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Abstract—In recent years, multi-core systems have become mainstream
in computer industry. The design of multi-cores takes advantage of
thread-level parallelism in emerging applications that are computationally
intensive and highly parallel. Energy efficiency is one of the biggest
challenges in the design of multi-core systems, and workload imbalance
among parallel threads is one of sources of energy inefficiency. Many
techniques based on dynamic voltage frequency scaling (DVFS) are
proposed to save energy consumptions on multi-cores, but all of them
assume that each core in a multi-core system contains only one hardware
context and only one thread can execute on one core at a time. However,
mainstream multi-core systems are moving to have simultaneous multi-
threading (SMT) support in cores, and existing DVFS-based techniques
are not effective to achieve maximum energy savings. In this paper,
we present a novel technique called thread shuffling, which combines
thread migration and DVFS to achieve maximum energy savings and
maintain performance on a multi-core system supporting SMT. Thread
shuffling is implemented and simulated in a cycle-accurate x86 multi-
core system. The experiments show that it achieves up to 56% energy
savings without performance penalty for selected Recognition, Mining
and Synthesis (RMS) applications from Intel Labs.

Index Terms—DVFS, thread migration, multi-core, thread shuffling,
SMT

I. INTRODUCTION

Pollack’s rule states that performance increase is roughly propor-
tional to square root of increase in complexity [4]. In another words,
a single-threaded processor will provide a diminishing return in
performance with respect to power and a multi-core microarchitecture
can provide near linear performance improvement with respect to
power and area [4]. In recent years, multi-core systems have become
mainstream in computer industry [14], [15], [21]. The design of
multi-core systems takes advantage of thread-level parallelism (TLP)
to address of the problem of limited instruction-level parallelism
(ILP) in serial applications. Moreover, many emerging applications
are believed to be computationally intensive and highly parallel. For
example, the recent single-chip cloud computer (SCC) [12] from Intel
integrates 48 IA-32 cores to run highly parallel workloads such as
Recognition, Mining and Synthesis (RMS) benchmarks [11].

Energy efficiency is one of the biggest challenges (probably the
biggest challenge) faced by today’s computer architects. Researchers
found that workload imbalance among parallel threads is one of
sources of energy inefficiency [6]. For example, in a fork-join
execution model such as OpenMP [3], a group of parallel threads is
generated at the fork-point of a parallel region and is synchronized at
the join-point of the parallel region. In the ideal case, all threads reach
this synchronization point called barrier at the same time. However,
in a normal situation, some threads reach the barrier earlier than other
threads. The faster threads go to a spin-loop and spend a large amount
of time waiting for slower threads. During waiting time, the faster
threads still consume energy, which leads energy inefficiency.

In order to reduce energy consumptions during waiting time, one
approach is to put faster threads to sleep as soon as they reach
the synchronization point and shut down the cores executing faster
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Fig. 1. (a) Block diagram of a multi-core system (b) Pipeline of in-order
SMT x86 core (c) Voltage-Frequency table

threads. To make this shutdown approach work, we need to make
sure that the waiting time is long enough so that the energy saved
in sleep mode pays off the energy wasted by putting the cores to
sleep and waking them up. Another approach is to predict fast and
slow threads at runtime and apply dynamic voltage and frequency
scaling (DVFS) to cores executing fast threads. One representative
technique in the second approach is thread delaying [6], which uses
meeting point thread characterization to identify the critical thread
(the slowest thread) of a multi-threaded application and the amount
of slacks of non-critical threads (fast threads). The slack is defined to
the amount of time a parallel thread can be delayed without impact
on overall performance. The critical thread is the one with zero slack,
and non-critical threads are those threads that could be delayed with
no impact on performance.

Thread delaying is effective and it can achieve energy savings up
to more than 40% with negligible performance loss with respect to
the shutdown approach for certain RMS benchmarks. However, it
assumes that each core in a multi-core system contains only one
hardware context and each core can only run one thread at a time.
In this paper, we use hardware context and thread interchangeably.
In current multi-core systems such as Nehalem from Intel [15]
and POWER7 from IBM [14], each core supports simultaneous
multithreading (SMT) and contains multiple hardware contexts. As
we will demonstrate later in the paper, thread delaying cannot achieve
maximum energy savings and maintain performance for multi-cores
supporting SMT. For example, when running PageRank (one of RMS
benchmarks) on 4 cores (each core contains two hardware contexts),
thread delaying has 30% energy reduction but 14% performance loss.
The same problem exists for all existing energy saving techniques
based on DVFS for parallel applications, because all of them assume
that each core contains only one hardware context.

