
R3TOS: A Novel Reliable Reconfigurable
Real-Time Operating System for Highly

Adaptive, Efficient, and Dependable
Computing on FPGAs

Xabier Iturbe, Khaled Benkrid, Senior Member, IEEE, Chuan Hong, Ali Ebrahim, Raul Torrego,

Imanol Martinez, Tughrul Arslan, Member, IEEE, and Jon Perez, Member, IEEE

Abstract—Despite the clear potential of FPGAs to push the current power wall beyond what is possible with general-purpose

processors, as well as to meet ever more exigent reliability requirements, the lack of standard tools and interfaces to develop

reconfigurable applications limits FPGAs’ user base and makes their programming not productive. R3TOS is our contribution to tackle

this problem. It provides systematic OS support for FPGAs, allowing the exploitation of some of the most advanced capabilities of

FPGA technology by inexperienced users. What makes R3TOS special is its nonconventional way of exploiting on-chip resources:

These are used indistinguishably for carrying out either computation or communication tasks at different times. Indeed, R3TOS does

not rely on any static infrastructure apart from its own core circuitry, which is constrained to a specific region within the FPGA where it

is implemented. Thus, the rest of the device is kept free of obstacles, with the spare resources ready to be used as and whenever

needed. At runtime, the hardware tasks are scheduled and allocated with the dual objective of improving computation density and

circumventing damaged resources on the FPGA.

Index Terms—Dynamic partial reconfiguration, adaptivity, hardware virtualization, reliability, reconfigurable computing

Ç

1 INTRODUCTION

NOWADAYS, with the amount of on-chip resources that
can be exploited at any particular time limited by the

so-called frequency, or voltage or power wall, the online
specialization offered by partially reconfigurable FPGAs
emerges as a promising way to combine computation in
space and time to obtain the best performance per transistor
count and unit of consumed energy. Indeed, the same on-
chip resources can be reused to efficiently implement
different functionalities over time [1]. Furthermore, the
same flexibility that makes online specialization possible
permits to solve or at least mitigate the reliability concerns
that appear when pushing semiconductor manufacturing

to its physical limits. Reconfigurable hardware allow for
building systems capable of keeping their architecture
fault free at all times by reconfiguring around damaged
portions of the chip [2].

However, despite the numerous advantages FPGAs are
to bring, their success is highly conditioned by the way they
reach application developers. After decades of prevalence,
software programming style has spread through all applica-
tion domains, including even those which were traditionally
hardware-centered, and thus, it seems impossible to
radically change this situation without a major collapse in
productivity and increase in cost. Faced with this, the
concept of a reconfigurable operating system (ROS) to give
to reconfigurable hardware a “software look and feel” has
been gaining momentum since the mid-1990s [3], [4], [5], [6].

Following this trend, this paper presents a novel ROS,
named as reliable reconfigurable real-time operating system
(R3TOS), which is aimed at satisfying the often conflicting
requirements of high-performance, real-time, fault-tolerance,
and high-level programming.

The remainder of this paper is organized as follows:
After an overview of related work in Section 2, Section 3 is
dedicated to describing the foundations of R3TOS. Section 4
details the R3TOS computing model, and Section 5 then
presents the R3TOS overall architecture. Next, Section 6
covers R3TOS application programming interface (API),
after which Section 7 describes a proof-of-concept prototype
using Xilinx Virtex-4 FPGAs. Section 8 presents a case study
design and implementation based on software-defined
radio (SDR) application, and finally, concluding remarks
are discussed in Section 9.

1542 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

. X. Iturbe is with the System Level Integration Research Group, School of
Engineering and Electronics, The University of Edinburgh, King’s
Buildings, Edinburgh EH9 3JL, Scotland, United Kingdom, and the
Embedded System-on-Chip Group, IK4-Ikerlan Research Center, Arrasate-
Mondragón 20500, Basque Country, Gipuzkoa, Spain.
E-mail: x.iturbe@ed.ac.uk, xiturbe@ikerlan.es.

. K. Benkrid, C. Hong, A. Ebrahim, and T. Arslan are with the System Level
Integration Research Group, School of Engineering and Electronics, The
University of Edinburgh, King’s Buildings, Edinburgh EH9 3JL, Scotland,
United Kingdom. E-mail: {k.benkrid, c.hong, a.ebrahim, t.arslan}@ed.ac.uk.

. R. Torrego, I. Martinez, and J. Perez are with the Embedded System-on-
Chip Group, IK4-Ikerlan Research Center, Arrasate-Mondragón 20500,
Basque Country, Gipuzkoa, Spain.
E-mail: {rtorrego, imartinez, jmperez}@ikerlan.es.

Manuscript received 1 Sept. 2012; revised 15 Jan. 2013; accepted 24 Feb. 2013;
published online 4 Apr. 2013.
Recommended for acceptance by K. Benkrid, D. Keymeulen, U.D. Patel, and
D. Merodio-Codinachs.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2012-09-0619.
Digital Object Identifier no. 10.1109/TC.2013.79.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

2 RELATED WORK

The term ROS was coined by Brebner [3], and it is essentially
referred to a software OS augmented with functions to
manage reconfigurable hardware, for example, FPGAs, and
execute hardware applications on it. The rational of the ROS
is to hide complexity by offering a set of useful services to
the application developer. These services should be acces-
sible through an API and should provide runtime support
for both task management and FPGA resource management.
In [7], the fundamental services to be implemented in an
ROS are identified: task loading, memory management,
scheduling and allocation, communications (both hardware
hardware and hardware software), and input/output.
Various attempts to build an ROS for FPGAs can be found
in the technical literature. The most significant ones are
summarized in the following paragraphs.

OS4RS was a very early ROS prototype developed by
IMEC with the main focus of giving runtime support for
multimedia applications [4]. Unfortunately, very little
information is provided about OS4RS implementation and
functioning. Most of the information is related to the major
innovation proposed: the possibility to interrupt a hardware
task and restart it in software, or vice versa. Notably, this
idea has inspired later work, for example, [8], [9].

In [10], Xilinx Inc. provided the XPART API, which was
intended to ease the management of FPGA resources.
Unfortunately, XPART was rapidly discontinued. In [11],
the authors created a Linux driver for FPGA’s internal
configuration access port (ICAP) and used it in an embedded
Linux distribution, i.e., uClinux, running on a Xilinx
MicroBlaze processor. This can be considered the first
successful attempt to make reconfigurable hardware easily
accessible by a software-centric programmer. Later, the same
authors completed their work with a Linux driver that
allowed first-in, first-out (FIFO)-based data communications
with reconfigurable hardware modules [12]. However, we
note that the software implementation of these ICAP drivers
may potentially lead to significant time overheads when the
system workload is high.

HybridThreads (HThreads) has been developed by the
University of Kansas [14]. HThreads allows programmers to
run software and hardware threads, simultaneously on a
CPU and on an FPGA, i.e., Virtex-II Pro. Notably, schedul-
ing, communication, and synchronization services are
implemented in hardware, bringing significant performance
benefits. However, in HThreads, the hardware threads
remain allocated on the FPGA even when they are idle, i.e.,
reconfiguration is not used. Consequently, HThreads
cannot be considered a complete ROS as it fails to manage
FPGA resources, i.e., FPGA resources are not shared among
the threads.

BORPH was developed by the University of California,
Berkeley [6]. It is distributed among five Virtex-II Pro
FPGAs: One of them acts as master (control FPGA) and the
remaining four implement some control logic (called uK)
and allocate the hardware tasks. Because of this, these
FPGAs are named as user FPGAs. The control FPGA is
connected to the SelectMAP pins of the user FPGAs
through a point-to-point, bidirectional, 8-bit bus running
at 50 MHz. This bus serves the dual role of configuring the
hardware tasks in the user FPGAs, and communicating

with the uKs after the functions are configured. BORPH
offers an UNIX-like API. Its software kernel is an extended
version of Linux 2.4.30 [15], which runs in a PowerPC
405 core in the control FPGA. Communication between
hardware and software tasks is implemented by FIFOs and
mapped to file descriptors. In BORPH, hardware tasks are
assigned to user FPGAs in one-to-one fashion, leading to a
very inefficient exploitation of hardware resources. Further-
more, the amount of concurrent tasks running on the
system is limited by the number of user FPGAs. In this
context, BORPH does not require any specific scheduling or
allocation algorithms.

ReconOS was developed by the University of Paderborn
and can be seen as a porting of BORPH to a single FPGA,
i.e., Virtex-II or Virtex-4, making special emphasis on real-
time performance [16]. The user FPGAs of BORPH are
assigned separate reconfigurable slots in the same FPGA in
ReconOS. These slots are coupled with a control logic (called
OSIF), which implements the same function as uK does in
BORPH. Being contained in a single FPGA, the user
functions are configured through ICAP, and communica-
tions are performed through an on-chip bus running at
100 MHz. In light of achieving real-time performance,
ReconOS offers an eCOS-based API, which is extended with
specific system calls to manage hardware tasks. Allocation
and scheduling do not deserve special attention in ReconOS:
Scheduling decisions are made by the eCOS kernel and
allocation decisions are trivial as there are only a few slots
where to map the hardware tasks.

