy 
saved in sleep mode pays off the energy/performance wasted by 
putting the cores to sleep and waking them up. We propose an 
alternative solution in this paper. If a thread is known beforehand 
to reach the synchronization point early, the voltage and 
frequency of the core running that thread could be reduced 
dynamically without compromising performance.  

As we will demonstrate later in this work, dynamic voltage and 
frequency scaling (DVFS) achieves greater energy reduction 
compared to putting a core to sleep due to the cubic relationship 
of power to voltage/frequency. One of the main challenges in this 
approach is the detection of the critical and non-critical threads. 
We use the slack as a proxy to know the criticality level of a 
parallel thread. We define slack for a parallel thread as the amount 
of time a thread can be delayed with no impact on final 
performance. The critical thread is the one with zero slack, which 
means that if it gets delayed, the overall execution time is 
increased. Non-critical threads are those that could be delayed 
with no impact on performance. The level of criticality is 
determined by the amount of slack that each thread has. Detecting 
such critical threads and the level of criticality is challenging, 
since one could not know a priori whether a thread is going to be 
the last one to reach the barrier. 

In this paper, we present a novel mechanism called meeting point 

thread characterization that identifies the critical thread of a 
single multi-threaded application as well as the amount of the 
slacks of non-critical threads. To do that, each thread has a 
counter to accumulate the number of iterations executed for the 
parallel loop. At specific intervals of time, all threads broadcast 
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this information so they can know the number of iterations being 
executed by each one of them. With that information, the slack of 
a thread can be estimated as the difference between its own 
iteration counter and the counter of the slowest one. We believe 
that the meeting point mechanism is a powerful tool that enables 
many interesting optimizations. In this work, we focus on two of 
such optimizations that dynamically adapt the hardware resources 
to the application behavior: thread delaying and thread 

balancing. 

The goal of thread delaying is to reduce overall energy 
consumption by dynamically scaling down the voltage and the 
frequency of the cores executing non-critical threads. At specific 
intervals of time, each core utilizes meeting point thread 
characterization to estimate the slack of the parallel thread. Then, 
it computes the voltage/frequency for the next interval of time so 
that the energy is minimized but the expected arrival time to the 
barrier does not exceed that of the current critical thread. 

Thread balancing is a hardware scheme that works for 
simultaneous multithreading processors running parallel threads. 
These architectures usually implement fair policies regarding 
shared resources. For instance, it is common to share the issue 
slots in such a way that, if both threads have ready instructions, 
both are allowed to issue the same number of them. The goal of 
thread balancing is to reduce the overall execution time by 
speeding up the critical thread. To do that, the critical thread is 
given priority in the utilization of the issue slots. This approach is 
radically different from the issue policies already proposed in the 
literature [5][12][17][20][32][34].  Previous works assume that 
the threads are from different applications, and the proposed issue 
algorithms try to maximize bandwidth utilization as well as 
fairness.  However, our approach is completely different because 
threads come from the same parallel application. The only way to 
improve overall performance is to accelerate the critical thread.  
Therefore, in our approach, higher priority is given to the critical 
thread. 

We have evaluated thread delaying and thread balancing in cycle-
accurate CMP and SMT simulators respectively. Our experiments 
with several Recognition, Mining and Synthesis (RMS) workloads 
show that thread delaying on a CMP system can greatly reduce 
energy (from 4% to 44%) with negligible performance penalty. 
For example, for PageRank, which represents an important 
category of emerging applications such as Google's web search 
engine, thread delaying can achieve more than 40% energy 
savings without any performance loss on an eight-core system. It 
is important to note that the baseline is very aggressive, since we 

assume that, once a thread arrives to a barrier, its core is set 
instantaneously to deep sleep state [13], consuming zero power.  
Moreover, the experiments on an SMT in-order core show that 
our thread balancing mechanism can improve performance for 
various RMS workloads, from 1% to 20%. 

In the rest of paper, we first describe the mechanism of identifying 
critical threads in parallel applications in Section 2. The thread 
delaying and thread balancing techniques are explained in detail 
in Sections 3 and 4, respectively. Section 5 describes our 
simulation framework and shows the performance results of 
thread delaying and thread balancing.  We also discuss the related 
work in Section 6.  The paper concludes in Section 7. 

