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Abstract 

 
Increasingly embedded devices are turning to two 

technologies to achieve high performance and enable 
efficient programmability as well as product usability. 
The first is multi-core processing on FPGA devices in 
which the multi-core architecture allows software to 
map application-level parallelism to inherent parallel 
fabric to offer better performance, the re-
configurability leads to flexible and adaptive designs. 
The second is wireless communications that allow 
sensors to be distributed flexibly across a structure for 
example in the case of a body area network. This paper 
describes the ongoing design of a multi RF channel, 
multi-core embedded design which will be used as a 
generic FPGA solution to meet the requirements of both 
e-health applications as well as robotics applications. 
 
Keywords: FPGA, e-Health, robotics, embedded 
systems, reconfigurable multi-core processing, wireless 
communications. 
 
 
1. Introduction 
 

Embedded applications are becoming more complex 
requiring higher levels of parallelization and 
computational complexity. However as they often run 
on batteries they must be low power and additionally 
they must be small enough to fit into highly portable or 
wearable solutions. In this paper the embedded 
applications focus on robotics and e-Health sensors. 

In the field of robotics an important aspect is re-
configurability both during development for design and 
debug and post development for functional upgrades.  
As a reconfigurable device, the field programmable gate 
array (FPGA) introduces not only the software 
programmability commonly seen in microcontrollers, 
but also hardware programmability, that is, the 
hardware architecture can be fine tailored to the 
applications.  

The early use of FPGAs in robotics aimed to achieve 
highly flexible high speed logic solutions by directly 
mapping algorithms into the hardware fabric in an 
FPGA chip. Kale and Shriramwar [1] for example used 
FPGAs to create highly flexible control algorithms for 
wheeled robots. This approach of FPGA-based 

development can offer higher performance in the final 
system. However, the improved performance is 
achieved at the penalty of high development costs. The 
high cost is due to the manual development of the 
register transfer level (RTL) code for an algorithm and 
the huge debugging overhead introduced by the long 
synthesizing and routing time (normally 30 minutes) . 

To improve the efficiency of FPGA-based system 
development, a set of general purpose soft RISC 
processors have been developed and delivered by 
FPGA vendors. For example, Xilinx’s MicroBlaze™ 
core [2] and Altera’s Nios II cores.  These soft cores 
and the corresponding compilers provide software 
programmability that system developers normally see in 
microcontrollers.  Therefore the development process is 
accelerated by reusing existing software, avoiding RTL 
programming and avoiding frequent synthesizing 
hardware during debug time. 

Eugenio and Estradase [3] made use of the higher 
functionality and flexibility introduced by a soft 
computing core implemented on an FPGA and 
combined this with a Linux OS making for a highly 
configurable and easily programmable design. 
Following in the same line several other research 
projects were conducted using FPGAs in different 
robots. [4][5].  

This improved development efficiency comes at the 
cost of performance particularly in terms of parallelism. 
To improve the system performance with the reduced 
development cost, a configurable multi-core 
architecture that can address the application-level 
parallelism in the hardware is often required.  

Shimai and  Tani et al [6] describe a multi core 
mixed integer quadratic programming solver for mobile 
robot control. Such multi core parallel computing 
platforms are essential as the number of parallel tasks 
increase and a problem may be solved by breaking it up 
into multiple tasks. In this case the processing is 
achieved by multiple dedicated computation cores. Sun 
et al [7] describe a dual core robot controller based on 
Altera’s Nios II core and Cyclone II FPGA. By 
specifying a switching fabric to a shared memory, the 
two processors may execute in parallel on shared data. 
However in [7], the size of the cores and the prefixed 
interconnect architecture (the shared memory) limits the 
parallelism that can be mapped into the hardware. The 
size of a core limits the number of cores that can be 
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implemented on an FPGA chip, the interconnect 
architecture decides the communication overhead 
among the cores.  That is, the smaller the core the 
smaller the parallelism granularity. As a result more 
parallel tasks in the application can be directly mapped 
to parallel cores. In addition the closer the interconnect 
architecture is to the communication path in an FPGA 
application, the lower the communication overhead on 
the final system and an application-tailored interconnect 
will offer better performance on FPGA-based systems. 

