

Abstract— We present an academically developed framework

for real time computations in Micro UAVs and Ground

Robotics. Dynamic Partial Reconfiguration is used as a

hardware accelerator in a heterogeneous environment which

enables computationally demanding applications to take

effective advantage of adaptive hardware resources while

maintaining a high flexibility of software. We demonstrate our

hypothesis by prototyping a workable application of aerial

image acquisitioning and processing using partially

reconfigurable hardware. We present an in-depth evaluation of

proposed architecture in terms of its benefits in area, power

consumption and timings.

Keywords- Micro UAV, FPGA, partial reconfiguration,

hardware platform, post disaster assesment.

I. INTRODUCTION

icro Unmanned Aerial Vehicles (UAVs) are designed

to be easily transportable platforms for rapid field

deployments with very small payloads. These systems

promise an easy and flexible deployment in remote areas at

much reduced costs. These systems have gained a lot of

acceptance in military and civil applications due to their high

portability and ease of operation. Such platform could be

hand carried by a single person and later operated by

minimal man power using Ground Control Station (GCS).

GCS are usually fitted in ground vehicles that are capable of

acquiring downlinked information from Micro UAV and

uplink commands for flight control, vision system control,

flight mission and way points. Micro UAVs find wider

acceptance in post disaster assessment in performing rapid

digital photogrammetric surveys. In order to plan an

effective rescue operation, it is mandatory to evaluate impact

of calamity by latest geo-referenced satellite data of hit area

but due to the problems pertaining to weather and satellite

data availability, timely access to such information is very

difficult. Micro UAVs offer an effective solution to this

problem by offering an affordable and timely access to

surveillance imagery of the hit areas [2]. The usage of Micro

UAVs come with many constraints due to their small size

and payload capabilities (which, in our case is limited to 400

grams), therefore the imaging sensors and onboard computer

must be of very compact size with ultra low power

consumption while must maintain their computational

capability to mitigate problems related to real time deadlines,

Manuscript received February 25, 2011. Moazzam Hussain, Ahmad

Din, Massimo Violante and Basilio Bona, are associated with Dipartmento

di Automatica e Informatica (DAUIN), Politecnico di Torino, Italy.

 (e-mail: {moazzam.hussain, ahmad.din, massimo.violante, basilio.bona}

@polito.it).

unreliable wireless links for GCS and scarce resource of

bandwidth [10]. This makes the problem of designing

payload electronics for such platforms two folded: first, it

has to be very compact and secondly, it must be able to

provide necessary functionality at very low power

consumption. Therefore, single board computers are gaining

more and more acceptance in carrying all the sensors and/or

computing hardware [8]. These computers save space but

accessibility and maintainability of such computers pose a

big challenge. In order to perform maintenance, firmware

update or integrity check of the hardware, the board must be

plugged out of the fixture and re-mounted back upon

completion of activity. In order to tackle such problems, we

propose the usage of virtual hardware with Dynamic Partial

Reconfiguration (DPR) of FPGA, while consistency

checking/firmware updates being performed by onchip

configuration manager (i.e. MicroBlaze or Power PC) when

directed through wireless/serial wired link.

The main contribution of this paper is the design of a

framework for configurable computing paradigm, and its

evaluation on a realistic Micro UAV application followed by

its prototyping on a custom hardware board with Xilinx

XC2V1000 FPGA. However, the architecture is general;

and is capable of supporting hardware software co-design,

reconfigurable computing, real time sensor data

acquisitioning/processing and performing tasks related to

telemetry with a single board computer (possibly using a

high-end FPGA) for ground and aerial robots. Moreover,

being target to image processing, it is able to perform real

time image acquisitioning and display features.

The paper is organized as follows. After a brief review of

previous work, we give design description of custom

developed framework followed by a description of FPGA

based imaging platform. Then we present a solution to the

problem of aerial image acquisitioning and processing for

mosaic generation of post disaster assessment using the

proposed architecture. In the last section of this paper, we

present results concerning timings in multiplexing various

cores through partial reconfiguration and quantitative

analysis of the performance of the system. Finally, we draw

some conclusions and propose extensions to the current

activity.