 

2. IDENTIFICATION OF CRITICAL 

THREADS 
The meeting point thread characterization aims at detecting 
dynamically the workload imbalance of parallel applications. 
Figure 1 demonstrates that even very regular parallel programs 
may exhibit workload imbalance during execution.  Figure 1(a) 
shows the main parallel loop from PageRank-lz77 (a RMS 
workload). The code is already written in such a way that the 
input data set is partitioned to achieve workload balance. 
However, Figure 1 (b) shows that workload imbalance still exists 
on a two-core system (each core contains one thread).  The x-axis 
in Figure 1 (b) represents the number of iterations of the 
outermost loop that each core executes. The y-axis represents the 
cumulative execution time of this parallel loop for each core.  We 
can see that core 1 is slower than core 0. In this particular case, 
the reason is that core 1 suffers many more cache misses than core 
0 does. Other reasons for workload imbalance could be that 
parallel threads follow different control path in the parallel loop, 
or that the application exploits task-level parallel, rather than loop 
level. We refer to this slow thread as the critical thread because 
the other threads must wait for it due to the barrier at the end of 
the parallel section.  

We propose to identify the critical thread dynamically during 
program execution by checking the workload balance at 
intermediate points of a parallel loop. We call these check points 
meeting points. A natural location of a meeting point is at the 
back edge of a parallel loop, because the back edge of a loop is 
visited many times by all threads at runtime. It should be noted 
that the total number of times each thread visits the meeting point 
should be roughly the same, which means that the total amount of 
work assigned to each thread should be the same.  Otherwise, the 

 

 
Figure 1 A motivational example. (a) A parallelized loop from PageRank (lz77 method) (b) Performance results for two cores (c) 

Insertion of a meeting point 

0

20

40

60

80

100

120

1 11 21 31 41 51 61 71 81 91 101

T
im

e
 (

in
 m

il
li

s
e

c
o

n
d

s
)

Number of Iterations

CPU0 CPU1



critical thread cannot be identified based on the number of times 
the threads visit a meeting point. In the case of the OpenMP 
programming model [2], this assumption is usually true if static 
scheduling is applied.   

In the OpenMP programming model, if parallel codes are 
extremely irregular, dynamic scheduling can be used.  Our critical 
thread identification is not suitable for this scenario. However, 
dynamic scheduling has large runtime overheads and static 
scheduling is recommended as the first scheduling option, 
especially when the number of threads is increased [37]. The 
decision whether to use static or dynamic scheduling in a parallel 
is out of the scope of this paper. 

The process of our meeting point thread characterization normally 
consists of the following three steps. 

• Insertion of meeting points: One candidate for a meeting 
point is the place in a parallel region that is visited by all 
threads many times during parallel execution.  For example, 
in Figure 1(c), we have a program using the parallel for 
construct of the OpenMP programming model. As the code is 
regular, it is easy to see that the last statement of the 
outermost loop (or the parallelized loop) satisfies our criteria. 

 
The insertion of a meeting point can be done by the 
hardware, the compiler or the programmer. A hardware-only 
approach, although it is completely transparent and maintains 
binary compatibility, it requires extra hardware structure to 
detect a suitable meeting point among repeated instructions 
in a parallel execution (hardware schemes for backward loop 
detection could be used [29]). 

 

• Identification of critical threads: Every time a core decodes 
an instruction encoding a meeting point, a thread-private 
counter (located in the processor frontend) is incremented.  
This counter is a proxy for the aforementioned slack.  The 
most critical thread is the one with the smallest counter, and 
the slack of a thread can be estimated as the difference of its 
counter and the counter of the slowest counter. 

 
Depending on the usage of our meeting point thread 
characterization, a software only identification mechanism 
could be adopted.  For example, the application is rewritten 
so that it includes an array of counters indexed by thread 
identifiers.  Each thread increments its own counter every 
time it arrives the end of the parallel section. 

 
In this work, the user inserts the meeting point by means of a 
pragma and the counters are implemented in hardware.  The 
compiler translates the pragma into a new instruction that, 
once decoded, increments the private hardware counter of the 
thread. 

 

• Usage of criticality information:  The usage of thread 
criticality (or slack estimation) depends on what 
optimizations we want to apply.  For example, we will 
demonstrate two applications in later sections.  One, called 
thread delaying, minimizes energy consumption by slowing 
down the fast threads. The other application, called thread 
balancing, optimizes performance by accelerating the slowest 
thread.  