To match this smaller parallelism granularity a high-
level programming environment that contains an 
efficient hardware library, a programming language and 
an intelligent compiler is required to achieve the 
development and runtime efficiency. The tools provided 
in the programming environment should map the 
application-level parallelism into processor cores and 
the communication path into suitable interconnect 
architectures implemented in the hardware library.   

In the following section 2 describes the use cases 
covered by our work. Section 3 describes the FPGA 
hardware while section 4 explains the co-design 
architecture. Section 5 and 6 discuss our results and 
future work. 

   
2. Reconfigurable requirements of the use 
cases 
 

The use cases that we have studied include sensors 
for e-Health and highly mobile robots. The use cases 
make different demands on the reconfigurable FPGA 
technology and therefore are ideal to determine if the 
approach is generic enough to solve problems from 
diverse domains. 

 
2.1 E-Health Use case 

 
The work with e-health sensors has been stimulated 

by an EU funded project called OPTIMI, in which 
multiple sensors were developed to monitor heart 
signals, brain signals and physical activity. These 
sensors can operate in two modes. In the first mode they 
detect the signals and process them locally. However in 
this mode the local processors have just enough 
computational power to do simple algorithmic tasks. In 
a second mode the sensors stream data to a secondary 
processor where more complex processing is 
performed.  

An example use case is a group relaxation session 
for 5 patients each of whom wears an OPTIMI Electro-
encephalograph (EEG) sensor. Each user’s brain signals 
are processed in order to determine their level of 
relaxation and to compare each one to each other in the 
group. To achieve this, the raw brain wave signals from 
the 5 users are sent wirelessly in real time to a central 
processor unit. The unit performs parallel FFT analysis 
on each stream, generates the relaxation results, 
compares them and sends the results for display. 

 
Figure 1  Parallel Streams of EEG data 

 
Achieving this with conventional PC based systems 

is not a simple matter especially when each stream must 
be processed with zero inter stream latency. Each 
stream FFT result (Alpha, beta, Delta and Theta) as 
seen in Figure 1, must be compared simultaneously and 
the results sent for visualization in real time.  

 
2.2 Robotics Use case 

The bipedal robot shown in Figure 2 has 7 moving 
limbs; the feet, the lower legs, the thighs and the hip. 
Each limb has 4 or more actuators controlled by an I/O 
processor as well as accelerometers, limb angle sensors 
and pressure sensors.  

In order to control this robot, the central processor 
must process a total of 60 sensor signals and generate 
30 output control signals. Since the robot has 14 
degrees of freedom and actuation forces are highly 
nonlinear, classical control methods are used only at a 
low level such as limb angle control.  

The overall control is performed using a machine 
learning technique in which a very large number of 
trained rules are used to stabilize the robot as well as 
maneuver it. In contrast to the EEG sensor use case, in 
this case the processor uses streaming parallelism only 
at the i/o processor level and then combines this data 
into a hierarchical solution made up of 3 layers of 
control. These layers include clustering based feature 
extraction, state classification and goal direction.  

The computation resources required for each layer is 
different. Machine Learning requires the most resources 
due to the complex mathematical data processing and 
data processing may occur over several minutes before 
results are obtained. Goal generation combines external 
user command data with local functionality while state 
classification uses the rules generated by the machine 
learning to identify states and provide reactionary set 
points. Although the data processing is less complex in 
these two layers the cycle times are very short and in 
the order of 3 to 5 milliseconds. Finally the i/o streams 
may be handled by dedicated processing elements that 
route data to a shared memory. 
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Figure 2 Running Robot 

 
 

3. Hardware  
 

The FPGA implementation may be described first at 
the level of the prototype board incorporating the 
FPGA, and I/O devices. Then the internal aspects of the 
FPGA may be described explaining the multi core 
software hardware co-design. 