In this paper, we propose a novel technique called thread shuffling,
which takes core’s SMT support into account. Similar to thread delay-
ing, thread shuffling uses the meeting point thread characterization to
predict thread criticality. Moreover, thread shuffling uses the concept
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of thread criticality degree of a thread and maps threads with similar
criticality degrees into the same core through thread migration. Local
DVFS is then applied to cores executing non-critical threads. By
combining thread migration and DVFS, thread shuffling achieves
great energy reduction and maintain performance.

In the rest of paper, we first describe our multi-core system with
multiple clock domains in Section II. The baseline system supports
local DVFS and thread migration. The meeting point thread character-
ization and thread delaying mechanisms are reviewed in Section III.
We also show that thread delaying cannot achieve maximum energy
savings and maintain performance on a multi-core system supporting
SMT. Section IV describes our thread shuffling algorithm and its
implementation in details. We show the simulation framework and
performance results of thread shuffling in Section V. We also discuss
the related work in Section VI. The paper concludes in Section VII.

II. A MULTI-CORE SYSTEM WITH MULTIPLE CLOCK DOMAINS

Figure 1(a) shows the block diagram of our multi-core system.
The system consists of multiple Intel64/IA32 cores. The pipeline
of in-order SMT core illustrated in Figure 1(b) is similar to Intel
ATOM core Each core with associated L1 and L2 caches belongs
to a separate clock domain. Moreover, the unified L3 cache with
the interconnect forms a separate clock domain as well. Each clock
domain has its own local clock network that receives a reference clock
signal as input and distributes it to all the circuits of the domain. In
our design, we assume that the phase relationship (i.e., the skew)
between the domain reference clocks can be arbitrary. This allows
firstly to run each domain at a different frequency and secondly to
adapt the frequency of each domain dynamically and independently
of the others. Since domains operate asynchronously to each other,
interdomain communication must be synchronized correctly to avoid
meta-stability [7]. We use the mixed-clock FIFO design of Chelcea
and Nowick to communicate values safely between domains [8].

Each of the microprocessor domains can operate at a distinct
voltage and frequency. Moreover, voltage and frequency can be
changed dynamically and independently for each domain. We assume
domains can execute through voltage changes, similar to previous
studies [13], [20], [22] and some commercial designs [9]. We assume
a limited range of voltages and frequencies, as shown in Figure 1(c).

III. IDENTIFICATION OF CRITICAL THREADS AND THREAD

DELAYING

In this section, we first define what critical threads are in the
context of parallel applications and review a mechanism called
meeting point thread characterization that identifies critical threads
at runtime. Thread delaying technique proposed by Cai et al [6] uses
meeting point thread characterization to reduce energy consumptions
on multi-core systems. We also show that thread delaying is not
effective when cores in a multi-core system have SMT capability.
The ineffectiveness of thread delaying is the motivation behind the
design of our new algorithm called thread shuffling, which addresses
inefficiency of thread delaying on SMT cores by combining thread
migration and DVFS together.

A. Identification of Critical Thread

Meeting point thread characterization is used to identify the
critical thread dynamically during program execution by checking
the workload balance at intermediate points of a parallel section.
These intermediate points are called meeting points. For a parallel
loop, a natural location of a meeting point is at the back edge of the
loop, because the back edge of a loop is visited many times by all
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Fig. 2. Thread delaying cannot reduce energy and maintain performance
at the same time when parallel threads run on multiple SMT cores. (a)
The cumulative execution time of PageRank-sparse (a RMS benchmark) on
four SMT cores. Each core contains two hardware contexts. Two threads
running on the same core are illustrated with the same color. For purpose of
discussion, four hardware contexts are specified by their core identifiers and
thread identifiers. (b) The cumulative execution time of PageRank-sparse after
applying thread delaying on four SMT cores.

threads at runtime. A special instruction mp inst representing the
meeting point is inserted into the last statement of the parallelized
loop. The insertion of a meeting point can be done by the hardware,
the compiler or the programmer.

Every time a core decodes mp inst, a thread-private counter
located in the processor frontend is incremented. This counter is a
proxy for the slack between the critical thread and a non-critical
thread. A critical thread is the one with the smallest counters, and
the slack of a thread can be estimated as the difference of its counter
and counter of the slowest counter.