II. PREVIOUS WORK

Traditional FPGA designs lack flexibility and are designed

to implement a specific computing problem. SRAM Based

FPGAs offer the ability of being partially configured at run

time without affecting functionality of other working logic.

An Adaptively Reconfigurable Computing Framework for

Intelligent Robotics

Moazzam Hussain, Ahmad Din, Massimo Violante, Basilio Bona

M

2011 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM2011)
Budapest, Hungary, July 3-7, 2011

978-1-4577-0839-8/11/$26.00 ©2011 IEEE 996

This feature is called Run Time or Dynamic Partial

Reconfiguration (DPR) of FPGA. Run Time Reconfiguration

allows dynamic multiplexing of various components in

FPGA and can speed up the applications by allowing

programmable hardware resources to be customized for an

arbitrary fixed algorithm. The potential benefit of using run-

time reconfiguration approach is obviously the significant

reduction of reconfigurable resources and therefore results in

reduced dynamic power consumption due to reduced chip

area with added benefits of reduced cost of hardware, system

level form factor optimization, enhanced performance and

simple hardware design. Manet et al [5] propose a

framework for DPR in imaging and signal processing

applications. Compared to a completely fixed

implementation, reconfigurable computing can result in

reduction of FPGA device utilization by up to 50%; while in

term of performance, as compared to a fully software

implementation, the run-time reconfiguration approach is

over 30 times faster [13]. DPR allows efficient

implementation of computationally complex algorithms that

otherwise will not fit the given smaller FPGA. Through

timesharing of computational resources in smaller segments

of a demanding algorithm, and, by instantiating less

hardware in a smaller FPGA the length of critical path in the

digital design can be reduced. Such implementation

guarantee reduced dynamic power consumption while there

is a slight rise in power consumption during the process of

partial re-configuration [4], however this time interval is

significantly less than the overall execution time of the

algorithm. Despite the promising benefits of dynamic partial

reconfiguration, its effectiveness is blotched by complex

system development process and limited tool support [1].
The ability to perform high speed computations under
stringent constraints of power and limited form-factor of
platform is addressed by many researchers. Henrik et al [8]
propose a hardware platform of a credit card size that
implements a small flight control system for UAVs with
efficient sensor interfacing using FPGA/DSP technology and
offers computational power upto 2 GFlops/sec. [9] uses soft-
core Nios processor for pan-tilt control of a camera deployed
with UAV that can keep camera fixed on a specific angle
using a gyro stabilized platform for vision and tracking. [10]
propose a lightweight FPGA based object identification and
tracking for Micro UAVs that adds to autonomous flight by
enabling the onboard computer to decide, based on the
information gathered from environment in addition to uplink
from ground. This feature is particularly helpful in case of
unreliable downlink or hostile environment with unknown
terrains. Osamah et al [11] propose a reliable computing
framework with reconfigurable implementation of avionics
and control computers based on "graceful degradation
model". [12] propose a novel autopilot description using
FPGA based parallel processing for signal conditioning. [6]
address real time FPGA implementation of feature detection
and tracking for Micro UAV systems as a solution to
onboard obstacle avoidance using feature based matching.
During the flight of Micro UAV, its motion is modelled by
an Affine Model [7] and therefore the need of high speed
computation of Affine Transform is undeniable. A

contribution in reconfigurable, intelligent co-operative
robotics based on Dynamic Partial Reconfiguration has been
made by [20], where a case study of individual
configurability and task level re-organization at run time is
implemented in a team of robots to facilitate flexible,
efficient and fault tolerant implementation of complex
behaviours.

III. FRAMEWORK

This section describes our efforts in designing a custom

framework that helps rapid development of single board

computers in robotics. This framework is envisioned as a

design-base for creating different robotics applications by

simplifying the generation of hardware based architecture

that require minimal design and verification effort from the

user. This framework is designed in view of the fact that

most of the robotics and algorithm designers confront a

learning curve while working with electronics system design

and low level HDL programming. Although through the

usage of Celoxica, Handle C, Impulse Co-developer or

Matlab, now it is possible to automatically generate HDL

code for a specific FPGA but there is almost always a huge

margin of improvement in terms of frequency and chip area.