 
3.1 Prototype board 

 
The prototype board made to interface the robot and 

the e-health sensors is based on the Virtex 5 FPGA 
from Xilinx [2]. The board has been designed to be as 
simple as possible and the intention is to position it as a 
wireless multichannel multi-core stream processing 
engine.  

The RF communications is achieved using 7 
channels of Nordic Semiconductor nRF24L01 devices 
running at 2.4GHz and achieving a theoretical 
maximum of 2Megabits per second. The RF Front ends 
are driven over SPI directly from the FPGA. The board 
also has an RS232 port, a 16Mega Byte SPI FLASH 
memory, a memory retention battery and a 75MHz 
clock. 

 
Figure 3 The FPGA prototype 

 

 
3.2 FPGA  
 

The many-core processor is built from the hardware 
library implemented on an FPGA that includes the 
following components. For computation a tiny register 
machine (TRM) with a 2-stage pipelined 
implementation running at 116MHz. This takes up 2% 
of the LUTs of the Virtex-5XC5VLX50T FPGA. For 
storage a DDR2 controller interface for a Xilinx ML505 
board has been implemented. It runs at 116MHz with 
DDR2 clock 223MHz, and takes 2% LUTs and 5% 
BRAMs. 

Communication components consist of buffered 
channels implemented as FIFOs with different width 
and depth configurations. These channels are used to 
transfer data from one processor core to another.  

The floating point unit has been implemented using 
2% LUTs of the Virtex-5LX50T. It takes 8 cycles to do 
a floating point addition and 4 cycles to do a floating 
point multiplication. Floating point division is emulated 
in software. 

For the I/O controllers there is a compact flash (CF) 
controller, an LCD controller and a UART controller all 
running at 116MHz internally. A VGA controller and a 
DVI controller have also been implemented. They run 
at pixel clock rate. 

 
4. System and Software Architecture 
 
The main aim of this paper is to show the ease with 

which the two application use cases may be achieved. 
The application software is written in the high level 

language OBERON [9], for which the authors have 
developed a full development environment that is fully 
integrated into the Xilinx ISE Design Suite [10].  

Having made sure that the target FPGA is well 
specified to the development environment, a new 
developer simply writes an OBERON code to 
immediately instantiate as many parallel cores as 
required, which we have called Cells, and then links the 
Cells with an interconnect. OBERON is then used to 
write the code for each Cell just as normally one would 
write any code. So in some cases the Cell code may be 
very particular for that Cell or it could be a general 
purpose code written such that many parallel or 
sequential executing instantiations of the Cell may 
execute simultaneously at run time.  
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4.1 EEG data stream processing 
 
The EEG processing problem is split into several 

parallel streams and the results from each stream are 
gathered for display. In figure 4 below one can see 
diagrammatically, three parallel streams 1, 2 and 3.  

 

 
Figure 4 The EEG Parallel Stream Case 

 
The multi Cell (multi-core) design is as follows. A 

data centre provides SPI engines that allow data to be 
read and written to the RF front ends. 

Data from the 3 EEG sensors is read from the data 
centre and routed to 3 active cells. Each active cell 
implements a 512 point floating point FFT on the data. 

The results are sent to a final active Cell to group the 
results. The overall result is then sent over RF to a 
waiting display via the SPI engines in the data centre. 
To define the active Cell or core, we would use the 
following code fragment. 

 
(* Define a new Cell and associated code for implementing the EEG FFT 
stream processing *) 
TYPE EEG_FFT_Cell=  
CELL (in: STREAM {IN} OF REAL; result:  STREAM {OUT} OF REAL ) 
{ DataMemorySize=4096, FloatingPoint} 
  
(* Here we would put the math for the FFT procedure Do_FFT... *) 
                
BEGIN 
   RECEIVE(in, realIn, imagIn);   (* Read in the stream from port "in" *) 
   Do_FFT(NumSamples, realIn, imagIn, realOut, imagOut); 
   SEND(result, realOut, imagOut); (* Output results to the port "result" *) 
END EEG_FFT_Cell; 

 
The above fragment defines a generic Cell that 

implements an EEG FFT on its array input and 
generates an array of output. All the code relating to the 
math of the FFT is not shown for brevity but would be 
placed where there is the comment. 