In the next sections, we will describe two specific applications of 
the meeting point technique. More importantly, we will show how 
criticality information can be effectively used for different 
purposes, either for energy savings or for performance speedups.  

3. THREAD DELAYING 
As we discussed in Section 2, parallel applications exhibit 
workload imbalance among threads at runtime. In a fork-join 
parallel programming model such as OpenMP, workload 
imbalance means that non-critical threads finish their jobs earlier 
than their critical counterparts do.  Since there is a barrier at the 
join point of a parallelized loop, non-critical threads will have to 
wait (doing nothing) for the critical thread to finish its work, 
before they can proceed. In modern systems, the CPUs, of the 
non-critical threads, can be put into deep sleep mode, which 
consumes almost zero energy [13].  However, this is not the most 
energy-efficient approach to deal with workload imbalance.  Due 
to the cubic relationship of power to frequency/voltage, it is better 
to make non-critical threads run at a lower frequency/voltage level 
such that all threads arrive at the barrier at the same time. 

 

3.1 Energy Savings due to DVFS 
Assume that the critical thread finishes its work in T time units, 

and a non-critical thread can finish its work in only 0.7T time 

units.  If the non-critical thread works at full speed for 0.7T time 

units and then it is put to deep sleep mode with zero energy 
consumption for the rest 0.3T time units, the total consumption 

from this non-critical thread is given by the following formula: 

TfVcE ddf 7.0max

2

max
×××=  

Alternatively, the core running the non-critical thread can have 
its frequency scaled-down to 0.7fmax (and the voltage to 

0.875Vdd, see Figure 2 (b)) and it would meet the barrier on time 

anyway. In this case, the total consumption for the non-critical 
thread is as follows: 

max
765.0)7.0()875.0( max
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From the above deductions, we can clearly see the advantage of 
doing DVFS on non-critical threads. There are two main 
challenges by applying DVFS in this scenario.  First, we need a 
way to identify non-critical and critical threads at runtime.  
Second, we need to select appropriate frequency and voltage 
levels for non-critical threads.  In this section, we will describe a 
new algorithm, called thread delaying, which solves these two 
problems by combing the meeting point thread characterization 
technique and an estimation formula for predicting the 
frequency/voltage levels for each thread. 

 

3.2 A CMP Microarchitecture with Multiple 

Clock Domains 
Figure 2(a) shows the baseline of our CMP microarchitecture.  
Our CMP processor consists of many Intel64/IA32 cores, and 
each core is a single-threaded in-order core (with bandwidth of 2 
instructions per cycle) due to power and temperature constraints.  
Every core contains a private first-level instruction cache, a 
private first-level data cache and a private second-level unified 
cache.  A shared third-level cache (L3) is connected to all cores 
through a bus network.  A MESI cache protocol is used to keep 
data coherent (further parameters of the microarchitecture will be 
detailed in the Section 5). 



Each core with associated L1 and L2 caches belongs to a separate 
clock domain. Moreover, the unified L3 cache with the 
interconnect forms a separate clock domain as well.  Each clock 
domain has its own local clock network that receives as input a 
reference clock signal and distributes it to all the circuits of the 
domain.  In our design, we assume that the phase relationship (i.e., 
the skew) between the domain reference clocks can be arbitrary.  
This allows firstly to run each domain at a different frequency and 
secondly to adapt the frequency of each domain dynamically and 
independently of the others. Since domains operate 
asynchronously to each other, interdomain communication must 
be synchronized correctly to avoid meta-stability [7].  We use the 
mixed-clock FIFO design of Chelcea and Nowick to communicate 
values safely between domains [9]. 

Each one of the microprocessor domains can operate at a distinct 
voltage and frequency. Moreover, voltage and frequency can be 
changed dynamically and independently for each domain. We 
assume domains can execute through voltage changes, similar to 
previous studies [19][28][33][36] and some commercial designs 
[15].  We assume a limited range of voltages and frequencies, as 
shown in Figure 2(b). 

Having so few levels allows us to switch between them very 
quickly. We assume a single, external PLL for the whole chip. 
Each domain includes an on-chip digital clock multiplier 
connected to the external PLL [14][30].  Frequency changes per 
domain are effected by changing the multiplication factor of the 
domain clock multiplier; the external PLL frequency is fixed. This 
allows extremely fast frequency changes, but it also means that (a) 
only a few frequency levels are available, and (b) all frequencies 
must be multiples of a base frequency. 

