
A reconfigurable multi-core computing platform for robotics and e-health
applications

Dennis Majoe2, Lars Widmer1, Liu Ling1, Jim Chih-Chen Kao1, Jürg Gutknecht1

1ETH Zürich, Switzerland
Lars.Widmer@inf.ethz.ch

2 MA Systems and Control Ltd., United Kingdom.
dennis.majoe@masystems.co.uk

Abstract

Increasingly embedded devices are turning to two

technologies to achieve high performance and enable
efficient programmability as well as product usability.
The first is multi-core processing on FPGA devices in
which the multi-core architecture allows software to
map application-level parallelism to inherent parallel
fabric to offer better performance, the re-
configurability leads to flexible and adaptive designs.
The second is wireless communications that allow
sensors to be distributed flexibly across a structure for
example in the case of a body area network. This paper
describes the ongoing design of a multi RF channel,
multi-core embedded design which will be used as a
generic FPGA solution to meet the requirements of both
e-health applications as well as robotics applications.

Keywords: FPGA, e-Health, robotics, embedded
systems, reconfigurable multi-core processing, wireless
communications.

1. Introduction

Embedded applications are becoming more complex
requiring higher levels of parallelization and
computational complexity. However as they often run
on batteries they must be low power and additionally
they must be small enough to fit into highly portable or
wearable solutions. In this paper the embedded
applications focus on robotics and e-Health sensors.

In the field of robotics an important aspect is re-
configurability both during development for design and
debug and post development for functional upgrades.
As a reconfigurable device, the field programmable gate
array (FPGA) introduces not only the software
programmability commonly seen in microcontrollers,
but also hardware programmability, that is, the
hardware architecture can be fine tailored to the
applications.

The early use of FPGAs in robotics aimed to achieve
highly flexible high speed logic solutions by directly
mapping algorithms into the hardware fabric in an
FPGA chip. Kale and Shriramwar [1] for example used
FPGAs to create highly flexible control algorithms for
wheeled robots. This approach of FPGA-based

development can offer higher performance in the final
system. However, the improved performance is
achieved at the penalty of high development costs. The
high cost is due to the manual development of the
register transfer level (RTL) code for an algorithm and
the huge debugging overhead introduced by the long
synthesizing and routing time (normally 30 minutes) .

To improve the efficiency of FPGA-based system
development, a set of general purpose soft RISC
processors have been developed and delivered by
FPGA vendors. For example, Xilinx’s MicroBlaze™
core [2] and Altera’s Nios II cores. These soft cores
and the corresponding compilers provide software
programmability that system developers normally see in
microcontrollers. Therefore the development process is
accelerated by reusing existing software, avoiding RTL
programming and avoiding frequent synthesizing
hardware during debug time.

Eugenio and Estradase [3] made use of the higher
functionality and flexibility introduced by a soft
computing core implemented on an FPGA and
combined this with a Linux OS making for a highly
configurable and easily programmable design.
Following in the same line several other research
projects were conducted using FPGAs in different
robots. [4][5].

This improved development efficiency comes at the
cost of performance particularly in terms of parallelism.
To improve the system performance with the reduced
development cost, a configurable multi-core
architecture that can address the application-level
parallelism in the hardware is often required.

Shimai and Tani et al [6] describe a multi core
mixed integer quadratic programming solver for mobile
robot control. Such multi core parallel computing
platforms are essential as the number of parallel tasks
increase and a problem may be solved by breaking it up
into multiple tasks. In this case the processing is
achieved by multiple dedicated computation cores. Sun
et al [7] describe a dual core robot controller based on
Altera’s Nios II core and Cyclone II FPGA. By
specifying a switching fabric to a shared memory, the
two processors may execute in parallel on shared data.
However in [7], the size of the cores and the prefixed
interconnect architecture (the shared memory) limits the
parallelism that can be mapped into the hardware. The
size of a core limits the number of cores that can be

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.12

449

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.12

457

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.12

457

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.12

457

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.12

457

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.12

451

implemented on an FPGA chip, the interconnect
architecture decides the communication overhead
among the cores. That is, the smaller the core the
smaller the parallelism granularity. As a result more
parallel tasks in the application can be directly mapped
to parallel cores. In addition the closer the interconnect
architecture is to the communication path in an FPGA
application, the lower the communication overhead on
the final system and an application-tailored interconnect
will offer better performance on FPGA-based systems.