Thread delaying uses thread criticality to slow down fast threads by
dynamically scaling down the voltage and frequency of cores running
fast threads in such a way that the energy consumptions are reduced.
At specific intervals of time, each core utilizes meeting point thread
characterization to estimate the slack of a parallel thread running on
the core. It computes the voltage and frequency for the next interval of
time so that the energy is minimized but the expected arrival time to
the barrier does not exceed that of the current critical thread. Thread
delaying assumes that each core can only execute one thread at a
time.

B. Thread Delaying is Not Effective for SMT Cores

Thread delaying, however, is not effective when parallel threads
run on multiple SMT cores. The ineffectiveness of thread delaying is
illustrated in Figure 2. Figure 2(a) shows the run time behavior of the
hottest region in PageRank-sparse (a RMS benchmark). The hottest
region is a parallel loop. In this example, the baseline system contain
four SMT cores. Each core has two hardware contexts and allows
two threads to run at the same time. The parallel loop is partitioned
into eight threads, which are mapped to eight hardware contexts at
run time. The x-axis in the figure represents the number of times a
thread visits a meeting point. The y-axis represents the cumulative
execution time of each thread. Two threads running on the same core
are illustrated with the same color. For purpose of discussion, text
labels are used to annotate four hardware contexts: HW0, HW1, HW2
and HW3. Each hardware context is specified by its core identifier
and thread identifier. For example, HW0 denotes a hardware context
in core 0 and thread 0.

From Figure 2(a), we can see that HW0 is the critical hardware
context most of time and HW1 is a non-critical hardware context all
the time. If the core contains only one hardware context, then the
gap between HW0 and HW1 can be reduced after thread delaying
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Fig. 3. Overview of thread shuffling algorithm. The above steps are
sequential. Each step can start only when the above step is finished. For
example, step 5 (thread migration in the manager) can be executed only when
messages sent from all affected hardware contexts are received by the thread
shuffling manager. Step 2 (sort threads) and step 6 (apply DVFS) will be
described in details later.

is applied. The gap between the critical thread and a non-critical
thread represents potential energy savings. However, in this case,
HW0 and HW1 run on the same core. Figure 2(b) shows that the
gap between HW0 and HW1 stays the same after thread delaying is
applied. There is no any energy savings from HW1, even though HW1
is non-critical all the time. There are two reasons why thread delaying
cannot achieve optimal energy savings on SMT cores. The first reason
is that thread delaying assumes each core contains only one hardware
context. The second reason is that local DVFS is applied at the core
level instead of thread level.

Another observation from the figure is that it is difficult to recover
performance loss when the aggressive voltage and frequency scaling
is applied at the beginning of execution time. For example, the slack
between HW0 and HW2 is large at the beginning and aggressive
DVFS is applied. However, the slack between HW0 and HW2
suddenly becomes very small. Under this situation, it is difficult for
thread delaying to react and change the voltage and frequency level
of core 1 back to the maximal one. This causes big performance loss
illustrated in Figure 2(b).

Both non-optimal core-level DVFS and aggressive DVFS problems
will be addressed by our proposed technique called thread shuf-
fling. Thread shuffling combines thread migration and conservative
DVFS together to reduce more energy consumptions and maintain
performance. For the PageRank example illustrated in Figure 2,
thread delaying has 30% energy reduction but 14% performance loss,
whereas thread shuffling obtains 50% energy savings without any
performance loss.

IV. THREAD SHUFFLING AND ITS IMPLEMENTATION

The idea of thread shuffling is to map threads with similar
criticality degrees into the same core through thread migration and
then apply dynamic voltage and frequency scaling to cores containing
non-critical threads. In meeting point thread characterization, each
thread has a counter to accumulate the number of times a meeting
point is visited, and the criticality of a thread is approximated as the
difference between its own counter and the counter of the slowest
one. We approximate the criticality degree of a thread as the position
of its own counter in a reverse sorted sequence of all counters. For
example, if the counter values are 200, 100, 300, 400 for thread 0,
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Sort (300) Sort (100)

Fig. 4. Sorting threads. (a) examples of MP COUNTER TABLE and
SHUFFLE TABLE. SHUFFLE TABLE is reset whenever sorting thread is
called. (b)-(c) steps of insertion sort of counters in MP COUNTER TABLE.
Entries (fields after.cpu and after.hw) in SHUFFLE TABLE are updated
accordingly. (d) the algorithm of sorting threads.