 

3.3 Implementation of Thread Delaying 
In order to implement thread delaying, each core contains two 
tables shown in Figure 2(c) to handle meeting points (recall that 
the user inserts meeting points, which are represented by special 
instructions): 

• MP-COUNTER-TABLE has as many entries as number of 

cores in the processor. Each entry contains a 32-bit counter 
that keeps track of the number of times each core has reached 
the given meeting point. This table is consistent among all 
cores in the system.  

 

• HISTORY-TABLE includes an entry for each possible 

frequency level.  Each entry contains a two-bit up-down 
saturating counter used to determine the next frequency the 
core must run at. The table is initialized so that the entry 
corresponding to the maximum frequency level has the 
highest value (i.e. all cores start running at maximum 
frequency). 

When a core decodes a meeting point, the counter corresponding 
to its assigned thread in the MP-COUNTER-TABLE is 

incremented by 1. Every 10 execution of the meeting point 
instruction, the core broadcasts the value of the counter to the rest 
of the cores (ideally, one would like to broadcast that information 
at every meeting point visit; however the interconnection may be 
overloaded). This is done by means of a special network message. 
When the network interface of a core receives such message, the 
MP-COUNTER-TABLE is accessed to increment by 10 the 

counter associated with the thread identifier of the sender.  We 
choose 10 since it gives enough precision to the thread delaying 
with no impact on the interconnect performance. 

Each core manages its own frequency and voltage independently, 
based on the value of the counter associated to its local thread in 
the MP-COUNTER-TABLE and the lowest value of all counters in 

the table (which corresponds to the critical thread, since it has 
executed the lowest number of iterations of the parallel loop). 
Therefore, we can say that the difference between both counters is 
an estimation of the slack of a thread.  

Every 10 executions of the meeting point instruction, the 
processor frontend stops fetching instructions and inserts a 
microcode (stored in a local ROM) to execute the thread delaying 
control algorithm. This microcode has dozens of instructions and 
its overhead has no impact on final performance. That microcode 
has as input both the MP-COUNTER-TABLE and the HISTORY-

TABLE and its output is the frequency fi for the next interval.  

The microcode first computes the frequency that better matches 
the current slack using the following formula: 

FREQUENCYMAX
C

C
f

i

critical
temp _×=  

)(___ tempi ffrequencyvalidclosestsearchf =  

where Ccritical and Ci are the counters from the critical thread 

and non-critical thread i, respectively. After ftemp is obtained, fi 

is calculated by finding the minimum frequency supported in the 

 
 

 
Figure 2 (a) Our CMP microarchitecture (b) Voltage-Frequency Table (c) Two tables are required to implement thread delaying 



system, whose value is equal or greater to ftemp.  In our current 

model, voltage scaling is not implemented as a continuous 
function but a discrete one with 13 frequency levels 
[8][14][27][30]. 
Once the frequency level for fi is obtained, the HISTORY-

TABLE is updated properly (each entry contains a two bit up-

down saturating counter). If the frequency level for fi is k, entry 

k is incremented and every other entry is decremented. Finally, 

the frequency chosen by the microcode for the next interval is the 
one with the largest counter in the HISTORY-TABLE. 

Note that the purpose of HISTORY-TABLE is used to reduce the 

effect of temporal noise in the estimation of the slack, which may 
drive to the utilization of frequencies that are too aggressive (too 
low).  This may cause a non-critical thread to become a critical 
one.  

We have adopted the solution of inserting microcode in the 
processor to compute the next frequency since this computation is 
not done very often and the overall performance is not affected. If 
this computation is critical, it could be done by pure hardware by 
adding the required functional units and control in the processor 
frontend.  However, it is very difficult to justify the area increase 
to perform just this task and nothing else. 

 

4. THREAD BALANCING 
In Section 3, we have described a method to reduce energy 
consumption by slowing down non-critical threads. In this section, 
we focus on speeding up a parallel application running more than 
one thread on a single 2-way SMT core by accelerating the critical 
thread.  