A recent approach that is conceptually close to ReconOS
is FUSE, developed by the Simon Fraser University [17].
FUSE relies on a slotted reconfigurable system that is
implemented on a Virtex-5 FPGA and provides an em-
bedded Linux-based API with POSIX threads running on a
MicroBlaze core. Two features of FUSE are especially
interesting. First, shared memories are used to exchange
data between the software and hardware tasks, thus
reducing data communication overheads. Second, each
hardware task is associated a loadable kernel module
(LKM) that implements miscellaneous device driver func-
tionality, allowing to treat hardware tasks as memory-
mapped I/O device peripherals.

Finally, CAP-OS is being developed by the Karlsruhe
Institute of Technology, and it is intended to handle a
variety of processors and accelerators under real-time
constraints, using Virtex-4 FPGAs [18]. The API offered by
CAP-OS is based on message passing interface (MPI). As
proposed in OS4RS, the computations in CAP-OS are to be
performed either in software, i.e., by any of the processors,
or in hardware, i.e., as a coprocessor. However, the currently
presented prototype only supports executing software tasks,
which can be loaded into the processor’s program memory
either through a network-on-chip (NoC) or through the
ICAP. Notably, CAP-OS uses a priority-based scheduling
algorithm that considers both ICAP exclusiveness and
intertask dependencies. The latter scheduling algorithm as
well as other CAP-OS processes run as separate threads in
an embedded processor, for example, MicroBlaze or
PowerPC 405, which is equipped with Xilinx Xilkernel
multithreading solution. In the future, the authors expect to

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1543

include the capability to configure hardware tasks upon
request by the processors as well as to modify the number of
processors in the system. Toward this end, bitstream
relocation is pointed as necessary, leading us to understand
that the current CAP-OS prototype relies on a slotted
architecture.

We conclude that all of the proposed ROS up to date are
based on slotted reconfigurable systems, where the size and
shape of the slots are set by the user at design time and
cannot be modified at runtime. This limits reconfigurability
opportunities in the system, provoking some restrictions to
apply. First, FPGA resources are inefficiently exploited as
all of the tasks to be allocated on a given slot must be
enlarged to its size. Second, the number of tasks that can
run concurrently is limited by the amount of reconfigurable
slots available in the system. Finally, a single fault affecting
a slot might well make that slot useless.

3 R3TOS FOUNDATIONS

R3TOS is founded on the basis of resource reusability and
computation ephemerality. It makes intensive use of reconfi-
guration at the finest granularity of Xilinx FPGAs, keeping
the resources available to be used by any incoming task at
any time. Hence, computing tasks and associated support-
ing circuitry (e.g., intertask communication channels, clock
distribution wires, etc.) are configured when required and
removed when they are no longer needed. Therefore, FPGA
resources can be used either for computation or for
communication purposes at different times. Indeed, R3TOS
does not rely on any prerouted communication infrastruc-
ture, instead it creates on-demand communication channels
among the tasks on the fly.

In R3TOS, the control logic to drive the tasks is attached
to their own circuitry, making them self-contained and
closed structures that are fully relocatable within the FPGA
[19]. This is a completely different approach when com-
pared to related state of the art, where the (enlarged)
hardware tasks are executed in predefined reconfigurable
slots coupled with fixed control logic and connected to a
static communication infrastructure to exchange data
among them.

The task control logic (TCL) includes an input data
buffer (IDB), an output data buffer (ODB), and a hardware
semaphore (HWS) to enable/disable computation. TCLs
provide a means to virtually lock physical data and control
inputs/outputs of the hardware tasks to logical positions in
the configuration memory of the FPGA. Since the TCLs are
accessible through the configuration interface whichever
memory positions they are mapped to, the allocatability of
the tasks is not constrained by the position of the
communication interfaces decided at design time anymore.
Furthermore, this scheme improves multitasking capabil-
ities as the number of tasks that can be concurrently
executed on FPGA is only limited by the amount of on-chip
FPGA resources. Finally, note that the fact of replacing
“physical” bus macros (BMs) with “logical” TCLs is in
consonance with the current trend to hide hardware related
aspects to the designer. For example, the latest release of
Xilinx tools to develop reconfigurable systems are able to

manage the BMs on behalf of the designer, who has not to
worry about where and how many BMs are instantiated.

There are several immediate advantages resulting from
the innovative use of FPGA resources in R3TOS.

The allocatability of the tasks is improved as the FPGA
area is kept free of non-necessary obstacles at all times,
for example, static routes. This results in higher flexibility to
allocate the tasks around the damaged resources (improved
fault tolerance) and to increase the computation density by
compacting the tasks in the chip (improved efficiency).
Furthermore, the complexity of the allocation algorithms is
simplified as they do not need to be aware of any underlying
implementation-related irregularities in the reconfigurable
area. Note that a traditional reconfigurable system must
preserve the static routes, resulting in additional difficulties
that penalize the performance.

Tasks can be deallocated very quickly using multiple
frame write (MFWR) configuration commands as there is no
need to preserve any element within the region occupied by
them, i.e., task deallocation simply consists in blanking the
whole content of the corresponding configuration frames.

The fact that we have separately and individually fed
each task with its highest allowed clock frequency clearly
outperforms the easy and more usually chosen option of
clocking the entire system at the slowest rate [20].

Since R3TOS relocates the circuitry along the entire
device, switching activity naturally tends to distribute
among all the resources. As a result, the device ages
uniformly, i.e., wear is leveraged, delaying the occurrence
of damage [21], [22], [23]. This does not happen in
traditional systems where some of the resources are prone
to fail earlier due to intensive use, for example, the resources
used to implement the static communication infrastructure.

On the other hand, the limitations associated with R3TOS
mainly come from the reconfiguration bottleneck provoked
by the ICAP. First, the configuration of a hardware task
delays its execution by a non-negligible amount of time.
Second, the configuration of on-demand communication
channels among the tasks incurs an overhead that is
significantly greater when compared to the time needed
for establishing a virtual connection trough an NoC or to
the nearly zero communication delay in an on-chip bus.

4 THE R3TOS COMPUTING MODEL

R3TOS envisions a real-time multitasking scenario, which
supports the benefits brought about by reconfigurable
hardware, for example, true hardware multitasking and
computation specialization, without significantly modifying
the traditional programming style. Indeed, task definitions
and their interactions are described using parallel software
programming syntax (e.g., POSIX Pthreads), but the body of
some of the tasks (hardware tasks) is implemented in
hardware.

The term “hardware task” is used to reflect the fact the
task relies on specific purpose custom circuitry to perform
computation, but this does not mean it does not include any
software component inside. Indeed, the custom circuitry
could be used as a hardware accelerator by a processor
running a software program inside the task.

1544 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

R3TOS addresses two main types of hardware tasks:
Data-stream processing tasks, to be used in data-intensive
applications with regular dependencies, and hardware-
acceleration tasks, which speed up the execution of portions
of computationally intensive software code.

At design time, the user can rely on the R3TOS API to
programm his/her reconfigurable application. The API
includes a set of system calls to give seamless support for
both software and hardware task invocation (e.g., similar to
POSIX pthread_create() or fork()), synchronization
(e.g., similar to POSIX pthread_join() or sem_wait()),
and intertask communications (e.g., equivalent to POSIX
msgsnd() andmsgrcv()). Therefore, the user only needs to
describe his/her reconfigurable application, for example,
define the triggering conditions for each task, specify the real-
time requirements, missed deadlines handling, and so on.

At runtime, the execution of the tasks is controlled by a
main CPU based on the user specifications. Basically, the
latter executes a program that is conceptually similar to a
traditional RTOS. Indeed, it is based on a software real-
time microkernel (SWuK), which is extended with extra
functionality to interact with the hardware microkernel
(HWuK); i.e., it schedules-executes software tasks and
forwards hardware tasks to HWuK.

HWuK gives thus support to the main CPU to deal with
the hardware tasks, serving as the substrate upon which the
hardware-related services offered by the R3TOS API are
built. Namely, R3TOS HWuK includes: 1) a scheduler server,
expressly designed for scheduling hardware tasks, 2) an
allocator server to manage FPGA resources, and 3) a
configuration manager to translate the high-level operations
dictated by scheduler and allocator servers into reconfi-
guration commands for the FPGA. Note that the latter
implements most of the hardware abstraction layer (HAL)
of R3TOS.

The configuration information to build the circuitry
required by the hardware tasks, including the binary code
of the software components inside, if any, is stored in a
bitstream memory. At runtime, the hardware tasks are
allocated to different positions within the FPGA by appro-
priately changing the frame addresses when their bitstreams
are transferred from the bitstream memory to the config-
uration memory of the FPGA. To achieve the highest
reconfiguration bandwidth, the task’s bitstream relocation
process is done by a dedicated hardware, operating at the
highest allowed clock frequency by the ICAP. Consequently,
the limited physical FPGA resources are used to implement
a large virtual computing resource that is time shared to
serve multiple hardware tasks upon request. Each of the
tasks uses its own private piece of FPGA resources.