Our proposed architecture is designed to enable a mechanical

system to fly and/or navigate with minimal hardware design

effort.

The development of partially reconfigurable framework is

motivated by the fact that onboard computers usually work in

a controlled loop in autonomous systems. For example, if

onboard inertial sensors update attitude information of

vehicle (involving roll, pitch and yaw) after every 20 ms and

given highly parallel architecture and high speed

computation (being completed in 3ms), the navigation

controller must wait for 17 ms for new data. During this

interval, the hardware resources could be rescheduled for

another computationally demanding algorithm and when

needed, the mission computer hardware could be loaded

through configuration interface of FPGA with minor timing

penalty. The execution of previous computations could be

resumed upon completion of navigation related tasks. This

framework is particularly suited to Micro UAVs and ground

robots having severe limitations in terms of payload

electronics size or cannot afford deployment of

computationally capable hardware due to stringent power

budgets.

The growth in computational capability of FPGAs and

bandwidth of onchip buses is the other motivation for the

proposed framework. In modern FPGA devices like Xilinx

Virtex- 4/5/6 FPGAs we can obtain data rates of multiple

Gbits/sec with on chip buses. Partial Reconfiguration of

FPGA is performed using ICAP interface. In Xilinx Virtex-II

Family, the ICAP has a width of 8-bits while in modern

families it reaches to 32-bits and enables DPR with

exchanged data rates reaching upto 3 Gbits/s at 100 MHz

[5], this reduces partial reconfiguration time exponentially

(when compared to Virtex-II) and is particularly suited to

robotics and UAVs.

997

To our knowledge very few frameworks for mobile robotics

have been proposed that offer ready to go modules with Plug

n Play features based on DPR. Furthermore very few

hardware architectures target real time computations on

single board FPGA based computers with fully

parametrizable cores for generic robotic architectures

(generic with run time power management features).

A. Framework Architecture

The proposed framework consists of many standard and

custom pre-verified reusable IP cores (in Verilog and

VHDL) that can rapidly be integrated through automated

scripts and can be simulated and synthesized to given FPGA

technology. The usage of pre-verified IP offers an added

advantage in prototyping the resulting system on FPGA. As

Chipscope cores cannot be inserted in a partially

reconfigurable region [5], using pre-verified IPs, the

designer is relieved from in-chip debugging and if needed,

interface signals may be evaluated for their correct

functionality. The generic (fully parametrized) nature of

cores for navigation controller, sensor data acquisitioning

and imaging enable them to be deployed with a wide range

of actuator/servo or vehicle dynamics. This framework is

designed to be extendible to match specific needs of user.

Considering the nature of target applications that work under

severely limited budget of power, we implemented efficient

power management strategy based on clock gating. The

system runs on a system clock that clocks most of the

hardware sub-systems, and CPU clock that clocks the onchip

RISC. Each component is wired in a way that its input clock

can be disabled to reduce power consumption and is

controlled by the RISC Processor. The FPGA region(s)

under DPR is also gated through bus macros to implement a

power save mode as programming a blanking bitstream will

not reduce power consumption in the region [4].

Given the structure of Reconfigurability, the static part

usually consists of interface specifications like Ethernet/

Ethercat, GPIO, Chip Bus Architecture, Serial interfaces,

SDRAM/SRAM/Flash Memory Controller, VGA, Timers,

DMA, watchdog, DSP (TI TMS320C64x) interface, Flash

Interface, Interface FIFOs etc, and a configuration manager

(usually a RISC Processor). The computationally demanding

payload cores like navigation computer, way point detector

and mission computer, image/data compression, Image

transformations, feature matching engines, Kalman filters

and many more are implemented as a Dynamically

Reconfigurable Blocks. It may be noted that each peripheral

has a local FIFO that buffers single set of data to be read by

the reconfigurable core when needed. As this framework is

under development, we are still working on design and

development of many of reconfigurable IPs. The block

diagram of overall system with currently used case is shown

in Figure 1. The description of each IP in the framework

would require a lot of space and is beyond the scope of this

article.