In order to gather the data from each EEG FFT Cell, 
a fourth Cell is required to perform the final data 
gathering. 

 
(* Define a new cell for implementing the results gathering and 
forwarding *) 
FINAL_CELL=CELL(in1,in2,in3,in4,in5: STREAM {IN} OF REAL; out:  
STREAM {OUT} OF REAL) 
BEGIN 
(* Combine final result here and send*) 
END FINAL_CELL 

In the above code fragment this gathering cell is 
clearly defined with multiple input arguments and a 
single output argument. 

Data must be interfaced to the outside world via SPI 
engines that talk to the RF frontend. This layer is 
implemented by the data center which reads input 
streams and routes them to the EEG FFT cells. 

 
DATA_CENTER=CELL(in: STREAM {IN} OF REAL; out1, out2, out3, 
out4,out5:  STREAM {OUT} OF REAL) 
BEGIN 
(* feed in data here and read the result *) 
 
END DATA_CENTER 

 
In order to instantiate the 3 parallel EEG FFT cells, 

the gathering cell and the data centre first they are 
declared as objects and then instantiated along with 
interconnection definitions. The following is used. 

 
VAR EEG_STREAM1_CELL: EEG_FFT_Cell; 
VAR EEG_STREAM2_CELL: EEG_FFT_Cell; 
VAR EEG_STREAM3_CELL: EEG_FFT_Cell; 
VAR FINAL_CELL: FINAL_TRM_CELL;  
VAR  CENTER: DATA_CENTER; 
BEGIN 
(* specify connection & layout *) 
                NEW(EEG_STREAM1_CELL); 
                NEW(EEG_STREAM2_CELL); 
                NEW(EEG_STREAM3_CELL); 
 
CONNECT(CENTER.out1,EEG_STREAM1_CELL.in ); 
CONNECT(CENTER.out2,EEG_STREAM2_CELL.in ); 
CONNECT(CENTER.out3,EEG_STREAM3_CELL.in ); 
 
CONNECT( EEG_STREAM1_CELL . result , FINAL_CELL .in1 ); 
CONNECT( EEG_STREAM2_CELL . result , FINAL_CELL .in2 ); 
CONNECT( EEG_STREAM3_CELL . result , FINAL_CELL .in3 ); 
 
CONNECT(FINAL_CELL .out, CENTER.in); 
 
END TEST_FFT. 
 

The above code implements the 5 core application as 
5 active Cells. Shared memory is replaced by a 
streaming data approach in which only necessary data is 
passed between the parallel applications. 

 
4.2 Robot Hierarchical processing 

 
As described earlier the robot is controlled via a 

hierarchic layered approach. Of course this still requires 
a high level of parallelism and a multi core approach.  

To implement the robot controller we require a cell 
for feature extraction and state classification task, a cell 
for the goal direction and a cell for machine learning of 
robot behavior. In addition data must be gathered from 
the remote SPI to RF components.  

A layer is also required to buffer data between the 
I/O processors and format it correctly for the main 
computation layers. 
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Figure 5, Layered cell structure for the running 

robot  
 
The above Figure 5 depicts these layers. The code 

fragment below shows the cell definitions. 
 