To improve performance, the configuration memory of
the FPGA is used as a cache for both tasks and data.
Hardware tasks are deallocated from the FPGA only when
their resources are required by other coming tasks, and the
partial results computed by them are uploaded to the main
memory only when they are required by a software task.

Both software and hardware tasks are assigned a space
in the main memory attached to the main CPU to hold local
data and, in the case of software tasks, to hold the code as
well. Since the main memory is shared between both

hardware and software tasks, here is where the interactions
between both types of tasks occur, as defined by the user at
design time and, as implemented by the main CPU at
runtime. An advantage of this scheme is its compatibility
with most software compilation systems and most task
memory mappings of software OS.

To simplify hardware-software communications, a fixed
region within the main memory is shared between the main
CPU and the HWuK to exchange data through. This region
is organized in the form of an ODB and an IDB. The data
written by the CPU in the ODB is finally delivered by
HWuK to the corresponding hardware task running on the
FPGA. Likewise, the data written by HWuK in the IDB is
finally relocated by the CPU to the specific data segment
assigned to the corresponding software task in the main
memory. Therefore, HWuK cannot directly access the data
segments of the tasks in the main memory, and the main
CPU cannot access the hardware tasks in the FPGA,
guaranteeing no interference between them.

4.1 Application Design Phase

The design phase starts with the conceptualization and
refinement of specifications to produce a behavioral model of
the reconfigurable application. The decision about which
functionality should be implemented in hardware and which
in software is made based on estimations about cost and
performance (e.g., required silicon area, hardware response
time, occupied program memory, and software execution
time). This codesign process is a challenge in its own right
[24], but it is out of the scope of this paper. We assume that the
reconfigurable application is successfully decomposed into a
set of software functions (SFs), to be executed in the main
CPU, and a collection of processing elements (PEs), to be
implemented using FPGA resources. There is no exact
definition for PEs; they are assumed to be components that
transform a set of input data into a set of output results using
some specific-circuitry to speed up this process. Therefore,
PEs turn the fine-grained and generic FPGA resources into
coarse-grained and specific computing machines.

When partitioning the reconfigurable application, re-
lated PEs are grouped together into hardware tasks to
reduce the longest path. The latter is a key issue toward
high performance as R3TOS is able to execute each task at
its maximum allowed clock frequency at runtime.

In a second phase, loosely coupled PEs in time or content
must be extracted from the tasks until the desired granularity
is achieved. Content-coupled PEs assigned to different
hardware tasks result in intertask communications, where
the amount of data to exchange depends on the coupling
level. On the other hand, the PEs mapped to the same tasks
include inherent RTL communications that benefit from the
huge capability to move data among registers and memory
elements delivered by massively parallel FPGAs. Hence,
there is a tradeoff between intertask communication band-
width requirement and task granularity.

We distinguish between two types of tasks based on
their communication requirements. High-bandwidth commu-
nication (HBC) tasks refer to tasks that process a high
amount of data within a relatively short amount of time,
i.e., communication dominates computation. On the other
hand, low-bandwidth communication (LBC) tasks refer to tasks

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1545

that process a reduced amount of data within a relatively
long amount of time, i.e., computation dominates commu-
nication. Note that task communication is a commonly used
feature to classify the tasks. For instance, in [25], the
“number of operations per transferred data item” is used as
main feature to develop a machine-learning-based compiler
that is proved to find efficient task partitioning.

After having partitioned the reconfigurable application
into tasks, related PEs are synthesized together with a
wrapping TCL to obtain a single-merged relocatable partial
bitstream for each of the hardware tasks. Note that the tasks
are separately synthesized and constrained to specific
closed regions within the FPGA.

On their part, the SFs are compiled together with the
application description and the R3TOS API to generate
the application executable, including the code of the
software tasks.

Then, the partial bitstreams of the hardware tasks are
uploaded to the bitstream memory, and the application
executable is uploaded to the main memory. The design
phase concludes with the merging of application-dependent
information (e.g., task dependencies, real-time deadlines,
etc.) and target FPGA-dependent information (e.g., chip
size, layout, FPGA Device ID, etc.) into R3TOS to create the
appropriate execution environment for the reconfigurable
application. This information is to be collected and for-
matted by a feature extractor script. Additionally, R3TOS is
provided with specific implementation-dependent informa-
tion (e.g., HWuK placement within the FPGA).

4.2 Intertask Communications and Synchronization

The reconfigurable application can be modeled as a directed
acyclic graph (DAG) where vertices represent tasks and
edges represent intertask communication channels. Vertices
produce and consume data from edges, which in turn
buffer the data in an FIFO fashion. Note that buffering
capability is mandatory in R3TOS as the tasks can be
executed at different slots of time. Besides this, synchroni-
zation is mandatory to coordinate data producers and
consumers when accessing the communication channels.

TCLs attached to the hardware tasks provide support for
communications, synchronization, and data buffering.

Indeed, the TCL delivers the data to be processed by the
associated task from its internal IDB to the PEs and stores
the subsequent results computed by the latter in its internal
ODB. Hence, the data buffers of the TCL are functionally
equivalent to the FIFO queues commonly inserted in-
between data processing pipeline stages or to the local
caches used in traditional processors. Therefore, TCLs
provide hardware tasks with dedicated access to their data
buffer. The data buffers of HBC tasks are implemented
using high-density storage resources (namely, BRAMs),
while the buffers of LBC tasks are implemented using low-
density storage resources (namely LUT-RAMs).

After a task completes its computation, the computed
results remain stored in its former ODB until they are
required as input by another task. Temporarily buffering
the partial results along the entire chip, which is a result of
the flexible allocation scheme used in R3TOS, is the natural
way to exploit the distributed nature of FPGA fabrics.
Hence, hardware tasks leave a data trace in the user data

plane of the FPGA when they finish. Note that data traces
do not significantly constrain the allocatability of the tasks
within the configuration plane; i.e., the memory blocks that
store data traces can be bypassed when allocating new
incoming tasks in overlapping locations as long as they are
not specifically used by them. This is shown in [26].

In this context, data are transmitted from a producer task
P to a consumer task C by copying the content of P ’s ODB
to C’s IDB. In the case of software tasks, the data buffers are
mapped into the main memory accessible from the main
CPU. Hence, data traces are relocated along the chip as
required by the tasks. If possible, the ODB of the producer
task P is configured to be the IDB of the consumer task C so
that there is no need to relocate any data; i.e., data are in the
position the consumer task expects to be. Otherwise, R3TOS
harnesses the ICAP interface to establish on-demand
“virtual” channels among the hardware tasks through the
configuration layer (see Fig. 1). Data buffer sharing between
producer and consumer tasks is limited by two factors. First,
the occupation of the FPGA, as other running tasks may
prevent the allocation of the consumer task next to the
producer. Second, the FPGA layout, in case there are not
the necessary FPGA resources required by the consumer
task in the position where the producer task is placed.

To speed up the relocation of high amounts of data in
HBC tasks, R3TOS configures physical routes to connect
BRAMs when there are no obstacles between them, i.e.,
other tasks. Indeed, the physical routes offer a potentially
higher bandwidth than ICAP-based “virtual” channels, not
only because the data are read and written at once, but also
because the usable clock frequency can be made higher than
that of the ICAP. The physical routes and the logic to drive
the BRAMs are grouped together to form data relocating
tasks (DRTs), which are managed from R3TOS as standard
computing tasks.

Therefore, as shown in Fig. 1, the tasks perform
computation in the functional layer of the FPGA and
intertask communications are carried out, or at least
initiated, through the configuration layer. The synchroniza-
tion needed to coordinate access to data buffers from both
layers is provided by the HWS included in the TCL. The
HWS acts as the internal reset signal for the task; i.e., the
task starts computing only when the HWS is enabled
(by HWuK through the ICAP), and once it completes the
computation, the task itself disables its HWS. Therefore,
the HWS is active only while the task is performing active
computation, and hence, it is also used to implement the
exclusive access to FPGA resources.

1546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

Fig. 1. Hardware-software intertask communications.

R3TOS targets an event-triggered data-dependent com-
putation model where data exchanges among tasks are
carried out only prior to task execution, with the computa-
tion thereafter performed atomically. The tasks are triggered
when all their input operands are ready to be processed.
This functioning enables temporal isolation among hardware
tasks execution, avoiding most of communication related
problems in reconfigurable computing, such as deadlocks
or race conditions. As a result, the system is predictable
enough to approach real-time performance. Last but not
least, we note that this functioning perfectly matches the
way a traditional software OS works, i.e., the context of the
task is loaded when granted with CPU/FPGA access.