Run time slot time allocation is performed by the

configuration manager by partially reconfiguring specified

regions in FPGA that guarantees effective utilization of on-

chip resources. This architecture offers an uncanny ability of

“mission change” on the fly that may be used in

implementing evolvable computing and complex behaviors

in co-operative robotics. When directed by the GCS or local

controller, the mission (the sequence and type of deployment

of partially reconfigurable cores) could be modified

according to the changed needs. For example, upon receiving

an interrupt for immediate autonomous landing, the

configuration manager must remove image compression

cores from the schedule of timeslots and must schedule

navigation controller with vision based tracker to implement

autonomous landing. Likewise, GPS processing core must be

scheduled after 1-second according to the update rate of GPS

data and during the intermittent interval, the resources

occupied by GPS computational core may be allocated to

other algorithms.

Figure 1. Block diagram of overall system

B. Design Process

For the development of this framework, we used Xilinx ISE

with Early Access Partial Reconfiguration Tools and Plan

Ahead. For the end user, the usage of this framework is

simplified by its GUI that hides unnecessary details from the

end user. The user is allowed to select the static part IP set,

and collection of IP cores to be used in Dynamic Part. The

framework already embeds the partial bitstreams of

reconfigurable blocks with flexibility of being deployed to

either of the two already developed floor plans shown in

Figure 3.

 Figure 2. Two Floor Plans for XC2V1000

In order to incorporate these partial bitstreams in the final

hardware, the user must generate flash storage file with a

collection of partial bitstreams. This file is programmed in

the onboard flash before the start of mission using onchip

RISC. Once the user clicks “Generate Scripts” option in the

static configuration region, relevant HDL files, NGCs and

bus-macro files are copied in a directory structure as

proposed by Xilinx to be used with PlanAhead for DPR and

top wrapper is automatically generated with instances of all

the selected static set IPs, bus macros and reconfigurable

Ublaze/ Power

PC

ICAP
Memory

Controller

SDRAM

PLB IPs like DMA, USB,
Ethernet MAC, CAN, Debug

interfaces, Space wire, UART
etc

Reconfigurable IP

Region

Core Connect Bus
Architecture

Bus Marcro

Affine Computer

LZW and Sliding

Window

Transmitter

Partially Reconfigurable Blocks

998

blocks. The top level script invokes Tcl scripts of Xilinx

PlanAhead for Partial Reconfiguration Flow and full/partial

bitstreams are generated in the assigned directories, ready to

be deployed with the hardware.

IV. DESIGN OF RIS

Nowadays, the mainstream design template foresee the

adoption of an embedded processor, running an application

software, coupled with specific hardware modules to

accelerate the computations that are particularly time-critical,

and to provide versatile input/output interfaces. Therefore,

novel prototyping platforms should thus provide processor

core with sufficient program memory, adequate

reconfigurable resources, flexible set of interfaces and a

complete software model of system for efficient simulation

[3]. The ideal platform must support implementation of

design features, interconnectivity of IP blocks and must have

enough resources to finalize the refinements in the design

and get them fit in the programmable chip. Considering our

very special needs of diverse sensor interfacing, high

computational capability and ultra compact size; we

envisioned a real time FPGA based platform, capable of

frame acquisitioning from camera link and execute

computationally intense tasks in real time with a wide set of

interfaces. These requirements were materialized with the

development of new low-cost platform named RIS. This

board may also be deployed in industrial and medical display

market, cryptography, control, high speed interfacing and

many more. The form factor of the board is especially suited

to the limited space in COTS Robotic Platforms and Micro

UAVs.