In an SMT core, the issue bandwidth is limited and shared among 
threads.  There are a lot of issue policies in the literature 
[12][17][20][32][34], most of which assume that threads come 
from different applications (multi-programmed workloads). The 
baseline issue logic we have implemented works as follow (our 
microarchitecture is two-way in-order SMT with an issue 
bandwidth of two instructions per cycle): if both threads have 
ready instructions, each one of them is allowed to issue 1 
instruction. If one thread has ready instructions and the other does 
not, the one with ready instruction can issue up to two per cycle.   
This algorithm tries to maximize bandwidth and fairness. 

However, if both threads belong to the same parallel application, 
fairness may not be the best option. After all, what we want is to 
speed up the parallel application and not a single thread. In this 
case, it is very important to identify the critical thread and give to 
it more priority in the issue logic: that is the purpose of our thread 
balancing mechanism. 

Figure 3 shows the implementation of thread balancing in 
hardware. Note that the scheme we propose regarding thread 
balancing works at the core level. Given two threads in a SMT 
core, it determines which is the critical one and gives more 
priority to this thread in the issue logic. 

The hardware required to support thread balancing is simpler than 
thread delaying. Two hardware counters located in the processor 
frontend suffice to detect the critical thread between two threads 
running in the same core.  

Every time the processor decodes a meeting point (inserted by the 
user, as aforementioned) the counter associated with that thread is 
increased. Every 10 executions of the meeting point instruction, 
both counters are compared. If the difference is greater than a 
given delta, the thread with the lowest counter value is designated 
as the critical thread, and that information is forwarded to the 
issue logic in the core.  

The issue logic implements the fair policy detailed at the 
beginning of the section. However, if the frontend informs the 
issue logic that a given thread is critical, the issue policy is 
changed. If the critical thread has two ready instructions, it is 
allowed to issue both instructions regardless of the number of 
ready instructions the non-critical thread has.  If it does not have 
two ready instructions, the base policy is applied. 

 Our thread balancing mechanism has potential speedup benefits 
when each thread follows different control paths from the same 
parallelized region.  The critical thread (or the slowest thread) has 
more work to perform before reaching the meeting point than the 
non-critical thread has.  In other words, when the critical thread is 
not slowed down by cache misses, thread balancing can speed up 
the whole application on an SMT core. 

 

5. EXPERIMENTS 
The simulation framework used in our study contains a full-
system functional simulator and a performance simulator. 
SoftSDV [35] for Intel64/IA32 processors is our functional 
simulator, and it can simulate not only multithreaded primitives 
including locks and synchronization operations but also shared 
memory and events.  Therefore, it is ideal to simulate our 
cooperative workload at the functional level.  Redhat 3.0 EL is 
booted as the guest operating system in SoftSDV.   In all of our 
simulations, only less than 1% of simulated instructions are from 
the operating system, and thus the impact of the operating system 
is minimal.   

 

 
Figure 3 Implementation of Thread Balancing Logic 

Table 1 The architectural parameters 

Process Model In-order 

Intel64/IA32 

L1 Instruction Cache (private) 32KB, 4-ways 

L1 Data Cache (private) 32KB, 8-ways 

L2 Cache (unified and private) 512KB, 16-ways 

L3 Cache (unified and shared) 
8MB, 16-ways 

Network Protocol MESI 



Benchmark Application 

Gauss Financial Analysis 

PageRank (sparse) Search Engine 

PageRank (lz77) Search Engine 

Summarization Text Data Mining 

FIMI Data Mining 

Rsearch Bioinformatics 

SVM Bioinformatics 

The functional simulator feeds Intel64/IA32 instructions into the 
performance simulator, which provides a cycle accurate 
simulation.  The performance simulator also incorporates a power 
model based on activity counters and energy per access, similar to 
Wattch [4].  In our evaluation, the energy includes dynamic 
energy, idle energy and leakage energy.  The baseline assumes 
that every core is running at full speed and stops when it is 
completed.  Once the core stops, it consumes zero power.   

Meeting point thread characterization, thread delaying and thread 
balancing are implemented in our cycle-accurate performance 
simulator for a CMP or SMT system. Since thread delaying and 
thread balancing pursue different purposes and their effects are 
orthogonal, both techniques are evaluated independently.  Thread 
delaying is evaluated for multi-core systems where each core 
contains only one thread while thread balancing is evaluated for a 
single SMT core (each core contains two threads). The simple in-
order core is low power and is suitable for a many-core chip such 
as Sun’s Niagara [21]. The detailed architectural parameters are 
shown in Table 1. 