1. critical_core = 0;

2. ref_counter = find_largest_mp_counter (critical_core)

3. for (i = 1; i < TOTAL_NUM_CORES; i++)

4.    cmp_counter = find_smallest_mp_counter (i); 

5.    scale = ref_counter / cmp_counter;

6.    freq_level = map_scale_to_frequency_level (scale);

7.    freq_level = update_frequency_history_table(i, freq_level);

8.    change_frequency_VDD (FREQ[freq_level], VDD[freq_level]);

Fig. 5. Algorithm of DVFS in Thread Shuffling

1, 2, 3, respectively, then thread 1 is the most critical thread with
degree 3, thread 2 has criticality degree of 2, and thread 3 is the
most non-critical thread with degree of 0.

Thread shuffling addresses the problem of non-optimal DVFS
in thread delaying by first grouping threads with similar criticality
degrees into the same core and then apply DVFS. For example, HW0
and HW2 in Figure 2(a) will be mapped into the same core at runtime.
This remapping increases chance of reducing the gap between HW0
and HW2 and thus the energy reduction increases.

A. Overview Algorithm

Figure 3 shows the overview of our thread shuffling algorithm. The
major part of algorithm is implemented in a centralized hardware
manager called TS MANAGER (thread shuffling manager), which
coordinates jobs between hardware contexts and itself and applies
thread migration and DVFS to hardware contexts and cores, respec-
tively.

The algorithm illustrated in Figure 3 is self-explained. One addi-
tional remark is that after the manager receives a shuffling request
TS REQUEST from a hardware context, it checks whether the
following condition is true or not:

(current_cycle - last_config_cycle)
> MAX_CONFIG_INTERVAL

where current cycle is the current cycle when the manager re-
ceives the request, last config cycle is the cycle when the last
shuffling is performed and MAX CONFIG INTERVAL is a pa-
rameter to adjust the frequency of thread shuffling. In this study,
MAX CONFIG INTERVAL is set to five millions cycles, since
our thread shuffling is fine-grained and lightweight enough to be
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implemented in hardware. If the above condition is true, then the
manager starts a new thread shuffling.

B. Sorting Threads and Thread Migration

In Figure 3(a)-(c) illustrates the data structures and algorithms of
sorting algorithm. After sorting is done, the manager sends a TS BK
message to a hardware context hw if the the following condition is
true.

SHUFFLE_TABLE[hw].before.cpu !=
SHUFFLE_TABLE[hw].after.cpu

For example, in Figure 4(c), SHUFFLE TABLE shows that hardware
context 0 in cpu 0 will be replaced by hardware context 2 in cpu 1.
Therefore, the manager sends a TS BK message to core 0.

The sorting algorithm is summarized in Figure 4(d). One additional
remark is that SHUFFLE TABLE is also used in thread migration
step. For example, Figure 4(c) shows that hardware context 0 and
hardware context 2 need to be swapped to make the counters
in MP COUNTER TABLE sorted. This step is performed during
thread migration when thread migration bookkeeping is finished.

C. Local DVFS on non-Critical Cores

Besides sorting threads and thread migration, another important
part of thread shuffling algorithm is to choose suitable voltage and
frequency levels for cores containing non-critical threads. Figure 5
shows the DVFS algorithm used in thread shuffling.

For each core containing non-critical threads, the algorithm first
computes a scaling factor based on two counter ref counter and
cmp counter (step 5 in the figure). There are several ways to
compute ref counter and cmp counter. As we discussed in Sec-
tion III-B, it is difficult to recover performance loss if aggressive
voltage and frequency scaling is applied. Therefore, we use con-
servative approach to compute these two counter values. Counter
ref counter is the largest counter value in core 0. Core 0 is called
critical core, because it always contains the most critical threads after
thread migration. For example, in Figure 4, ref counter is equal to
300. Other cores except core 0 are called non-critical cores. Counter
cmp counter is the smallest counter value in a non-critical core. In
Figure 4, cmp counter is equal to 400 for core 1. Thus, the scaling
factor for core 1 is 300/400 = 0.75. In our current model, voltage
scaling is implemented as a discrete function with 13 frequency levels
shown in Figure 1(c). Therefore, the scaling factor 0.75 is multiplied
by 13 (step 6), which gives us level 10 after rounding.