The board is equipped with 4- serial ports based on RS-422,

one Giga-bit Ethernet Interface, Four optically isolated

digital I/Os, 32- MB (32-bit wide) SRAM and two way

connection for frame acquisitioning decoder using National

DS90288 and control for camera link using DS90287 ICs

and 6-Mounting holes. The data received from camera is

buffered in a FIFO, and written to SRAM through DMA

Controller in real time. If needed, the computational

capability of the platform can be scaled using external DSP

daughter card that performs read/write operations through its

EMIF-A and FPGA Pins using 100-pin I/O connector. This

connector could also be used as a wide bus general purpose

I/O. Camera Link connector is carefully placed for high

speed LVDS connectivity and to get fit easily into a

mechanical enclosure with proper impedance matching of

high speed traces on board. The speed of the connectivity

between external DSP processor and the FPGA depends

upon their mutual distance, electrical characteristics of the

connector and the boards; which directly affect the setup and

hold uncertainty windows. The connection has been

successfully validated to establish a high speed connection of

upto 1-Gbits per second between the elements using 64-bit

EMIF-A. Several push button and DIP switches are available

for user interaction with the system and the user can also use

the VIO cores of Xilinx chipscope to generate the control

signals during the upbring process.

Figure 3. Block Diagram and Image of RIS during Up-bring

V. IMPLEMENTATION OF DISASTER ASSESSMENT AND

AERIAL DATA ACQUISITIONING/PROCESSING

The acquired images must be transmitted from Micro
UAV to ground station so that a mosaic of the images could
be generated to assess level of destruction to infrastructure
and property. The transmission of a full image (from Bobcat
Imperx Camera) would require a bandwidth of (1000x1000
pixels with 8-bits per pixel) 8-Million bits per image. In our
case, we plan to transmit at least 4 Frames per Second (FPS).
Incorporating such a high speed transmission in a Micro
UAV would surely deplete onboard batteries in a matter of
seconds with added difficulties of portability of wireless
transmitters. We propose to perform geometric alignment of
images at lower resolution using onboard reconfigurable
hardware and mosaic generation at GCS. Using the proposed
framework from Section-III, we developed a partially
reconfigurable geometric transformation hardware core. The
output of the core is 100x100 geometrically aligned images
having 8-bits per pixel with minimal loss of information.
This is followed by LZW type compression in hardware.
These techniques enable us to send sequence of compressed
4-FPS (including the overheads of sliding window control) to
GCS at the bandwidth of 115 Kbits/sec and deployment of
low power wireless transmitters.

In order to generate a transformed image from the
acquired images and vehicle attitude information, we used
forward mapping with geometric transformations followed
by bi-cubic interpolation that uses input image to generate
spatial positions and intensity values of target image. These
geometric transformations include Scaling and Rotation in
all three axes to compensate vehicle attitude. Camera
parameters like CCD resolution, CCD diagonal size (in
meters), focal length of the lens, vehicle altitude (height from
ground) and attitude (Roll, Pitch and Heading) are used to
compute resulting transformation of the image and scale
factor between acquired aerial and satellite or assumed target
reference image resolution. The non integer downscaling in
both axis of the (UAV) acquired image is implemented using

999

the following transformation (for homogenous co-ordinate
system).



















=

1000

0100

00/10

000/1

/1

y

x

s

S

S

T

The roll, pitch and heading attitudes of the vehicle are
available from onboard Inertial Measurement Unit (IMU)
through serial interfaces and this information is updated
every 20 ms in our case. The usage of MEMS based ultra
compact IMU offer reduced power consumption and smaller
form factor yet accumulate more errors with the passage of
time. As we acquire images sequentially and run camera
under external trigger mode, we save the latest vehicle
attitude parameter stamp with the current image. We used
GPS as an absolute position estimation method and tied GPS
information along with IMU data to every transformed
image.

Figure 4. Block Diagram of Sensor Integration for Imaging

Since Micro UAV is subjected to 6-degrees of freedom and
its attitude may be different for every image, we need a
model to transform the camera co-ordinates into world co-
ordinates which in our case are assumed to be ENU (Local
East North Up or local geodetic) with East along X-axis,
North along Y-axis and height along Z-axis. We used angles
from onboard IMU to model transformation between earth
and Micro UAV co-ordinates and to compensate for
misalignments of CCD plane against the world plane. These
angles were used in 3D homogenous geometric rotation
transformation.