4.3 Real-Time Hardware Task Model

From a computational point of view, the merger of a set of
PEs and a TCL gives rise to a task with “software look and
feel” which is unequivocally identified by means of a
TaskID. Indeed, the main CPU can access the advanced
computation capabilities delivered by the hardware tasks,
without having to know anything about their implementa-
tion details, and regardless of their placement within the
FPGA. The CPU simply writes the data to be processed to
its ODB, which is mapped into the main memory, and after
some time, it retrieves the computed results from its IDB.

In the area domain, a task �i is considered to occupy an
arbitrarily sized rectangular region on the FPGA, which is
defined by its width and height, hx;i and hy;i, respectively.
The internal architecture of the task, which depends on the
location where it was originally synthesized in the FPGA, is
described as the succession of the resources it uses column
by column, from the leftmost to the rightmost column.

In the time domain, a task �i requires five different
phases to complete a computation (see Fig. 2).

During the setup phase, the task is configured in the FPGA.
Previously existing tasks in overlapping positions are deal-
located, if any, and a suitable clock signal is routed, i.e., a
clock signal of the required frequency [20]. In general, the
duration of the setup phase of a task, tA;i, is proportional to
its size. However, as the amount of time needed to deallocate
overlapping tasks cannot be estimated a priori, a worst-case
penalty must be added. In any case, we note that the latter
time is minimal as a result of using MFWR commands.

During the input data delivery phase, the IDB of the task is
filled by HWuK with actual data to be processed. In
general, the time required to do so, tD;i, is proportional to

the amount of data to be loaded. When all input data are
copied into the IDB, HWuK enables the HWS of the task.

During the execution phase, the input data are trans-
formed into results by the task’s PEs. The combination of
temporarily isolated tasks and hardware-based determinis-
tic computation leads to predictable timing behavior.
Indeed, a task uninterruptedly completes its computation
tE;i units of time after it started, regardless of system
workload. However, tE;i is not always fixed and known,
for example, iterative calculations with variable number of
iterations. To deal with these situations, the tasks auto-
matically signal their HWS to acknowledge HWuK when
the results are ready in their ODB.

The synchronization phase refers to the polling process
from HWuK to the tasks’ HWS to detect a computation
completion, and spans tS;i units of time.

During the output result retrieval phase, which spans tR;i
units of time, the results computed by the tasks are finally
read from the ODB. Note that this phase may be delayed
until the results are required by another task.

When two hardware tasks communicate each other, data
must be read from the producer’s ODB prior to being
copied to the consumer’s IDB. That is, the input data delivery
phase of the consumer task �i is immediately followed by
the output data retrieval phase of the producer task �j.
Furthermore, the latter two phases are to be preceded by
the setup phase of the data consumer task. When merging
these three phases with the synchronization phase of the data
producer task, a single ICAP access period is formed for each
task �i that spans tICAP;i ¼ tA;i þ tD;j þ tS;j þ tR;i consecutive
units of time (see Fig. 3). During this time, the task is
effectively set up in the FPGA. The fact of grouping
together the task phases that need to access the ICAP is
beneficial to schedule its access in a more predictable way.

As previously introduced, R3TOS uses several ways to
reduce tICAP;i toward a higher performance. First, the direct
access from a data consumer task to producer task’s ODB
results in tD;i and tR;j circumvention. Second, the use of
DRTs to quickly relocate data between data buffers results
in reduced tD;i and tR;j. Finally, the reuse of previously
configured tasks results in tA;i circumvention. In addition,
tE;i can also be reduced by feeding the task with the highest
clock rate.

The real-time constraint of R3TOS involves the existence
of a relative execution deadline for each task, Di, which is
defined by the application programmer and represents the

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1547

Fig. 2. Execution phases of a hardware task in R3TOS. Fig. 3. Consecutive execution of hardware tasks in R3TOS.

maximum acceptable delay for that task to finish its
execution. The absolute execution deadline for each new
task instance, di, is computed by adding the task release
time, ri, to its relative execution deadline, di ¼ Di þ ri. Even
more important is the absolute setup deadline, d�i , which
represents the maximum acceptable delay for a task to start
the computation to meet its execution deadline; i.e.,
d�i ¼ di � tE;i. A task is considered to be ready to start its
computation when it is completely configured in the
device and the data to be processed is already loaded in
its IDB. To achieve the predictability required by real-time
behavior, it is always considered the worst-case that any
of the aforementioned performance enhancements cannot
be exploited.

As shown in Fig. 3, the setup deadlines are different for
hardware tasks that communicate with other hardware
tasks and for those which exchange data with software
tasks. This is because the data retrieval phase is included in
the model of the data consumer hardware tasks used by
HWuK, but it is not in the model of data consumer software
tasks used by SWuK. Indeed, the data retrieval operation of
a data consumer software task must be invoked from the
data producer hardware task itself. Unfortunately, this
functioning could interfere with real-time behavior, and
thus, a specific model is derived for it. This model is
depicted in Fig. 3. The absolute setup deadline of a
“standard task” that communicates with other hardware
tasks, or which receives data from a software task, is equal
to d�i ¼ di � tE;i. This is the case of �j. On the other hand,
hardware tasks that deliver data to the main CPU, such as
�i, are modeled as two separate “standard tasks” to
harmonize their management:

. An exclusively computing task �comp with hx;comp ¼
hx;i,hy;comp ¼ hy;i, rcomp ¼ ri, tE;comp ¼ tE;i, tICAP;comp ¼
tA;i þ tR;j þ tS;j þ tD;i, where �j is the data producer
for the task �i, dcomp ¼ di � tS;i � 2 � tR;i and d�comp ¼
d�i � tE;i � tS;i � 2 � tR;i. Note that the multiplication
by 2 is because both to read data from task’s ODB and
to copy it to CPU’s IDB are needed.

. An exclusively communicating task �comm with
hx;comm ¼ hy;comm ¼ 0, tICAP;comm ¼ tS;i þ 2 � tR;i,
tE;comm ¼ 0, rcomm ¼ tSP;comp þ tICAP;comp þ tE;i, and
dcomm ¼ d�comm ¼ di.

To achieve the predictability required by real-time
behavior, it is always considered the worst-case execution
time tE;i for the tasks. As a result, the HWS must be
accessed only once, and thus, tS;i ¼ tS 8 �i, where tS is equal
to the time needed to read back a single frame from the
FPGA device. Note that in this situation, HWSs are checked
only to confirm the correct ending of tasks’ execution.

As shown in Fig. 4, a hardware task goes through several
states during its life cycle. The task is in waiting state until it
is triggered. When this occurs, the task switches to ready
state, waiting to be granted with ICAP access and assigned a
set of resources on FPGA to start computation. If the task
waits for a long time, it may miss its deadline, in which case
it is discarded, switching back to waiting state. When the
task is scheduled on time, it switches to the setting-up state.
The task remains in this state while it is configured in the
FPGA and also while it is provided with a set of data to

process. While the task performs active computation it is in
executing state, and it is in allocated state when it remains
configured in the FPGA after having completed its
computation. Note that allocated tasks do not consume
dynamic power as they remain in reset state, i.e., their HWS
is disabled.

R3TOS keeps track of the state of the tasks at runtime, by
grouping them into different task queues: ready, executing,
and allocated. There is no need for a setting-up queue as only
one task can be at this state at any time.

4.4 Scheduling and Allocating Hardware Tasks

At runtime, HWuK needs to decide when to schedule and
where to allocate the tasks buffered in the ready queue. In
few words, R3TOS selects at every kernel-tick tKT the most
suitable ready task to be executed according to both time
and area criteria. Note that tKT is configurable by the user
depending on the timing constraints of the application. The
fact that scheduling and allocation decisions are made
online enables data-dependant computation and permits to
cope with the unpredictable degradation provoked by
spontaneous faults as well as with high workload peaks.

R3TOS uses a nonpreemptive EDF porting to schedule
access to the ICAP, named as finishing-aware EDF (FAEDF).
To compensate for the lack of preemption, which on the
other hand is not well suited to be used with FPGAs,
FAEDF includes the capability to “look ahead” to find
future releases of adjacent pieces of area when executing
tasks finish. The time left until then is used to schedule
other ready tasks that can be completely set up. If there are
no ready tasks meeting this, other R3TOS services that
need to access the ICAP are executed. Note that FAEDF is
capable of selecting the next task to be executed in a very
short time if the task queues are ordered as needed.

To cope with fragmentation, which is the enemy to beat
in such a flexible scenario as defined by R3TOS, a novel
allocation heuristic, called empty area compaction (EAC) [27],
and a novel task allocation strategy, called snake [28], are
used. EAC assigns a score to each position in the FPGA
based on what measure that position contributes to form
adjacent pieces of empty area. These calculations are carried
out in parallel with task configuration through the ICAP, so
that the subsequent task allocation decisions can be quickly
made by consulting the precomputed EAC scores, which
collectively form the so-called empty area descriptor (EAD).
On its part, snake is aimed at linking HBC tasks together to
promote data exchange among them through the functional
layer, minimizing the use of ICAP and at the expense of
increasing fragmentation on the device. To deal with this
fragmentation, LBC tasks (which need short time to
exchange data through the ICAP) are efficiently allocated

1548 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

Fig. 4. Life cycle of a hardware task in R3TOS.

using the EAC heuristic on the resulting FPGA area
fragments in between the HBC chains.