 

5.1 Benchmarks 
The Recognition, Mining, and Synthesis (RMS) workloads from 
Intel are a set of emerging multi-threaded applications for Tera-
scale systems [3][10]. The RMS workload includes highly 
compute-intensive and highly parallel applications including 
computer vision, data mining on text and media, bio-informatics 
and physical simulation. 

From the RMS benchmark suite, we have chosen those that 
clearly show workload imbalance and one benchmark called 
Gauss, which is relatively balanced workload. Gauss is chosen for 
testing the robustness of thread delaying algorithm. These 
benchmarks are depicted in Table 2. Gauss is a Gauss-Seidel 
iterative solver of a system of partial differential equations. The 
kernel of PageRank performs multiple matrix multiplications on a 
large and sparse matrix. The matrix can be stored in memory 
either in a native sparse or a compressed way. The compression is 
a simplified LZ77-based method. Summarization is a text data 
mining workload, which finds and ranks documents in a web 
search engine. FIMI analyzes a set of data transactions, 
determining the rules related to the data.  Both Rsearch and SVM 
are used in bioinformatics to search in a database for both a 
homologous RNA and a disease gene pattern respectively.   

All of these workloads are already parallelized by using either 
pthreads or OpenMP to achieve maximal scalability. The 
benchmarks were developed by expert programmers and 
parallelized by hand (i.e. OpenMP primitives are inserted by the 

programmer). However, they still exhibit different degrees of 
workload imbalance and therefore inefficiency in the energy 
consumption.  

The simulated section for each benchmark is chosen by first 
profiling its single-threaded counterpart and then selecting the 
hottest region, which normally is a parallel loop. For all of the 
benchmarks except FIMI, the selected parallel regions represent 
almost 99% of total execution time.  FIMI has 28% coverage. In 
our simulation, each thread runs a fixed number of iterations (say 
N) and when the slowest thread has executed N iterations, the 
simulation is finished.  The value of N varies depending on the 
benchmark. At least 100 million instructions (sum of instructions 
from all threads) are executed before a simulation is terminated. 

 

5.2 Performance Results for Thread Delaying 
Figure 4 shows that thread delaying achieves significant energy 
reduction for selected RMS benchmarks under three different 
hardware configurations: two, four (We had difficulty to run the 
simulation for four cores PageRank (lz77). So this configuration is 
excluded from our experiment.) and eight cores, ranging from 4% 
to 44% energy savings. In this experiment, each core executes one 
thread.  

For most configurations, there is little performance loss, ranging 
from 1% to 2%. Moreover, there is even a case when thread 
delaying obtains speedups.  Since all cores except the one 
containing the critical thread have their frequencies and voltages 
reduced, their cache misses are more spread out over time, 
allowing the critical thread to have more priority in the 
interconnection.  This side effect of per-core DVFS accelerates 
the critical thread and thus reduces the total execution time. 

 

5.3 Analysis of Thread Delaying Performance 
The first question that we must answer is where such energy 
savings come from.  For example, PageRank (sparse) on eight 
cores achieves more than 40% energy savings. Figure 5 shows the 
runtime behavior of PageRank (sparse) before and after thread 
delaying. The x-axis represents the number of iterations of the 
parallelized loop that each core executes. The y-axis of Figure 
5(a) and (b) represents the cumulative execution time of the loop 
iterations in milliseconds, whereas the y-axis in Figure 5(c) 
represents the frequency of the core in GHz. We can see that there 
are large gaps between the critical thread (cpu0) and the rest of the 
threads.  All non-critical threads except the one in cpu3 stay at the 
lowest frequency after iteration 6600.  For cpu3, it stays at the 
lowest frequency until iteration 12200 and increases the frequency 
afterwards, because the gap between cpu0 and cpu3 is getting 
smaller.  It is obvious that the big energy savings come from the 
large frequency decreases on non-critical threads. Similar 

Table 2 The RMS Benchmarks 

2p 4p 8p 2p 8p 2p 4p 8p 2p 4p 8p

Gauss PageRank (lz77) PageRank (sparse) Summarization

execution time 0.99 1.00 1.01 1.00 1.02 1.01 1.00 0.98 1.01 1.01 1.02

energy consumption 0.96 0.94 0.93 0.94 0.90 0.90 0.78 0.56 0.94 0.88 0.74
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Figure 4 Performance Results for Thread Delaying 



observations are also obtained for the PageRank (sparse)'s 4p 
configuration and Summarization's 4p and 8p configurations. 