To match this smaller parallelism granularity a high-
level programming environment that contains an
efficient hardware library, a programming language and
an intelligent compiler is required to achieve the
development and runtime efficiency. The tools provided
in the programming environment should map the
application-level parallelism into processor cores and
the communication path into suitable interconnect
architectures implemented in the hardware library.

In the following section 2 describes the use cases
covered by our work. Section 3 describes the FPGA
hardware while section 4 explains the co-design
architecture. Section 5 and 6 discuss our results and
future work.

2. Reconfigurable requirements of the use
cases

The use cases that we have studied include sensors
for e-Health and highly mobile robots. The use cases
make different demands on the reconfigurable FPGA
technology and therefore are ideal to determine if the
approach is generic enough to solve problems from
diverse domains.

2.1 E-Health Use case

The work with e-health sensors has been stimulated

by an EU funded project called OPTIMI, in which
multiple sensors were developed to monitor heart
signals, brain signals and physical activity. These
sensors can operate in two modes. In the first mode they
detect the signals and process them locally. However in
this mode the local processors have just enough
computational power to do simple algorithmic tasks. In
a second mode the sensors stream data to a secondary
processor where more complex processing is
performed.

An example use case is a group relaxation session
for 5 patients each of whom wears an OPTIMI Electro-
encephalograph (EEG) sensor. Each user’s brain signals
are processed in order to determine their level of
relaxation and to compare each one to each other in the
group. To achieve this, the raw brain wave signals from
the 5 users are sent wirelessly in real time to a central
processor unit. The unit performs parallel FFT analysis
on each stream, generates the relaxation results,
compares them and sends the results for display.

Figure 1 Parallel Streams of EEG data

Achieving this with conventional PC based systems

is not a simple matter especially when each stream must
be processed with zero inter stream latency. Each
stream FFT result (Alpha, beta, Delta and Theta) as
seen in Figure 1, must be compared simultaneously and
the results sent for visualization in real time.

2.2 Robotics Use case

The bipedal robot shown in Figure 2 has 7 moving
limbs; the feet, the lower legs, the thighs and the hip.
Each limb has 4 or more actuators controlled by an I/O
processor as well as accelerometers, limb angle sensors
and pressure sensors.

In order to control this robot, the central processor
must process a total of 60 sensor signals and generate
30 output control signals. Since the robot has 14
degrees of freedom and actuation forces are highly
nonlinear, classical control methods are used only at a
low level such as limb angle control.

The overall control is performed using a machine
learning technique in which a very large number of
trained rules are used to stabilize the robot as well as
maneuver it. In contrast to the EEG sensor use case, in
this case the processor uses streaming parallelism only
at the i/o processor level and then combines this data
into a hierarchical solution made up of 3 layers of
control. These layers include clustering based feature
extraction, state classification and goal direction.

The computation resources required for each layer is
different. Machine Learning requires the most resources
due to the complex mathematical data processing and
data processing may occur over several minutes before
results are obtained. Goal generation combines external
user command data with local functionality while state
classification uses the rules generated by the machine
learning to identify states and provide reactionary set
points. Although the data processing is less complex in
these two layers the cycle times are very short and in
the order of 3 to 5 milliseconds. Finally the i/o streams
may be handled by dedicated processing elements that
route data to a shared memory.

450458458458458452

Figure 2 Running Robot

3. Hardware

The FPGA implementation may be described first at
the level of the prototype board incorporating the
FPGA, and I/O devices. Then the internal aspects of the
FPGA may be described explaining the multi core
software hardware co-design.

3.1 Prototype board

The prototype board made to interface the robot and

the e-health sensors is based on the Virtex 5 FPGA
from Xilinx [2]. The board has been designed to be as
simple as possible and the intention is to position it as a
wireless multichannel multi-core stream processing
engine.

The RF communications is achieved using 7
channels of Nordic Semiconductor nRF24L01 devices
running at 2.4GHz and achieving a theoretical
maximum of 2Megabits per second. The RF Front ends
are driven over SPI directly from the FPGA. The board
also has an RS232 port, a 16Mega Byte SPI FLASH
memory, a memory retention battery and a 75MHz
clock.