CELLNET RunningRobot; 
(* Define the Machine learning TRM CPU and associated code *) 
 
TYPE      
 
WirelessIOCell = CELL (in: PORT IN; out: PORT OUT) 
(* Here we would put the SPI procedures *) 
BEGIN 
    RECEIVE(in, pattern);   (* Read in the stream from port "in" *) 
    (* Drive the wireless-IO-chips over SPI *) 
    SEND(out, measurements); (* Output the data from the sensors *) 
END ClassificationActuationCell; 
  
DataCenterCell = CELL( rfIn: PORT IN; rfOut: PORT OUT;  
   in: PORT IN; out: PORT OUT)  
(* shared memory access point *) 
BEGIN 
    (* feed in data here and read the result *) 
END DATA_CENTER 
 
ClusteringCell = CELL (in: PORT IN; out: PORT OUT) 
BEGIN 
    RECEIVE(in, realIn);   (* Read in the stream from port "in" *) 
    DoClustering(realIn, quantization);  (* Process the data *) 
    SEND(out, quantization); (* Output the results to the port "out" *) 
END MachineLearningCell; 
  
StateClassificationCell = CELL (in: PORT IN; out: PORT OUT) 
BEGIN 
    RECEIVE(in, quantization);(* Read in the stream from port "in" *) 
    DoClassification(quantization, classification);(* Process the data *) 
    SEND(out, classification); (* Output the results to the port "out" *) 
END MachineLearningCell; 
  
GoalDirectionCell = CELL (in: PORT IN; out: PORT OUT) 
(* Here we would put the Machine Learning procedures *) 
BEGIN 
    RECEIVE(in, state);   (* Read in the stream from port "in" *) 
    DoGoalDirection(state, pattern);  (* Process the data *) 
    SEND(out, pattern); (* Output the resulting pattern to the port "out" *) 
END GoalDirectionCell; 
The code fragment below shows the instantiation of the 
cells. 

 
VAR 
    wirelessIO: WirelessIOCell; 
    dataCenter: DataCenterCell; 
    clustering: ClusteringCell; 
    classification: StateClassificationCell; 
    goalDirection: GoalDirectionCell 

 
Finally the code below shows the Cell interconnect. 

 
BEGIN 
    NEW(wirelessIO); 
    NEW(dataCenter); 
    NEW(clustering); 
    NEW(classification); 
    NEW(goalDirection); 
 
    CONNECT(wirelessIO.out, dataCenter.rfIn); 
    CONNECT(dataCenter.rfOut, wirelessIO.in); 
     
    CONNECT(dataCenter.out, clustering.in); 
    CONNECT(clustering.out, classification.in); 
    CONNECT(classification.out, goalDirection.in); 
    CONNECT(goalDirection.out, dataCenter.in); 
END RunningRobot. 
 

5. Results 
 

The FPGA prototype has been built and tested and 
the applications, from which the code fragments are 
taken were implemented. 

In the case of the robot controller, the main results 
have so far been obtained in communicating between 
the FPGA prototype and the robot I/O processors. The 
communications over the RF front ends work reliably 
with all cells operating in parallel. Although the 
machine learning, goal direction and classification cells 
are still under construction, the basic architecture has 
been shown to operate well using dummy cells. 

The SPI to nRF24L01 front end has been measured 
to transfer 120KB/s of payload per channel. Internally 
the interconnect allows data to be passed up and down 
the layers such that n bytes may be circulated at 
100MB/s with a latency of  50ns down to 10ns.  

In the case of the EEG data processing, again the 
multi cell approach was implemented and tested. It was 
found that at 100Mhz synthesized internal clock the 512 
point floating point FFT may be completed within 
9.52ms.  

When used at a sample rate of 512 Hz and using a 64 
point FFT, the EEG data from 7 patients can be 
processed fully in real time, each FFT taking 1.16ms to 
calculate. 
 
7. Conclusions 
 

The need for simple, efficient and highly parallel   
reconfigurable computing devices is being answered by 
the software and hardware co-design on FPGA devices. 

Central to the approach is an integrated development 
environment in which in this case the high level 
language OBERON is compiled down to Bit Stream 
data, and where the OBERON is running on language 
defined tiny RISC processors. 

A multi cell approach and an interconnect allows 
very complex parallel streamed applications to be 
developed as well as hierarchical layered parallel 
applications. 

The co-design has been applied to two very different 
domains using a common wireless and FPGA merged 
approach reliant of off board I/O processors or sensors 
and actuators. 
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