The effectiveness of thread delaying depends on whether the 
algorithm can adapt quickly at runtime; in other words, the 
algorithm chooses frequencies in a way that reflects the runtime 
behavior of the application.  To demonstrate this, we use the 
example in Figure 6 (the same example used in Figure 1).  In 
Figure 6 between iteration 10 and iteration 40, the time gap 
becomes smaller and smaller and our algorithm increments the 
frequency of the non-critical thread slowly.  By doing that, the 
non-critical thread can avoid staying at a low frequency level for 
too long and becoming a false critical thread. If the non-critical 
thread became a false critical thread, there would be performance 
penalty at the end.  At iteration 65, there is a cache miss with long 
latency, which results in a time difference between two threads 
again. Our algorithm immediately observes this change and starts 
to decrement the frequency level of the non-critical thread.  The 
frequency of cpu1 (the critical thread) is slightly scaled down 
from 4 GHz to 3.75 GHz (see iterations between iterations 60-65).  
However, our mechanism can quickly correct the mistake once 
there is a time gap between these two threads. After iteration 65, 
the frequency of critical thread is back to the maximum.  

We have demonstrated that large energy savings can be obtained 
in imbalanced workloads.  Moreover, our thread delaying 

algorithm can also save a reasonable amount of energy for 
relatively balanced workloads.  For example, Gauss is a balanced 
workload and it is hard to distinguish which threads are critical or 
non-critical (due to space constraints, we are not showing the 
graph).  However, we still can achieve 6% energy savings without 
any performance penalty.    

From above observations, we can see that our thread delaying is 
robust and effective.  It can maximize the energy savings with 
negligible performance loss. 

 

5.4 Performance Results for Thread 

Balancing 
Figure 7 shows the performance benefit of our thread balancing 
over the baseline for four RMS workloads.  Performance benefit 
ranges from 1% to 20%.  PageRank (sparse) shows huge 
imbalance during parallel execution and thus we have large 
amount of energy savings from thread delaying.  However, thread 
balancing cannot give much performance improvement to 
PageRank.  The reason is because of cache misses.  Prioritizing 
the issue of the slow thread results in a shift in pipeline stalls from 
the issue stage to the backend of the in-order core because this 
benchmark suffers from a significant amount of load misses. 

 

 
Figure 5 PageRank (sparse) on eight cores (a) runtime behavior of the baseline (b) runtime behavior after applying thread 

delaying (c) corresponding frequency level. 

 

 

Figure 6 PageRank(lz77) on two cores (a) runtime behavior of the baseline (b) runtime behavior after applying thread delaying 

(c) corresponding frequency level. 

 



Therefore the performance of the slow thread is not significantly 
improved.  

Overall, the performance benefit correlates with imbalance levels. 
For example, in FIMI, there is a large level of thread imbalance 
and a corresponding amount of performance improvement by 
administering issue priority to the slower thread. We begin our 
analysis by determining the efficacy of this algorithm. We first 
present the opportunity, or the percentage of cycles that both 
threads have available instructions that are ready to be issued and 
a decision must be made between the threads. If the slow thread 
does not have available instructions to issue, then shifting priority 
to the slow thread will provide no benefit. FIMI and SVM have 
the most opportunity to give priority to the slow threads.  Figure 7 
also shows the correction of imbalance, which is defined to the 
percentage of the number of iterations that are caught up by the 
slow thread with our thread balancing method.  As can be seen 
FIMI and SVM have 100% imbalance correction with this 
algorithm and are operating in an ideal situation. 