The obtained results when simulating our scheduling
and allocation algorithms using a wide range of different
task parameters can be found in [29].

4.5 Executing Hardware Tasks

As previously mentioned, HBC tasks are connected
together to speed up the transmission of intermediate
partial results among them, i.e., if possible, the consumer
task accesses its input data directly from the ODB of the
producer task. While this scheme improves the perfor-
mance, by minimizing ICAP time for carrying out intertask
communications, it also constrains multitasking capabil-
ities. Indeed, only half of the HBC tasks in a computation
chain can perform active computation simultaneously as
only one task can access the shared data buffers at each
time. This restriction does not apply in the case of LBC
tasks, which do not share the data buffers.

4.6 Fault-Handling Strategy

The key benefit of R3TOS is its ability to exploit the
underlying reconfigurability of the FPGA chip. Specifically,
continuous task reconfiguration prevents the accumulation
of soft-errors and the permanent damage in the chip is
conveniently circumvented when allocating tasks as long as
it does not affect the HWuK itself. We note that the fine-
grained management of FPGA resources implemented by
R3TOS allows to discard only the damaged resources,
contrasting with traditional slotted systems where an entire
slot must be discarded in the event of a fault affecting it.

The resources assigned to a task that has computed an
erroneous result are kept in quarantine while an exhaustive
diagnostic test is carried out on them. Namely, this test
consists in loading all-ones and all-zeros frames to detect
stuck-at configuration bits. The ultimate objective is to

detect and prevent the future use of damaged resources, if
any. Due to the criticality of the HWuK, its configuration
state is periodically checked, using Frame_ECCs, to correct
any errors before they lead to system failure. If the
configuration error is the result of a damaged resource,
the system initiates a fail-safe shutdown.

When it is detected a malfunctioning of the HWuK, a full
FPGA reconfiguration is forced by toggling the PROG_B
pin after having disabled the ICAP interface. As soon as
R3TOS is recovered, the configuration state of the HWuK is
checked to determine whether the error was provoked by a
damaged resource. If this is the case, the system initiates a
fail-safe shutdown.

5 R3TOS GENERAL ARCHITECTURE

Fig. 5 shows the general block diagram of R3TOS, which
basically comprises three main parts: HWuK, main CPU,
and memory.

5.1 R3TOS Hardware Microkernel

HWuK includes the configuration manager and two servers
that run upon it: scheduler and allocator. Each component
is separately implemented to enable parallelism in the
execution of HWuK processes. The parallel cooperation of
simple components does not only result in low runtime
overhead but also in acceptable area overhead; i.e., the
main core of all HWuK components is a tiny Xilinx
PicoBlaze, which requires only 96 FPGA slices. The
cooperation among the HWuK components is mastered
by the scheduler, with the allocator and the configuration
manager acting as slaves. The communication between the
components follows a very strict set of rules that are
supervised by two monitors. Each monitor is thus capable
of detecting any malfunctioning in each pair of commu-

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1549

Fig. 5. R3TOS block diagram.

nicating components, i.e., scheduler-allocator and schedu-
ler-configuration manager.

The internal architecture of the HWuK components
is structured around the PicoBlaze core. The PicoBlaze
executes an optimized assembly program that is based on
interruptions to reduce the response time, relying on an
interrupt controller to handle the interruptions. Further-
more, each PicoBlaze uses a dedicated data BRAM to store
the information associated with the corresponding HWuK
process(es) it executes. Hence, the scheduler manages the
task queues in the task BRAM, the allocator keeps track of
the available resources on an FPGA BRAM (state BRAM),
and the configuration manager executes predefined se-
quences of configuration commands from a bitstream
BRAM. The fact that these memories are dual-ported is
conveniently exploited. For instance, the configuration
manager can mark any detected damaged resource as
nonusable directly in the FPGA state BRAM, and the main
CPU can set in ready state any triggered task directly in the
task BRAM.

Specific for the scheduler is a real-time timer to generate
the kernel ticks. Additionally, the kernel timer supervises
the correct functioning of the scheduler, i.e., it acts as
watchdog timer. The scheduler’s PicoBlaze must generate
at least one alive pulse within a maximum number of kernel
ticks. Indeed, it is crucial for the reliability of the system to
monitor the state of the scheduler as it is the master in
HWuK. Specific for the allocator is an architecture checker
to speed up the search of feasible allocations where the
FPGA resources are arranged as required by the tasks, and
an empty area descriptor updater to accelerate the inter-
mediate computations required by the allocation algorithm,
i.e., EAC scores. The configuration controller is equipped
with an FSM to drive the ICAP at the highest allowed clock
frequency, i.e., 100 MHz, and with a CRC32 module to
compute the 32-bit CRC over a set of data read from the
ICAP at the data rate, i.e., when accessing the ODBs of data
producer tasks. Our ICAP controller achieves an effective
reconfiguration bandwidth as high as 380 MB/s when
working with relatively small partial bitstreams (e.g., less
than 10 KBs) and reaches 390 MB/s when working with
larger partial bitstreams (e.g., some tens of KBs). Notably,
the configuration manager also includes a configuration
guardian (CG) to ensure safe accesses to the configuration
memory. The latter exclusively allows access to the
resources assigned to a given task to configure it or to
communicate with it, i.e., hardware tasks are isolated in the
configuration domain. Besides, the CG prohibits access to
the resources assigned to HWuK except when the privileged
mode is enabled. To detect and localize upsets in the
configuration frames, the configuration manager interacts
with the Frame_ECC logic as well, which automatically
checks the correctness of every read-back configuration
frame. Finally, the configuration manager has access to the
STARTUP primitive with the objective of initializing the
flip-flops of the hardware tasks with a predefined value,
i.e., INIT values. Since this is a very critical primitive that
allows accessing internal signals to the configuration logic
of the FPGA, i.e., global set/reset (GSR), specific support
logic is added to guarantee its safe functioning.

Finally, HWuK includes some extra functionality dis-

tributed along the device. This includes TCLs, attached to

the hardware tasks, and the circuitry to manage and

diagnose the clocking resources, which is implemented

next to the rightmost and leftmost IOB/BUFR columns.

5.2 R3TOS Main CPU

In the current R3TOS implementation, a Xilinx on-chip

processor, namely a 32-bit MicroBlaze soft-core, is used as

the main CPU. The MicroBlaze is coupled with a set of

peripherals to provide additional functionality (e.g., timer

or interrupt controller), connection to the external world

(e.g., RS232 serial line or ethernet), or to increase the

performance (e.g., DMA). The peripherals are intercon-

nected by means of an on-chip peripheral bus (OPB). The

interface with HWuK is based on interruptions and shared

memory (i.e., task BRAM and IDB/ODB).
The program executed by the main CPU is held in a

directly accessible program memory. It is important to note

that as this memory is implemented using dual-ported

BRAMs in MicroBlaze, it must be disabled and its clock must

be stopped by HWuK prior to accessing the content of any

BRAM within the FPGA. Otherwise, the program code

could get corrupted. Despite this undesirable effect does not

appear when using other processors that do not use dual-

ported BRAMs to store their program, the clock stopping

capability is still required when using the STARTUP

primitive. Indeed, while the GSR signal is active, the BRAMs

cannot be correctly accessed, and thus, the processor must

be stopped to prevent executing undesired instructions.
FIFO-based high-speed communications between the

IDB, ODB, and MicroBlaze are achieved by connecting

them using fast serial links (FSLs). In addition, the IDB and

ODB are also accessible through the aforementioned OPB

bus to allow individual access to specific positions.

5.3 Memory

To reduce the amount of components in the R3TOS system,

both the bitstream memory and the main memory are

implemented using a single external memory chip, despite

the fact they are conceptually independent components.

Therefore, the external memory chip stores: 1) the data and

code segments of the software tasks, 2) the data segments

and bitstreams of the hardware tasks, and 3) the bitstreams

of the DRTs. There is a pointer table located in the lowest

part of the memory, which is used by HWuK to know the

exact location of each task bitstream. The bitstream of a task,

or DRT, with identifier TaskID starts in the position

specified by the pointer located at position TaskID, and it

ends in the position specified by the pointer located at

position TaskID+1. In Fig. 5, note that the white parts of the

memory are accessed exclusively by HWuK, while the black

parts are accessed only by the main CPU. The most typical

case of a single port memory is assumed in the current

R3TOS implementation, and hence, HWuK includes an

arbiter to coordinate access from HWuK itself and from

the main CPU.