After the frequency level f is obtained, the internal HIS-
TORY TABLE in the manager is updated properly (step 7). Each
entry of the table contains a two bit up-down saturating counter. If
the frequency level f is k, then entry k is incremented and every
other entry is decremented. The final frequency level for the next
interval is the one with the largest counter in the HISTORY TABLE.
The purpose of HISTORY TABLE is used to reduce the effect of
temporal noise in the estimation of the slack [6].

The final step of DVFS algorithm (step 8) accesses voltage-
frequency table in Figure 1(c) based on the computed frequency level.
For example, level 10 is computed for core 1. Therefore, voltage
0.95V and frequency 3.5GHz will be selected for core 1 in next
interval of time.

V. EXPERIMENTS

The simulation framework used in our thread shuffling evaluation
contains a full system functional simulator and an x86 cycle-accurate
performance simulator. SoftSDV [23] for Intel64/IA32 processors is

Parameter Value

Processor In‐order x86 core, 2‐way SMT

L1 Instruction Cache (private) 32KB, 4‐way, 64B

L1 Data Cache (private) 32KB, 4‐way, 64B

L2 Cache (unified and private) 512KB, 16‐way, 64B

L3 Cache (unified and shared) 8MB, 16‐way, 64B

Memory always hit, 500 cycles access penalty

Network Protocol MESI

Benchmark Application Domain

PageRank‐lz77 Search Engine

PageRank‐sparse Search Engine

Rsearch Bioinformatics

Summarization Text Data Mining

(a) (b)

Fig. 6. (a) The architectural parameters (b) The RMS benchmarks used in
our evaluation.

Execution 

Time

Energy 

Consumption

Execution 

Time

Energy 

Consumption

Execution 

Time

Energy 

Consumption

PageRank‐lz77 1.00 0.93 0.99 0.90 0.99 0.97

PageRank‐sparse 1.14 0.71 0.98 0.49 0.86 0.69

Rsearch 1.01 0.97 0.98 0.97 0.97 1.00

Summarization 1.00 0.82 1.00 0.76 1.00 0.93
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PageRank‐lz77 1.02 0.93 1.02 0.93 1.00 1.00

PageRank‐sparse 1.29 0.65 0.99 0.50 0.77 0.77

Rsearch 1.02 0.94 0.96 0.92 0.94 0.98

Summarization 1.00 0.79 1.00 0.73 1.00 0.92

Benchmarks

Thread Delaying vs 

Baseline

Thread Shuffling vs 

Baseline

Thread Shuffling vs 

Thread Delaying

(a)

(b)

Fig. 7. Performance results of thread shuffling (a) on 4 cores (b) on 8 cores.
The baseline configuration is that whenever a thread reaches the barrier, the
thread is put into sleep mode and consumes zero power.

our functional simulator, which can simulate not only multithreaded
primitives including locks and synchronization operations but also
shared memory and events. Redhat 3.0 EL is booted as the guest
operating system in SoftSDV. In all of our simulation, only less than
1% of simulated instructions are from the operating system and thus
the impact of the operating system is negligible.

The functional simulator feeds Intel64/IA32 instructions into an
x86 performance simulator. The performance simulator uses a power
model based on activity counters and energy per access, similar to
Wattch [5]. In our evaluation, the energy includes dynamic, idle and
leakage energy. The baseline is very aggressive. It assumes that every
core is running at full speed and stops when it is completed. Once
the core stops, it consumes zero power.

Thread shuffling is implemented in-house cycle-accurate perfor-
mance simulator for x86 multi-core system illustrated in Figure 1(a).
For performance comparison, thread delaying is also implemented in
the same performance simulator. Multiple clock domains explained
in Section II are faithfully implemented in the simulator. Each core
is an in-order SMT core with the pipeline shown in Figure 1(b). The
simple in-order core is low power and is suitable for a many-core
chip. The detailed architectural parameters are shown in Figure 6(a).

A. Benchmarks

The Recognition, Mining, and Synthesis (RMS) benchmarks from
Intel are a set of emerging multithreaded applications for Tera-scale
systems [11]. The RMS benchmarks are highly compute-intensive
and highly parallel applications including data mining on text and
media, bio-informatics and search engine.