Figure 3 The FPGA prototype

3.2 FPGA

The many-core processor is built from the hardware
library implemented on an FPGA that includes the
following components. For computation a tiny register
machine (TRM) with a 2-stage pipelined
implementation running at 116MHz. This takes up 2%
of the LUTs of the Virtex-5XC5VLX50T FPGA. For
storage a DDR2 controller interface for a Xilinx ML505
board has been implemented. It runs at 116MHz with
DDR2 clock 223MHz, and takes 2% LUTs and 5%
BRAMs.

Communication components consist of buffered
channels implemented as FIFOs with different width
and depth configurations. These channels are used to
transfer data from one processor core to another.

The floating point unit has been implemented using
2% LUTs of the Virtex-5LX50T. It takes 8 cycles to do
a floating point addition and 4 cycles to do a floating
point multiplication. Floating point division is emulated
in software.

For the I/O controllers there is a compact flash (CF)
controller, an LCD controller and a UART controller all
running at 116MHz internally. A VGA controller and a
DVI controller have also been implemented. They run
at pixel clock rate.

4. System and Software Architecture

The main aim of this paper is to show the ease with

which the two application use cases may be achieved.
The application software is written in the high level

language OBERON [9], for which the authors have
developed a full development environment that is fully
integrated into the Xilinx ISE Design Suite [10].

Having made sure that the target FPGA is well
specified to the development environment, a new
developer simply writes an OBERON code to
immediately instantiate as many parallel cores as
required, which we have called Cells, and then links the
Cells with an interconnect. OBERON is then used to
write the code for each Cell just as normally one would
write any code. So in some cases the Cell code may be
very particular for that Cell or it could be a general
purpose code written such that many parallel or
sequential executing instantiations of the Cell may
execute simultaneously at run time.

451459459459459453

4.1 EEG data stream processing

The EEG processing problem is split into several

parallel streams and the results from each stream are
gathered for display. In figure 4 below one can see
diagrammatically, three parallel streams 1, 2 and 3.

Figure 4 The EEG Parallel Stream Case

The multi Cell (multi-core) design is as follows. A

data centre provides SPI engines that allow data to be
read and written to the RF front ends.

Data from the 3 EEG sensors is read from the data
centre and routed to 3 active cells. Each active cell
implements a 512 point floating point FFT on the data.

The results are sent to a final active Cell to group the
results. The overall result is then sent over RF to a
waiting display via the SPI engines in the data centre.
To define the active Cell or core, we would use the
following code fragment.

(* Define a new Cell and associated code for implementing the EEG FFT
stream processing *)
TYPE EEG_FFT_Cell=
CELL (in: STREAM {IN} OF REAL; result: STREAM {OUT} OF REAL)
{ DataMemorySize=4096, FloatingPoint}

(* Here we would put the math for the FFT procedure Do_FFT... *)

BEGIN
 RECEIVE(in, realIn, imagIn); (* Read in the stream from port "in" *)
 Do_FFT(NumSamples, realIn, imagIn, realOut, imagOut);
 SEND(result, realOut, imagOut); (* Output results to the port "result" *)
END EEG_FFT_Cell;

The above fragment defines a generic Cell that

implements an EEG FFT on its array input and
generates an array of output. All the code relating to the
math of the FFT is not shown for brevity but would be
placed where there is the comment.

In order to gather the data from each EEG FFT Cell,
a fourth Cell is required to perform the final data
gathering.

(* Define a new cell for implementing the results gathering and
forwarding *)
FINAL_CELL=CELL(in1,in2,in3,in4,in5: STREAM {IN} OF REAL; out:
STREAM {OUT} OF REAL)
BEGIN
(* Combine final result here and send*)
END FINAL_CELL

In the above code fragment this gathering cell is
clearly defined with multiple input arguments and a
single output argument.

Data must be interfaced to the outside world via SPI
engines that talk to the RF frontend. This layer is
implemented by the data center which reads input
streams and routes them to the EEG FFT cells.