1550 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

6 R3TOS API

Despite the fact that a R3TOS standard user is likely to
interact with the FPGA hardware through a high-level
software POSIX-like API, it might happen that in some
specific applications the developer would need to take a
low-level hands-on approach to meet strict real-time
requirements, or simply to save FPGA resources if there is
no need to use a main CPU. In this case, when the
application is to be based on bare hardware, the low-level
R3TOS HWuk services provide a direct and more agile
interface to the FPGA resources, enabling improved perfor-
mance and higher reliability levels. These services make up
the HAL and are mainly based on the basic functionality
implemented by the configuration manager (see Table 1).
R3TOS services provide support for task allocation, deal-
location, communication, and synchronization.

In light of a higher productivity, high-level program-
ming is a must. This is achieved by wrapping the R3TOS
HWuK with a software OS layer that is executed in the main
CPU. The latter software layer is known as software
microkernel (SWuK). The OS-CPU provides the basic
platform to execute application software routines, i.e., the
serial portions of the application that are not amenable to be
accelerated neither by parallel processing nor by computa-
tion specialization. On the whole, the combination of
R3TOS HWuK and SWuK result in a good framework to
develop hardware-software hybrid applications.

The R3TOS SWuK is currently based on FreeRTOS, which
is an easy-to-use and open-source real-time microkernel
designed specifically to have a small memory footprint.
Indeed, our FreeRTOS porting to R3TOS requires 29.8 KB,
thus fitting in only 16 BRAMs. Two features of FreeRTOS are
especially attractive to us. First, its high dependability,
which is supported by the fact that a microkernel derived
from it, i.e., SafeRTOS, has been certified for safety-critical
applications. Second, its popularity, which is confirmed by
the 2011 EETimes embedded systems market study, where
FreeRTOS comes in top in two categories: the kernel
currently being used, and the kernel being considered for
the next project to develop. This is indeed our objective:
provide R3TOS with the most attractive software skin for
application developers.

While the core part of FreeRTOS has been kept intact in
our porting to R3TOS, new interrupt service routines (ISRs)
have been programmed to enable communication with
HWuK. Likewise, the scheduler included in the commercial
distribution of FreeRTOS has been modified to provide the
necessary support for dealing with hardware tasks. Finally,
new functionality has been developed to ease common
operations in R3TOS, for example, DMA transfers between
the IDB, ODB, and main memory.

The hardware tasks are provided with a “ghost software
body” that includes HWuK-related system calls with the
objective of making them manageable in SWuK. For
instance, wr_ODB and rd_IDB permit to deliver/retrieve
data to/from the hardware tasks by accessing the ODB and
IDB, respectively. The generic software body of a pure
hardware task is shown in Listing 1, and the interaction
between the software and hardware levels during the life
cycle of a task, which is based on FreeRTOS semaphores, is
depicted in Fig. 6.

Listing 1. Representation of a hardware task in the SWuK

static void vTask_ID (void *pvParameters)

{

insert_task(task_ID,task_params);

wait_scheduling(task_ID);

wr_ODB(& input_data_base_addr, length);

wait_computing(task_ID);

rd_IDB(& output_results_base_addr, length);
}

7 R3TOS PROOF-OF-CONCEPT PROTOTYPE

A proof-of-concept R3TOS prototype has been implemented
on a Xilinx Virtex-4 XC4VLX160 FPGA. This device
includes up to 12 clock regions, 88 CLB columns, 7 BRAM
columns, and 1 DSP48 column. The layout of this chip,
shown in Fig. 7, is very interesting as it includes a 28 CLB
column wide homogeneous region in the central part of the
chip (sandbox) with the heterogeneous resources located in
the edges; in the rightmost edge there are three BRAM
columns and one DSP48 column and in the leftmost edge
there are four BRAM columns. Based on this layout, the
vertical granularity is set to be a clock region, i.e., Hy ¼ 12,
while the horizontal granularity is either four CLB columns
in the sandbox or a single heterogeneous resource column
in the edges, i.e., Hx ¼ 15.

As shown in Fig. 7, the R3TOS core circuitry is located in
the upper right quadrant of the chip, leaving 3/4 of the
FPGA free to allocate the hardware tasks. Overall, R3TOS
logic consumes 4,268 Slices and 30 BRAMs. Note that only
the clock distribution lines span across the partially
reconfigurable region (PRR) to reach the regional clocking
resources, i.e., BUFRs, located in the leftmost and rightmost
IOB columns. Next to the BUFRs, and occupying only one
CLB column, are the associated diagnostic circuits, which
permit to detect any malfunction of the former clocking
resources.

The R3TOS circuitry and the clocking resources together
make up the R3TOS static infrastructure, which provides
support for the execution of the hardware tasks. Indeed,
unlike in related work, the BUFRs are not dedicated to any
specific hardware task, but shared among all of the tasks

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1551

TABLE 1
Basic Functions Implemented by the Configuration Manager

Fig. 6. Management of a hardware task in SWuK.

placed in the same clock region of the FPGA. By doing so,
tasks can be clocked using multiple BUFRs located in
different clock regions, and thus, their maximum height is
not constrained. Moreover, not including the BUFRs in the
architecture of the tasks enhances their (horizontal) allocat-
ability, i.e., tasks can be arbitrarily horizontally shifted
within a clock region.

For simplicity and clarity purposes, the implementation
shown in Fig. 7 does not consider board-dependent IOB
location issues. Indeed, in the real implementation using the
Virtex-4 LX development kit, the pins to access the external
memory are located in the bottom-left corner, and therefore,
other two clock regions are occupied with static routes.

The R3TOS core circuitry comprises two different parts:
1) HWuK, which spans two FPGA rows in height, and 2) the
main CPU (i.e., MicroBlaze), which spans four FPGA rows.
Both R3TOS parts communicate with each other as well as
with I/O device pins through a set of BMs located in the
rightmost four CLB columns of the chip. Indeed, we note that
all of the used IOBs (i.e., 69) could be mapped to the upper
right quadrant. This modular implementation of R3TOS
favors the adaptability, as the main CPU can be replaced
without interrupting the normal HWuK functioning. In
addition, HWuK includes a set of BMs in the leftmost side to
access the FPGA’s hard primitives that are located in the
central part of the chip, namely, Frame_ECC, STARTUP, and
ICAP.

Table 2 shows the most significant performance figures
measured in the R3TOS prototype, when clocking it at
100 MHz. Notably, the amount of time needed by the
scheduler and allocator to sort the task queues and update
the EAD is in the same range of that needed to configure a
typical hardware task using the ICAP, usually in the range
of milliseconds [30], thus reducing the time overheads
introduced by R3TOS as the three processes can be
concurrently carried out.

8 CASE STUDY: SDR APPLICATION

This section explains the way R3TOS helps developing
SDRs with dynamically changeable characteristics, such as
communication standard, modulation, speed, or transmis-
sion spectrum [31]. SDRs can adapt their functionality
depending on the environment with the objective of
ensuring safe, uninterrupted and ubiquitous communica-
tions. When used together, R3TOS and SDR permit to build
highly adaptive systems, with capability to deal not only
with “internal” hazards emerging on chip, i.e., sponta-
neously occurring faults, but also with “external” threats
appearing in the environment where the chip is working,
for example, spontaneous interferences, or to reconfigure
themselves based on network configuration, for example, a
different set of networks go down and up as the user moves
around, and to serve the computing requests triggered by
the user, for example, multimedia or video gaming.

Some of the capabilities described above have been
demonstrated with a R3TOS-based SDR multistandard
transmitter prototype shown in Fig. 8. The data to be
transmitted are digital video that is first compressed using
JPEG, i.e., data are preprocessed.

The prototype is based on the proof-of-concept develop-
ment presented in Section 7, but extended with a super-
heterodyne radio frequency (RF) front end and a color
352� 288 pixels image sensor that provides 8-bit RGB
outputs. Consequently, the R3TOS implementation shown
in Fig. 7 is coupled with some specific static logic to drive
the RF front end, i.e., A/D and D/A controllers, and for
receiving the RGB video signal to be transmitted. Central to
this logic are ping-pong memories, which are composed of
two memories that are alternatively switched between read
and write. Namely, while one of the memories in the D/A
controller is written by R3TOS, the content of the other
memory is transmitted through the RF front end, and
similarly, while one of the memories of the A/D controller
is read by R3TOS, the other memory is filled with data
received from the RF front end.

1552 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

Fig. 7. FPGA implementation of R3TOS prototype.

TABLE 2
Measured Times in the R3TOS Prototype

Our SDR prototype implements a simplified version of

three of the currently most used communication standards:

IEEE 802.11 WiFi, IEEE 802.16 WiMAX, and IMT-2000

UMTS (also known as 3G), allowing to switch them on the

fly to achieve smooth transition of the service as the system

moves from one network connection to another. However,

as we have not implemented the communication standard

detection functionality yet, standard switches are forced by

pushing some buttons in the prototype. Additionally, our

SDR prototype implements a “home-made” cognitive radio

solution that is able to autonomously detect and circumvent

any interferences provoked in the transmission channel by

using spectral switches.