From the RMS benchmark suite, we have chosen those benchmarks
that clearly show workload imbalance. These benchmarks are shown
in Figure 6(b). The kernel of PageRank performs multiple matrix
multiplications on a large and sparse matrix. The matrix can be stored
in memory either in a native sparse format or a compressed version.
The compression is a simplified LZ77-based method. Rsearch is used
in bioinformatics to search a homologous RNA in a database. The
benchmarks were developed by expert programmers and parallelized
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by hand to achieve maximal scalability. However, they still exhibit
different degrees of workload imbalance and therefore inefficiency in
the energy consumption.

The simulated section for each benchmark is chosen by first
profiling its single-threaded version and then selecting the hottest
region, which normally is a parallel loop. For all of the benchmarks,
the selected parallel regions represent almost 99% of total execution
time. In our simulation, each thread runs a fixed number of iterations
(say N) and when the slowest thread has executed N iterations,
the simulation is finished. The value of N varies depending on the
benchmark. At least 100 million instructions are executed before a
simulation is terminated.

B. Performance Results

Figure 7 shows the performance results of thread shuffling with
respect to the baseline configuration and thread delaying on 4 and
8 cores, respectively. Under the baseline configuration, whenever a
thread reaches the barrier, the thread is put into sleep mode and
consumes zero power. There are three observations from the results.
First, thread shuffling can reduce more energy consumptions than
thread delaying. On 4 cores, thread shuffling can obtain up to 51%
energy savings with respect to the baseline and achieve 31% energy
savings with respect to thread delaying. Second, thread shuffling
is robust and does not cause any performance slowdown across
benchmarks, whereas thread delaying has 14% and 29% slowdowns
with respect to the baseline on 4 cores and 8 cores, respectively.
Third, thread shuffling is scalable. Performance in terms of execution
time and energy consumption with respect to the baseline and thread
delaying is maintained when the number of cores is increased from
4 to 8, or the number of hardware contexts is increased from 8 to
16.

C. Three Configurations of Thread Shuffling

Our DVFS algorithm is conservative. When computing the scaling
factor (step 5 in Figure 5), the largest counter value in the critical
core and the smallest counter value in a non-critical core are chosen
for ref counter and cmp counter, respectively. By doing this, the
scaling factor ref counter/cmp counter tends to be close to one.
The motivation behind this is that it is difficult to recover performance
loss when the scaling factor is small and DVFS is applied too
aggressively.

A SMT core contains several hardware contexts and each hard-
ware context has one counter approximating thread criticality. For
a sequence of counters in a SMT core, there are many choices for
ref counter and cmp counter, which lead to many combinations of
ref counter and cmp counter. In this study, we use three simplest
statistics methods, namely, maximum, minimum, and average, to find
ref counter (or cmp counter) in a given sequence of counters.
Therefore, there are nine possible combinations of ref counter and
cmp counter. However, from our experiments, we found that the
performance loss is big (more than 20% for some benchmarks) when
maximum and average methods are used to choose cmp counter.
Thus, only minimum method is used when choosing cmp counter
value. Figure 8(a) shows three combinations of ref counter and
cmp counter. The default configuration of thread shuffling uses the
combination of minimum of counters in the critical core and maxi-
mum of counters in a non-critical core. The aggressive configuration
of thread shuffling uses the combination of maximum of counters in
the critical core and maximum of counters in a non-critical core. The
third configuration called midpoint version of thread shuffling uses

the combination of average value of counters in the critical core and
maximum of counters in a non-critical core.

Figure 8(b) shows the performance results of three configurations
of thread shuffling. We can see that the aggressive version achieves
the best energy reduction. For PageRank-sparse, it reduces up to 57%
energy consumption with respect to the baseline. On other hand,
the aggressive verson has 6% performance slowdown for PageRank-
sparse. For other three benchmarks, the performance loss is negilible
for the aggressive version. The midpoint version of thread shuffling
achieves the best balance between the performance loss and energy
consumption reduction. It achieves energy consumption reduction up
to 56% with neglible performance penality.

VI. RELATED WORK

The closest work related to thread shuffling is thread delaying
[6]. Both techniques use the meeting point thread characterization
to identify critical and non-critical threads. Thread delaying uses
information about thread criticality to apply local DVFS to cores
containing non-critical threads. Thread delaying assumes each core
contains only one hardware context. As we demonstrated in previous
sections, thread delaying cannot achieve maximum energy savings
and maintain performance when cores in a multi-core system support
multiple hardware contexts (or SMT support). Thread shuffling is
designed to address the ineffectiveness of thread delaying on SMT
cores. It introduces the concept of criticality degree of a thread.
Thread shuffling maps threads with similar criticality degrees into the
same core by thread migration and then applies DVFS to non-critical
cores. By combining thread migration and DVFS, thread shuffling
achieves the maximum energy savings without performance penalty.