Due to the roll and pitch angles the acquired image will
contain distorted 2D perspective that has to be adjusted
while heading angle is taken as the angle from North and is
compensated accordingly. We use Θp, Θr, and Θh as the
pitch, roll and heading angles respectively. The rotation
matrices of the vehicle attitude are computed as:

1000

0100

00)cos()sin(

00)sin()cos(

1000

0)cos(0)sin(

0010

0)sin(0)cos(

1000

0)cos()sin(-0

0)sin()cos(0

0001

















 −

=



















−
=



















=

hh

hh

heading

rr

rr

roll

pp

pp

pitch

R

RR

θθ

θθ

θθ

θθ

θθ

θθ

From the above transformations, a combined
transformation is generated that compensates for perspective

and rotation one by one. The FPGA implementation of
proposed transformation requires rapid computation of
trigonometric functions and high speed access to onboard
storage. The hardware building blocks of the image
transformation consist of high frequency single cycle cordic
core, DMA to access onboard RAM with burst transactions,
fixed point arithmetic units and onchip FIFOs. The resulting
transformed image is subjected to high speed data
compression using custom developed LZW compression
engine. This core is fully parametrized for variable sized
dictionary storage that implements memory efficient
hardware. The timings of these systems are given in the next
section.

During the synthesis of partially reconfigurable blocks
(image affine module and LZW compressor) we learnt that
each module occupies less than 30% of XC2V1000 FPGA
and are suited to floor-plan with two smaller reconfigurable
regions for reduced sized bitstream. As the current
implementation does not require any other computation
related to vehicle guidance or navigation, we implement a
very simple slot scheduler application with rapid partial
reconfiguration of FPGA using MicroBlaze processor. We
implemented a power save modes in one of the
reconfigurable region permanently as it is not being used in
the current design. The other reconfigurable region switches
between image geometric alignment and compression
modules and is governed by onchip RISC. Similar power
save mode is implemented with static region IPs, so that they
should be enabled only in specific intervals or else should
stay in power save mode. Overall computing resources may
be put to a halt state upon detection of overflows in wireless
transmission link due to uncertainty in wireless links as
managed by a sliding window control. Implementation of
flash interface in the static part of FPGA can help storing
transformed images in the onboard flash. The speed of these
writes depends heavily on width of flash interface and
writing agility of the flash chip. This data is retrievable by
the GCS through wireless connection or wired (serial) link
by giving commands to onchip RISC.

VI. POST PROCESSING OF RECEIVED IMAGES

Image mosaicing is used to increase field of view (FoV) by
stitching many images together to obtain a single image.
Automatic Image mosaicing is a challenging task and require
a range of tasks, like alignments of images both at global and
local levels, feature extraction, feature matching, etc. Feature
based image mosaicing is one of the widely used method in
building mosaics because they are robust against larger
disparities. In these approaches, a set of corresponding
feature points are selected on the two images and
homography is estimated using these points only. Images
sent by Micro UAV are north aligned and affine transformed,
so view point and scale doesn't change significantly. In such
situation Harris corner detection [15] is a good option
because of its ease of implementation, and robustness against
noise and illumination [16] than SUSAN [17], SIFT [18] and
SURF [19], that in addition require higher computational
power and memory. Harris corner detector extracts feature
points from two images. Rotations and orientations are

1000

determined so that images can be matched. Homography was
estimated by nonlinear method of RANSAC. The hypothesis
of correct alignment was verified by comparing probabilities
of RANSAC generated inliers and outliers for a matched and
mismatched image. We compute the number of inliers and
number of features in the overlapped region and performed
thresholding to classify the two images as correctly aligned
or otherwise. Using these estimation images mosaic is
generated.

Figure 5. A sample mosaic of acquired aerial

images

VII. RESULTS

The proposed framework is prototyped on a custom platform

and its efficiency/affordability is evaluated in a

reconfigurable environment. Both the runtime applications of

image data processing and compression are evaluated for

their chip area (using XC2V1000 FPGA) and timing. Table-I

show the size of partial bitstream (without any pre-defined

floor plan) and time to complete execution at 80 MHz for

single aerial image.