The SDR functionality was first developed and validated

using Xilinx System Generator tool. Based on the system

generator models, we decided to implement the task set

listed in Table 3. The data buffers of the tasks were

implemented using four BRAMs. The three communication

standards implemented by our SDR prototype as well as

our cognitive radio solution are based on the aforemen-

tioned tasks, which are executed in a different order and

with some minor changes in each case. For instance, the

generation polynomial used in the convolutional encoder is

different in WiMAX and UMTS standards, and the

interleaving pattern and length changes from one standard

to the other. Therefore, the tasks were parameterized to

allow small online adjustments to be made to fulfil the

requirements of each communication standard. To ease this

process, the adjustable parameters were mapped to directly

accessible FPGA resources, such as BRAMs and LUTs.

Xilinx system generator tool was used to translate the high-

level task models into VHDL code, which was in turn

adapted to the partial reconfiguration design flow, i.e.,

nonreconfigurable resources were extracted (DCM, BUFG,

etc.). The modified VHDL was then combined with R3TOS

specific logic, for example, TCL, and placement constraints,

for example, PRRs definition, prior to synthesizing it using

XST to obtain the partial bitstreams of the tasks. Finally, the

latter bitstreams were loaded to the bitstream memory in

the R3TOS prototype.

The fact that our SDR application was programmed in a

software environment, i.e., Xilinx software development kit

(SDK), demonstrates the feasibility of accessing FPGA

resources using R3TOS-based traditional software-like

interfaces. Moreover, we note that we enjoyed a nearly

complete high-level programming experience as the SDR

hardware tasks were implemented using currently existing

high-level hardware design tools, i.e., Xilinx system gen-

erator.
At runtime, the order of execution of the tasks is dictated

by the application running on the main CPU. Since most of
the times there is only one task ready, the R3TOS scheduler
does not perform a significant role in the SDR application
herein described. On the other hand, R3TOS allocator
does play a key role as it optimizes data transfers among
successive SDR tasks in the DAG. Most of the times, data
producer and consumer tasks are packaged in pairs within
the same clock region in order to promote sharing of the
data buffers between them as well as to reuse previously
configured circuitry. The reason to package only two tasks
together is the layout of the used FPGA, which has only
three heterogeneous resource columns (e.g., BRAM and
DSP48). Indeed, SDR tasks cannot be placed in the CLB
sandbox, as they need to use BRAMs and DSP48s. We note
that the only specific consideration assumed at design time
to ease the packaging of the tasks is the position of their
IDB and ODB. This is a minor aspect which does not
constrain the flexibility of relocation: tasks can be allocated
to any other position in the FPGA where there are the
required resources. The only implication is that the position
of the data buffers to be accessed through the ICAP are
different for each task.

In our SDR prototype, data consumer tasks directly
access producer tasks’ IDB 45 percent of the times in the
case of WiFi, 50 percent in WiMAX, 57 percent in UMTS,
and 25 percent in the case of our cognitive radio solution.
Likewise, DRTs are used in the 27 percent of intertask
communications carried out in WiFi, 20 percent in WiMAX,
14 percent in UMTS, and never in our cognitive radio
solution.

We used the IDB and ODBs of the tasks as test points to
check the correctness of the system functioning. The content
of these buffers was read back in our prototype and
compared against the simulation produced in the system
generator simulation environment. Using this method, we
verified that the data sent to the RF front end was correct.

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1553

Fig. 8. SDR demonstrator prototype: block diagram.

TABLE 3
Task Set in the SDR Prototype

While this case-study allowed us to show the feasibility

of using R3TOS for the rapid development of dependable

reconfigurable applications, it is not well suited to fully

show the extent of its possibilities. Indeed, the execution

phases of the SDR application are significantly shorter than

their allocation phases (tE;i < tA;i), resulting in relatively

large time overheads and limited multi-tasking. Therefore,

the time needed to transmit an image ranges from less

than a second (in WiFi and WiMAX) up to some seconds

(in UMTS and cognitive radio), which is not sufficient for

most of applications, e.g., video streaming. Better results are

expected when using R3TOS in applications with a high

computation to allocation ratio.
Nevertheless, we would like to note that R3TOS enables

new possibilities that could be explored in the scope of
SDR as well. For instance, SDR hardware tasks could be
based on a small processor (e.g., PicoBlaze) coupled with
custom logic instead of exclusively on custom hardware.
By doing so, a better trade-off between resource usage
(task size would be smaller) and execution time (it would
be longer) could be achieved. Hence, allocation times
would be likely to be smaller than execution times, thus
approaching the situation where R3TOS is expected to
achieve better results. Moreover, this scenario is interesting
as other functionality could be executed on the saved area,
allowing to target more sophisticated applications.

Finally, we would like to point out that R3TOS is
currently being also used to develop a K-means clustering
application based on the work presented in [32] and a
highly reliable traction controller for a railway vehicle. In
the scope of our K-means application, preliminary results
show a 10-fold performance improvement with regard to
a software implementation.

9 CONCLUSIONS

This paper has introduced the bases of R3TOS, a novel
reliable reconfigurable real-time operating system aimed at
putting the versatile resources embedded in modern FPGAs
at the service of computation in a reliable way, thus
promoting direct translation of electronic advances into
system performance improvement. By sharing FPGA
resources in time, R3TOS is able to execute very large
applications in small devices, harnessing the maximum
performance of the available silicon.

While one of the key features of R3TOS is its ability to
manage FPGA resources at low-level, it presents the user
with a set of high-level OS-like mechanisms and services,
for example, task relocation and low-level data exchanges
among tasks, which abstract low-level related issues and
ease the development of reconfigurable applications. Cen-
tral to R3TOS is real-time performance and fault tolerance.
While both software and hardware tasks are scheduled
based on real-time constraints, software tasks are executed
in a main CPU, and hardware tasks are dynamically
mapped to nondamaged FPGA resources and individually
provided with a reliable clock source of the highest usable
frequency by each task. Damaged resources are located by
means of a Frame_ECC-based self-diagnosis mechanism.

A proof-of-concept implementation of R3TOS on Xilinx

Virtex-4 FPGAs and a case-study SDR demonstrator were

also presented in this paper. Future work will build on the

prototype presented in this paper to produce a more mature

version of R3TOS on the latest FPGAs. We also expect to

revisit the codesign process of the SDR application reported

in this paper to improve its performance. Finally, we want

to characterize the behavior of R3TOS in the scope of other

applications belonging to different fields.

REFERENCES

[1] C. Dubach, T.M. Jones, E. Bonilla, and M.F.P. O’Boyle, “A
Predictive Model for Dynamic Microarchitectural Adaptivity
Control,” Proc. Ann. IEEE/ACM Int’l Symp. Microarchitecture,
2010.

[2] X. Iturbe, K. Benkrid, T. Arslan, I. Martinez, M. Azkarate, and
M.D. Santambrogio, “A Roadmap for Autonomous Fault-Tolerant
Systems,” Proc. Int’l Conf. Design and Architectures for Signal and
Image Processing, 2010.

[3] G.J. Brebner, “A Virtual Hardware Operating System for the
Xilinx XC6200,” Proc. Int’l Workshop Field-Programmable Logic,
Smart Applications, New Paradigms and Compilers, 1996.

[4] J.Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R.
Lauwereins, “Infrastructure for Design and Management of
Relocatable Tasks in a Heterogeneous Reconfigurable System-
on-Chip,” Proc. Conf. Design, Automation and Test in Europe, 2003.

[5] H. Walder, “Operating System Design for Partially Reconfigurable
Logic Devices,” PhD thesis, Swiss Fed. Inst. of Technology,
Zurich, Switzerland, 2005.

[6] H.K.-H. So, “BORPH: An Operating System for FPGA-based
Reconfigurable Computers,” PhD thesis, Univ. of California at
Berkeley, 2007.

[7] G. Wigley and D. Kearney, “Research Issues in Operating Systems
for Reconfigurable Computing,” Proc. Int’l Conf. Eng. Reconfigur-
able Systems and Algorithms, 2002.

[8] B. Zhou, W. Qiu, and C. Peng, “An Operating System Framework
for Reconfigurable Systems,” Proc. Int’l Conf. Computer and
Information Technology, 2005.

[9] R. Pellizzoni and M. Caccamo, “Adaptive Allocation of Software
and Hardware Real-Time Tasks for FPGA-Based Embedded
Systems,” Proc. IEEE Real-Time and Embedded Technology and
Applications Symp., 2006.

[10] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P.
Sundararajan, “A Self-Reconfiguring Platform,” Proc. Int’l Conf.
Field-Programmable Logic and Application, 2003.

[11] J.A. Williams and N.W. Bergmann, “Embedded Linux as a
Platform for Dynamically Self-Reconfiguring Systems-On-Chip,”
Proc. Int’l Conf. Eng. Reconfigurable Systems and Algorithms, 2004.