All existing energy savings techniques based on DVFS for parallel
applications [2], [6], [18] assume that cores in a multi-core system
do not have SMT support. However, current mainstream multi-core
systems such as Nehalem from Intel [15] and Power7 from IBM [14]
have SMT support. It is necessary to take SMT support into account
when a energy saving technique is designed. We are not aware
that any existing technique combines DVFS and thread migration
to reduce energy consumptions on SMT cores.

In thread shuffling, meeting point thread characterization is used
because its simplicity and effectiveness for parallel sections. However,
it assumes that the parallel section is statically scheduled [6]. Another
thread characterization technique called thread criticality predictor
(TCP) [2] does not have this constraint and it demonstrated that TCP
worked well for benchmarks containing loops with variable iteration
times. In our future work, we may combine TCP and thread shuffling
together to reduce energy consumption for even wider ranges of
applications.

Similar to thread delaying, thread shuffling is motivated by the
workload imbalance among parallel threads. This type of performance
asymmetry due to workload imbalance is different from the perfor-
mance asymmetry exploited in the literature [1], [16], [17]. Their
approach used a performance-asymmetric multi-core system, which
includes high performance and complex big cores to execute serial
code and many simple cores to execute parallel code. However, in
our case, the asymmetry comes from the workload imbalance among
parallel threads from the same parallel region. We are addressing
different performance-asymmetry problems.

DVFS and thread migration can be implemented at software level
[10]. The software level can be operating system level or application
level. Existing software level energy saving techniques based on
DVFS [19], [24] schedule a task in such a way that the frequency of a
CPU is scaled down to save energy and meet the deadline of the task.
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Fig. 8. (a) Three configurations of thread shuffling (b) Performance results of thread shuffling and its variants with respect to the baseline on 4 cores.

Software level scheduling algorithms are coarse-grained and target
for only one CPU. Thread shuffling is fine-grained and lightweight
enough to be implemented in hardware targeting multi-core systems.
However, we believe that the idea of thread shuffling can be extended
to software level. In our future work, we will investigate software
level techniques based on DVFS and thread migration for reducing
energy consumptions on multi-core systems supporting SMT.

VII. CONCLUSION

In this paper, we first show that thread delaying, one of the most
advanced energy savings techniques for parallel applications, is not
effective on a multi-core system when cores have SMT support. This
problem exists in all existing energy savings techniques based on
DVFS for parallel application, because they assume that each core in
a multi-core system contains only one hardware context and allows
only one thread to run at a time.

We present a novel technique called thread shuffling to address this
problem. Thread shuffling uses both concepts of thread criticality and
thread criticality degree. It dynamically maps threads with similar
criticality degrees into the same core and then applies DVFS to
non-critical cores. Our experiments with several RMS applications
have shown that thread shuffling is very effective. For example,
for PageRank, which represents an important category of emerging
applications such as Google’s web search engine, thread shuffling
(midpoint version) can obtain up to 56% energy savings with respect
to the baseline and achieve 38% energy savings with respect to
thread delaying without any performance loss on 4 cores. Similar
performance is obtained when the experiment is done on 8 cores.

REFERENCES

[1] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai.
The impact of performance asymmetry in emerging multicore archi-
tectures. In ISCA ’05: Proceedings of the 32nd annual international
symposium on Computer Architecture, pages 506–517, Washington, DC,
USA, 2005. IEEE Computer Society.

[2] Abhishek Bhattacharjee and Margaret Martonosi. Thread criticality
predictors for dynamic performance, power, and resource management
in chip multiprocessors. In ISCA ’09: Proceedings of the 36th annual
international symposium on Computer architecture, pages 290–301, New
York, NY, USA, 2009. ACM.

[3] OpenMP Architecture Review Board. Openmp application program
interface, 2005.

[4] Shekhar Borkar. Thousand core chips: a technology perspective. In DAC
’07: Proceedings of the 44th annual Design Automation Conference,
pages 746–749, New York, NY, USA, 2007. ACM.

[5] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a
framework for architectural-level power analysis and optimizations. In
ISCA ’00: Proceedings of the 27th annual international symposium on
Computer architecture, pages 83–94, New York, NY, USA, 2000. ACM.
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