DATA_CENTER=CELL(in: STREAM {IN} OF REAL; out1, out2, out3,
out4,out5: STREAM {OUT} OF REAL)
BEGIN
(* feed in data here and read the result *)

END DATA_CENTER

In order to instantiate the 3 parallel EEG FFT cells,

the gathering cell and the data centre first they are
declared as objects and then instantiated along with
interconnection definitions. The following is used.

VAR EEG_STREAM1_CELL: EEG_FFT_Cell;
VAR EEG_STREAM2_CELL: EEG_FFT_Cell;
VAR EEG_STREAM3_CELL: EEG_FFT_Cell;
VAR FINAL_CELL: FINAL_TRM_CELL;
VAR CENTER: DATA_CENTER;
BEGIN
(* specify connection & layout *)
 NEW(EEG_STREAM1_CELL);
 NEW(EEG_STREAM2_CELL);
 NEW(EEG_STREAM3_CELL);

CONNECT(CENTER.out1,EEG_STREAM1_CELL.in);
CONNECT(CENTER.out2,EEG_STREAM2_CELL.in);
CONNECT(CENTER.out3,EEG_STREAM3_CELL.in);

CONNECT(EEG_STREAM1_CELL . result , FINAL_CELL .in1);
CONNECT(EEG_STREAM2_CELL . result , FINAL_CELL .in2);
CONNECT(EEG_STREAM3_CELL . result , FINAL_CELL .in3);

CONNECT(FINAL_CELL .out, CENTER.in);

END TEST_FFT.

The above code implements the 5 core application as
5 active Cells. Shared memory is replaced by a
streaming data approach in which only necessary data is
passed between the parallel applications.

4.2 Robot Hierarchical processing

As described earlier the robot is controlled via a

hierarchic layered approach. Of course this still requires
a high level of parallelism and a multi core approach.

To implement the robot controller we require a cell
for feature extraction and state classification task, a cell
for the goal direction and a cell for machine learning of
robot behavior. In addition data must be gathered from
the remote SPI to RF components.

A layer is also required to buffer data between the
I/O processors and format it correctly for the main
computation layers.

452460460460460454

Figure 5, Layered cell structure for the running

robot

The above Figure 5 depicts these layers. The code

fragment below shows the cell definitions.

CELLNET RunningRobot;
(* Define the Machine learning TRM CPU and associated code *)

TYPE

WirelessIOCell = CELL (in: PORT IN; out: PORT OUT)
(* Here we would put the SPI procedures *)
BEGIN
 RECEIVE(in, pattern); (* Read in the stream from port "in" *)
 (* Drive the wireless-IO-chips over SPI *)
 SEND(out, measurements); (* Output the data from the sensors *)
END ClassificationActuationCell;

DataCenterCell = CELL(rfIn: PORT IN; rfOut: PORT OUT;
 in: PORT IN; out: PORT OUT)
(* shared memory access point *)
BEGIN
 (* feed in data here and read the result *)
END DATA_CENTER

ClusteringCell = CELL (in: PORT IN; out: PORT OUT)
BEGIN
 RECEIVE(in, realIn); (* Read in the stream from port "in" *)
 DoClustering(realIn, quantization); (* Process the data *)
 SEND(out, quantization); (* Output the results to the port "out" *)
END MachineLearningCell;

StateClassificationCell = CELL (in: PORT IN; out: PORT OUT)
BEGIN
 RECEIVE(in, quantization);(* Read in the stream from port "in" *)
 DoClassification(quantization, classification);(* Process the data *)
 SEND(out, classification); (* Output the results to the port "out" *)
END MachineLearningCell;

GoalDirectionCell = CELL (in: PORT IN; out: PORT OUT)
(* Here we would put the Machine Learning procedures *)
BEGIN
 RECEIVE(in, state); (* Read in the stream from port "in" *)
 DoGoalDirection(state, pattern); (* Process the data *)
 SEND(out, pattern); (* Output the resulting pattern to the port "out" *)
END GoalDirectionCell;
The code fragment below shows the instantiation of the
cells.

VAR
 wirelessIO: WirelessIOCell;
 dataCenter: DataCenterCell;
 clustering: ClusteringCell;
 classification: StateClassificationCell;
 goalDirection: GoalDirectionCell

Finally the code below shows the Cell interconnect.