Application Bitstream

Size

Exec.Time@ 80

MHz (Clock

Cycles)

Image Transform &

Interpolation

178 K Bytes 3 ms(

0.26Million)

LZW Compression 146 K Bytes 2 ms (0.15

Million)

Table-I: Bitstream size and Time for Reconfigurable Applications

The cycle count of image transformation and interpolation

filter remains almost the same for all the images, while the

cycle count of LZW compression fluctuates in wide ranges

as higher compression would result in more memory

accesses. Maximum numbers are reported in Table-I.

The partial bitstream could be loaded in the configuration

memory of FPGA through JTAG, select map or its subset

ICAP in RIS hardware. In proposed architecture, ICAP is

driven by onchip configuration manager. The in-circuit

DMA is designed to fetch bitstreams from external storage at

high speeds. Therefore, bottleneck may arise in speed of

fetching data while working with bigger bitstreams [5]. A

timing analysis in terms of “time to reconfigure” the

hardware (for partial bitstream covering 30% of XC2V1000

FPGA in Floorplan-2) through various configuration

interfaces is shown in table II:

Type of Configuration Interface Time for Partial

Reconfiguration

Parallel-4 470 ms

Platform USB 320 ms

ICAP using MicroBlaze @ 40MHz 3 ms

Table II: Time to Reconfigure with various Configuration

Interfaces

Now we evaluate the overall timings of the system.

Applicati

on

Time to

reconfigur

e

Frequency

of

occurance

Time to

complete

execution

Available

Slack

Attitude

acquisitio

n

Static Part 50 Hz 1 ms 19 ms

Image

Affine

3 ms 4Hz 3 ms 244 ms

LZW 3 ms 4 Hz 2 ms 245 ms

 Table-III: Overall Timings of the System

Upon Power Up, full bitstream with static blocks and image

affine and interpolation filter is loaded in FPGA. As given in

Table-III, the context switch between imaging and

compression filters is performed at a frequency of 4Hz. A

detailed timeline is shown below:

Figure 6. Timeline of Events

If we assume a minimum timing penalty in state transition of

logic blocks from power save to active mode or vice versa,

then it is obvious from timeline that the hardware remains

operative only during discrete intervals (10% of the overall

time) and otherwise it remains in the power save mode.

Similarly, the static part is active during the interval of

acquisitioning and processing of images otherwise it remains

in power save mode. Secondly, the proposed framework

architecture increases the computational capability of an old

FPGA device (XC2V1000) to enable it to run a demanding

algorithm that would occupy upto 75% of FPGA in a

tranditional design flow while still maintaining a power save

mode for more than 80% of the time.

The amount of compression on transformed images depends

upon the statistical parameters (like variance) in the images,

the lower the variance the higher is the compression ratio is;

and we got a range of compressed sizes ranging from 0.6 K

Bytes to 8 K Bytes per image. Compared to the original size

of the acquired image from camera before geometric

alignment, there is almost a 100-times size reduction with

minimal loss of information. This loss is further compensated

by acquiring multiple overlapped images per second. It is

important to note that given transformation and compression

techniques enabled efficient data transmission through low-

cost wireless link.

1001

An evaluation of power may be helpful in quantifying the

power saving during the operational life of the system. In [4],

it is clear that power consumption of the FPGA device rises

during the process of partial reconfiguration roughly by 30%.

As given in the timeline, we need to perform partial

reconfiguration only 8-times per second for 4-images and

this time is 5% of the total time. Therefore, we conclude that

despite the higher cost of power consumption during partial

reconfiguration, we are able to save much more power due to

power save modes of the device while still meeting real time

deadlines and maintaining hardware complexity to a

minimum.

VIII. FUTURE ACTIVITIES

This framework is still under development and the
proposed implementation is the very first practical
application of this framework. Once we have developed
enough RTL for IP blocks, we plan to publish it as an open-
source hardware library for intelligent mechatronics to
enable a continued growth of the framework. In the near
future, we plan to perform a thorough study of power
analysis (Watts per computation), further form-factor
reduction in future platforms and re-engineering for latest
FPGA technologies. An other direction of work is to modify
the base platform to LEON3 [14] and AMBA buses due to
their open-source nature and adaptability to a wider range of
FPGA manufacturers. As the complexity of the proposed
system grows, we need to develop more intuitive application
for resource (time slot) management of configurable
resources. This may even lead to use a small footprint
operating system. We plan to develop an Automated
Software Framework that generates target software
application by acquiring number of timeslots and time
allocation for each slot from the user and further simplify the
development of application.