[12] J.A. Williams, N.W. Bergmann, and X. Xie, “FIFO Communication
Models in Operating Systems for Reconfigurable Computing,”
Proc. Ann. IEEE Symp. Field-Programmable Custom Computing
Machines, 2005.

[13] A. Donato, F. Ferrandi, M. Santambrogio, and D. Sciuto,
“Operating System Support for Dynamically Reconfigurable SoC
Architectures,” Proc. IEEE Int’l System-on-Chip Conf., 2005.

[14] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley,
and R. Sass, “Hthreads: A Hardware/Software Co-Designed
Multithreaded RTOS Kernel,” Proc. IEEE Conf. Emerging Technol-
ogies and Factory Automation, 2005.

[15] H.K. So and R. Brodersen, “A Unified Hardware/Software
Runtime Environment for FPGA-Based Reconfigurable Compu-
ters Using BORPH,” ACM Trans. Embedded Computing Systems,
vol. 7, no. 2, pp. 1-28, 2008.

[16] E. Lubbers, “Multithreaded Programming and Execution Models
for Reconfigurable Hardware,” PhD thesis, Univ. of Paderborn,
Germany, 2010.

[17] A. Ismail and L. Shannon, “FUSE: Front-End User Framework for
O/S Abstraction of Hardware Accelerators,” Proc. Ann. IEEE Int’l
Symp. Field-Programmable Custom Computing Machines, 2011.

[18] D. Gohringer, M. Hubner, E.N. Zeutebouo, and J. Becker,
“Operating System for Runtime Reconfigurable Multiprocessor
Systems,” Int’l J. Reconfigurable Computing, vol. 2011, article 3,
2011.

1554 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

[19] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez,
“Methods and Mechanisms for Hardware Multitasking: Executing
and Synchronizing Fully Relocatable Hardware Tasks in Xilinx
FPGAs,” Proc. Int’l Conf. Field-Programmable Logic and Applications,
2011.

[20] X. Iturbe, K. Benkrid, R. Torrego, A. Ebrahim, and T. Arslan,
“Online Clock Routing in Xilinx FPGAs for High-Performance
and Reliability,” Proc. NASA/ESA Conf. Adaptive Hardware and
Systems, 2012.

[21] S. Srinivasan, P. Mangalagiri, Y. Xie, N. Vijaykrishnan, and K.
Sarpatwari, “FLAW: FPGA Lifetime Awareness,” Proc. Ann.
Design Automation Conf., 2006.

[22] S. Feng, Shuguang, S. Gupta, A. Ansari, and S.A. Mahlke,
“Maestro: Orchestrating Lifetime Reliability in Chip Multiproces-
sors,” Proc. Int’l Conf. High-Performance Embedded Architectures and
Compilers, 2010.

[23] J. Angermeier, D. Ziener, M. Glass, and J. Teich, “Stress-Aware
Module Placement on Reconfigurable Devices,” Proc. Int’l Conf.
Field-Programmable Logic and Applications, 2011.

[24] K. Bertels, Hardware/Software Co-Design for Heterogeneous Multi-
Core Platforms: The Hartes Toolchain. Springer, 2011.

[25] D. Grewe and M.F.P. O’Boyle, “A Static Task Partitioning
Approach for Heterogeneous Systems Using OpenCL,” Proc. Int’l
Conf. Compiler Construction, 2011.

[26] T. Becker, W. Luk, and P.Y.K. Cheung, “Enhancing Relocatability
of Partial Bitstreams for Run-Time Reconfiguration,” Proc. Ann.
IEEE Symp. Field-Programmable Custom Computing Machines, 2007.

[27] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Martinez, “Empty
Resource Compaction Algorithms for Real-Time Hardware Tasks
Placement on Partially Reconfigurable FPGAs Subject to Fault
Occurrence,” Proc. Int’l Conf. Reconfigurable Computing and FPGAs,
2011.

[28] X. Iturbe, K. Benkrid, A. Ebrahim, C. Hong, T. Arslan, and I.
Martinez, “Snake: An Efficient Strategy for the Reuse of Circuitry
and Partial Computation Results in High-Performance Reconfi-
gurable Computing,” Proc. Int’l Conf. Reconfigurable Computing and
FPGAs, 2011.

[29] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, T. Arslan, and I.
Martinez, “Runtime Scheduling, Allocation and Execution of
Real-Time Hardware Tasks onto Xilinx FPGAs Subject to
Fault Occurrence,” Int’l J. Reconfigurable Computing, vol. 2013,
article 905057, 2013.

[30] M. Liu, W. Kuehn, L. Zhonghai, and A. Jantsch, “Run-time Partial
Reconfiguration Speed Investigation and Architectural Design
Space Exploration,” Proc. Int’l Conf. Field-Programmable Logic and
Applications, 2009.

[31] J. Mitola, “Software Radios: Survey, Critical Evaluation and
Future Directions,” IEEE Aerospace and Electronic Systems Magazine,
vol. 8, no. 4, pp. 25-36, Apr. 1993.

[32] H.M. Hussain, K. Benkrid, A.T. Erdogan, and H. Seker, “Highly
Parameterized K-Means Clustering on FPGAs: Comparative
Results with GPPs and GPUs,” Proc. Int’l Conf. Reconfigurable
Computing and FPGAs, 2011.

Xabier Iturbe received the MSc degree in
electronics and telecommunications from the
University of the Basque Country in 2006, the
research proficiency degree from the same
university in 2009, and the PhD degree in
electronics from the University of Edinburgh in
2013. Since 2006, he has been working in the
Electronics Department of IK4-Ikerlan research
center, where he has been involved in a
number of research projects both with the

industry and academia. From 2009 to 2013, Dr. Iturbe was also a
member of the System Level Integration Research group in the
University of Edinburgh, where he was the principal designer of
R3TOS. His current research interests include FPGAs with special
focus on methods and tools for developing runtime reconfigurable
applications and hardware virtualization.

Khaled Benkrid received the PhD degree in
computer science, the first Class Ingenieur
d’Etat degree in electronic engineering, and the
executive MBA degree. He is a senior member
of the IEEE, chartered UK engineer, and senior
lecturer in electronic engineering at the Univer-
sity of Edinburgh. His research has been
focused in high-performance computing using
reconfigurable hardware and electronic design
automation. More recently, he has been explor-

ing other accelerator technologies such graphics processor units and
multicore processors.

Chuan Hong received the BEng degree in
automation from Tianjin University in 2009 and
the MSc degree in electronics and electrical
engineering from the University of Kent in 2010.
He joined the System Level Integration Re-
search group, University of Edinburgh in 2010 as
a PhD student. His current research interests
include development of FPGA-based systems
with intelligent fault-tolerant capability and fast
reconfiguration methods.

Ali Ebrahim received the BEng and MSc
degrees in electronics and electrical engineering
from the University of Glasgow in 2007 and
2008, respectively. He was a research assistant
with the University of Bahrain until 2010, and
then he joined the System Level Integration
group, University of Edinburgh as a PhD student.
His current research interests include dynamic
partial reconfiguration for fault tolerance and
intellectual property security in FPGA devices.

Raul Torrego received the MSc degree in
automation and industrial electronics from the
University of Mondragon in 2008, where he is
currently working toward the PhD degree. He is
a researcher in the Communications Depart-
ment of IK4-Ikerlan Research Center. His
current research interests include dynamic
partial reconfiguration, software-defined radios,
rapid prototyping tools, embedded systems, and
system on programmable chips.

Imanol Martinez received the MSc and PhD
degrees in industrial automation and electronics
from the University of Mondragon in 2002 and
2006, respectively. He joined the IK4-Ikerlan
Research Center in 2006. His current research
interests include system-on-chip architectures
for real-time and safety-critical systems as well
as model-based design methodologies.

ITURBE ET AL.: R3TOS: A NOVEL RELIABLE RECONFIGURABLE REAL-TIME OPERATING SYSTEM FOR HIGHLY ADAPTIVE, EFFICIENT,... 1555

Tughrul Arslan received the BEng and PhD
degrees in electronic engineering from the
University of Hull in 1989 and 1993, respec-
tively. He currently holds the chair of integrated
electronic systems at the School of Engineer-
ing, University of Edinburgh. He is a member of
the Integrated Micro and Nano Systems In-
stitute and leads the System Level Integration
group in this University. His current research
focuses on enhancing personal mobility and the

design of high-performance embedded wireless systems. He is a
member of the IEEE.

Jon Perez received the BEng degree in indus-
trial and robotics from the University of Mon-
dragon in 1999, the MSc degree in electronics
and electrical engineering from the University of
Glasgow in 2000, and he finished his doctoral
studies in computer science at TU Wien in the
field of safety-critical embedded systems in
2011. He currently leads the Electronics Depart-
ment and Embedded Systems research in the
IK4-Ikerlan Research Center. His current re-

search interests focus on distributed real-time and safety-critical
embedded systems. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1556 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