BEGIN
 NEW(wirelessIO);
 NEW(dataCenter);
 NEW(clustering);
 NEW(classification);
 NEW(goalDirection);

 CONNECT(wirelessIO.out, dataCenter.rfIn);
 CONNECT(dataCenter.rfOut, wirelessIO.in);

 CONNECT(dataCenter.out, clustering.in);
 CONNECT(clustering.out, classification.in);
 CONNECT(classification.out, goalDirection.in);
 CONNECT(goalDirection.out, dataCenter.in);
END RunningRobot.

5. Results

The FPGA prototype has been built and tested and
the applications, from which the code fragments are
taken were implemented.

In the case of the robot controller, the main results
have so far been obtained in communicating between
the FPGA prototype and the robot I/O processors. The
communications over the RF front ends work reliably
with all cells operating in parallel. Although the
machine learning, goal direction and classification cells
are still under construction, the basic architecture has
been shown to operate well using dummy cells.

The SPI to nRF24L01 front end has been measured
to transfer 120KB/s of payload per channel. Internally
the interconnect allows data to be passed up and down
the layers such that n bytes may be circulated at
100MB/s with a latency of 50ns down to 10ns.

In the case of the EEG data processing, again the
multi cell approach was implemented and tested. It was
found that at 100Mhz synthesized internal clock the 512
point floating point FFT may be completed within
9.52ms.

When used at a sample rate of 512 Hz and using a 64
point FFT, the EEG data from 7 patients can be
processed fully in real time, each FFT taking 1.16ms to
calculate.

7. Conclusions

The need for simple, efficient and highly parallel
reconfigurable computing devices is being answered by
the software and hardware co-design on FPGA devices.

Central to the approach is an integrated development
environment in which in this case the high level
language OBERON is compiled down to Bit Stream
data, and where the OBERON is running on language
defined tiny RISC processors.

A multi cell approach and an interconnect allows
very complex parallel streamed applications to be
developed as well as hierarchical layered parallel
applications.

The co-design has been applied to two very different
domains using a common wireless and FPGA merged
approach reliant of off board I/O processors or sensors
and actuators.

453461461461461455

Acknowledgement

This work was performed with funding from MA
Systems and Control Limited and all hardware has been
designed at MA Systems in the U.K.
 References

[1] (IJCSIS) International Journal of Computer Science and
Information Security,Vol. 3, No. 1, 2009; FPGA-based
Controller for a Mobile Robot, Ms. Shilpa Kale Dept. of
Electronics & Telecommunication Engg. Nagpur

[2] http://www.xilinx.com/tools/microblaze.htm.
[3] J. Moctezuma Eugenio and M. Arias Estrada; Hardware

Software FPGA Architecture for Robotics Applications,
Reconfigurable Computing: Architectures, Tools and
Applications; Lecture Notes in Computer Science, 2009,
Volume 5453/2009, 27-38

[4] J. Alves and N. Cruz; An FPGA-Based Embedded System
for a Sailing Robot, 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, 2009.

[5] C. Castro , C. Llanos, W. de Britto Vidal Filho and L.
dos Santos Coelho; Fuzzy Control for Cyclist Robot
Stability using FPGAs International Conference on
Reconfigurable Computing and FPGAs, 2009.

[6] Y. Shimai, J. Tani, H. Noguchi, H. Kawaguchi, M.
Yoshimoto; FPGA implementation of mixed integer
quadratic programming solver for mobile robot control;
International Conference on Field-Programmable
Technology, 2009. FPT 2009.

[7] Ligong Sun, Xiangwen Sun, Fei Xiang and Sujuan Li;
Design of Dual-Core Architecture Industrial Robot
Controller Based on FPGA; Advanced Materials Research
Vols. 291-294 (2011) pp 3287-3291

[8] N. Wirth and M. Reiser; Programming in Oberon - Steps
Beyond Pascal and Modula; Addison-Wesley, 1992, ISBN
0-201-56543-9

[9] Ling Liu, Oleksii Morozov, Yuxing Han, Jürg Gutknecht,
and Patrick R. Hunziker. Automatic soc design on many-
core processors: a software hardware co-design approach for
fpgas. In FPGA, pages 37-40, 2011.

[10] http://www.xilinx.com/ise_eval/

454462462462462456