IX. CONCLUSION

Configurable computing can be seen as hybrid of ASIC
and programmable processor. FPGA is ideally suited as
platform for configurable computing due to its ability of
getting dynamically structured in hardware according to the
need of the algorithm. For many demanding applications like
image processing, configurable computing can surpass
alternative solutions with much less power consumption. The
combination of dedicated hardware with fast configurability
is an interesting academic research topic and we presented a
framework based on reconfigurable computing prototyped on
low-cost but capable research platform architecture. Then,
we present an example implementation of image
transformation and compression on a reconfigurable SOC in
power and area constrained environment of Micro UAV.

X. REFERENCES

[1] Miguel L. Silca et al, Journal of Systems Architecture: the Euromicro
Journal, Support for partial run-time reconfiguration of platform
FPGAs, EURASIP Journal on Embedded Systems (Vol-8, issue3,
Article No. 16) 2008

[2] Benda H., Boccardo P., et al, Low cast UAV for Post-disaster
assessment. ISPRS, 2008 Page(s) 1373- 1380

[3] Patrick I Mackinlay1 et al, Riley-2: A Flexible Platform for Codesign
and Dynamic Reconfigurable Computing Research. FPL 1997. Pages:
91-100

[4] Hussain, M. et al, Power analysis of hardware based motion
estimation in a heterogeneous reconfigurable environment. ASQED-
2009 Pages: 325-329

[5] Philipe Manet, Daniel Maufroid et al, An evaluation of dynamic
partial reconfiguration for signal and image processing in professional
electronics applications. Eurasip Journal on Embedded Systems, 2008

[6] Tippetts, Beau et al, FPGA Implementation of a Feature Detection
and Tracking Algorithm for Real-time Applications, Advances in
Visual Computing,LNCS, Springer press, pages 682-691, 2007

[7] David, L., Video Stabilization and Object Localization Using Feature
Tracking with Small UAV Video. PhD thesis, Brig. University (2006)

[8] Henrik B. Christophersen et al, Small Adaptive Flight Control
Systems for UAV using FPGA/DSP Technology, AIAA 2006

[9] Ole C Jackobsen and Eric N Johnson, Control Architecture for UAV
Mounted Pan/Tilt/Roll Camera Gimbal. AIAA 2005

[10] Price, A. et al, Real time object detection for unmanned aerial vehicle
using FPGA based vision system. ICRA 2006, Page(s): 2854-2859

[11] Osamah A Rawashdeh, et al, A UAU test and development
environment based on dynamic system reconfiguration. WADS 2005,
Pages 1-7

[12] Alvis, W. et al, FPGA based flexible autopilot platform for unmanned
systems, Control & Automation, 2007. MED '07, pages.1-9

[13] Nikolaos S. Voros & Konstantinos Masselos, System Level design of
Reconfigurable System on Chip. FPL 2006. Page: 1-6

[14] www.gaisler.com

[15] C. Harris and M.J. Stephens, A combined corner and edge detector. In
Alvey Vision Conference, pages 147–152, 1988.

[16] C. Schmid, et al, Evaluation of interest point detectors. International
Journal of Computer Vision, 37(2):151–172, June 2000.

[17] S. M. Smith, Brady J. M, SUSAN- A New Approach to Low level
image processing”, International Journal of Computer Vision, 23(1):
45- 78,1997

[18] DG. Lowe, Recognition from Local Scale-Invariant Features,
Proceedings of the International Conference on Computer Vision. 2.
pp. 1150–1157

[19] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, Speeded- Up Robust
Features (SURF). Comput. Vis. Image Underst., 110(3):346–359,
2008.

[20] Commuri S, et al, Task-based Hardware Reconfiguration in Mobile
Robots using FPGAs. J Intell Robot Systems 49: Page(s) 111-134,
2007

1002