 

6. RELATED WORK 
There are some previous works related to thread delaying. Liu et 
al. [25] proposed an algorithm, which tracks the time spent by the 
faster cores waiting for the slower cores at the end of a parallel 
loop and predicts the DVFS level of each core for the next 
execution of the same parallel loop.  The main difference between 
our thread delaying approach and the one proposed by Liu et al. 
[25] is that our approach runs at a finer grain, adapting to run-time 
behavior inside the execution of the parallel loop.  Following from 
this key difference, our mechanism can handle the cases that their 
mechanism cannot handle because we do not require multiple 
instances of a loop.  It is not because the loop is insignificant, but 
because the parallelized section (not loop) is only executed once 
in the whole application.  For example, in Summarization, the 
parallelized section looks as follows: 

 

This parallelized section is only executed once but it is the hottest 
one (99% of total execution).  Each thread will execute loop 
iterations many times.  Our approach can handle this case, but 
their mechanism [25] cannot.  Additionally our meeting point 

algorithm provides an opportunity to apply thread balancing on an 
SMT core.  The scheme in [25] does not provide this opportunity. 

The second work related to our work is called the thrifty barrier 
[24].  The thrifty barrier uses the idleness at the barrier to move 
the faster cores to a low power mode.   It has been shown that the 
DVFS approach outperforms the thrifty barrier approach [25]. 
Furthermore, our baseline can be considered as an aggressive 
version of thrifty barrier since, when a thread arrives to a barrier, 
it consumes zero power. 

Thread delaying is motivated by the workload imbalance among 
parallel threads.  This type of performance asymmetry due to 
workload imbalance is different from the performance asymmetry 
discussed in the literature [1][22][23]. They created a 
performance-asymmetric multi-core system, including high-
performance complex core and low-performance simple cores, in 
such a way that the complex cores provide good serial 
performance and simple cores provide high throughput.  However, 
in our case, the asymmetry comes from the workload imbalance 
among parallel threads from the same parallel region.  As the 
workload imbalance is mainly due to cache misses from our 
experiments, many simple cores are enough for highly parallel 
and computationally intensive applications such as RMS and 
complex and powerful cores does not help to speed up the 
performance or save energy in this case. Therefore we are 
addressing the problem different from [1][22][23]. 

The DVFS algorithm can also be implemented at the operating 
system level.  Lorch and Smith [26] proposed a scheduling 
algorithm, which schedules a task in such a way that the 
frequency/voltage of a CPU is scaled down to save energy and 
meet the deadline of the task.  There are three big differences 
between this work and our work.  First, the deadline of a task is 
not known, and it is decided manually. Our meeting point thread 
characterization can select the critical thread dynamically and the 
critical thread actually determines the deadline of the whole 
parallel execution.  Second, the workloads they use are mostly 
interactive benchmarks such as word processing and spread sheet, 
which are very different from our highly parallel RMS 
applications.  Third, their algorithm is an OS scheduling algorithm 
for only one CPU, whereas our algorithms are lightweight enough 
to be implemented in hardware targeting many-core system. 

Our work on thread balancing is unique. We are not aware of any 
research that is similar to this new mechanism. There has been an 
abundance of research focusing on thread prioritization 
[6][12][17][20][32][34].  However, the focus is on prioritizing 
threads that are ready to execute, i.e. the fast threads. Prior art 
does not consider threads that are imbalanced from the same 
application. Our goal is the opposite, trying to give priority to the 

 

 
Figure 7 Performance Results for Thread Balancing 
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#pragma omp parallel 

{  

while (n < Niterations) { 

    #pragma omp barrier 
    {} 

   // a lot of codes 
  } 

} 



slower threads, noting that the slow threads dictate the overall 
performance of the application. 

 

7. CONCLUSION 
In this paper, we first present a novel mechanism called meeting 
point thread characterization, which dynamically estimates the 
criticality of the threads in a parallel execution. Knowing the 
criticality of each thread can be used in many different scenarios. 
In particular, we designed two novel schemes called thread 
delaying and thread balancing by using the thread criticality 
information in order to save energy and improve performance, 
respectively.  

Thread Delaying combines per-core DVFS and meeting point 
thread characterization together to reduce energy consumptions on 
non-critical threads. Our experiments with several RMS 
applications have shown that this thread delaying mechanism is 
very effective. For example, for PageRank, which represents an 
important category of emerging applications such as Google's web 
search engine, the proposed mechanism can achieve up to more 
than 40% energy savings without any performance loss for four 
and eight-core configurations. 

Thread balancing gives higher priority in the issue queue of an 
SMT core to the critical thread and by doing so, the overall 
performance of parallel regions can be improved.  Our 
experiments have shown that our thread balancing mechanism can 
improve performance for various RMS workloads, ranging from 
1% to 20%. 
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