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Abstract—Chaotic encryption schemes are believed to provide
a greater level of security than conventional ciphers. In this paper,
a chaotic stream cipher is first constructed and then its hardware
implementation details using FPGA technology are provided. Lo-
gistic map is the simplest chaotic system and has a high potential
to be used to design a stream cipher for real-time embedded
systems. The cipher uses a pseudo-random sequence generator
based on modified logistic map (MLM) and a random feedback
scheme. MLM has better chaotic properties than the logistic map
in terms of uniformity of bifurcation diagram and also avoids the
stable orbits of logistic map, giving a more chaotic behavior to
the system. The proposed cipher gives 16 bits of encrypted data
per clock cycle. The hardware implementation results over Xilinx
Virtex-6 FPGA give a synthesis clock frequency of 93 MHz and
a throughput of 1.5 Gbps while using 16 hardware multipliers.
This makes the cipher suitable for embedded devices which have
tight constraints on power consumption, hardware resources and
real-time parameters.
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I. INTRODUCTION

Chaotic systems are characterized by sensitive dependence

on initial conditions, similarity to random behavior, and con-

tinuous broad-band power spectrum. The possibility for self-

synchronization of chaotic oscillations [1] has sparked an

avalanche of works on the application of chaos in cryptogra-

phy. The random behavior and sensitivity to initial conditions

and parameter settings allows chaotic systems to fulfill the

classic Shannon requirements of confusion and diffusion [2].

A tiny difference in the starting state and parameter setting

of these systems can lead to enormous differences in the final

state of the system over a few iterations. Thus, sensitivity to

initial conditions manifests itself as an exponential growth of

error and the behavior of system appears chaotic.

Several schemes have been developed to exploit this prop-

erty of chaotic systems for secure communications. Some of

them are chaotic masking, chaos shift keying, and chaotic

modulation. Continuous time chaotic systems have been re-

searched but they require repeated resynchronization to match

the phase at the encoding and decoding ends.

Discrete-time chaotic systems behave like private-key en-

cryption algorithms [3] and are amenable to implementation

in fixed point hardware. They can be broadly divided into

two types: chaotic block ciphers and chaotic stream ciphers.

The work by Baptista [4] was one of the earliest attempts

to build a block cipher based on chaotic encryption. Each

character of the message is encrypted as the integer number

of iterations performed in the logistic equation, in order to

transfer the trajectory from an initial condition towards a pre-

defined interval inside the logistic chaotic attractor. However,

its encryption speed is very slow since at least 250 iterations

of the chaotic map are required for encrypting an 8-bit symbol.

The number of iterations may vary up to 65532.

Chaotic encryption has also been used to design image and

signal encryption schemes [5], [6]. However, many schemes

have proven to be weak against cryptanalysis using known-

plaintext attacks and others [7], [8].

A stream cipher based on chaotic map was presented in

early 1991 by [9] and its cryptanalysis was presented by [7].

Chen et al. [10], [11] constructed a block cipher based on

three-dimensional maps while [12] proposed a cipher by direct

discretization of two dimensional Baker map. A good survey

and introductory tutorial on these schemes is found in [13],

[14]. [15] present a crypto-system based on a discretization

of the skew tent map. [16] presents chaotic Feistel and

chaotic uniform operations for block ciphers. Although various

schemes/ maps have been proposed in research literature, the

logistic map remains one of the simplest maps and is used in

many schemes.

Some of the factors influencing the design of a good chaotic

stream cipher for real-time applications are as follows:

1) The scheme must be resistant to known cryptographic

attacks. Many chaotic ciphers have been found to be

insecure against plain-text attacks.

2) The range of the control parameter must be large enough

to withstand any brute-force cryptographic attacks.

3) A hardware implementation requiring lesser hardware

resources and achieving high throughput is desired.

4) The dynamics of discrete chaotic systems is different than

those for the continuous-time chaotic systems. Discretiza-

tion leads to severe degradations such as short cycle-

length, non-ideal distribution and correlation, etc. These

issues need to be properly addressed in the design of a

chaotic crypto-system.

In this paper we address these issues and present the design

and implementation of a chaotic stream cipher that uses less
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hardware, has promising security and has high throughput to

serve the requirements of real-time embedded systems. The

main contributions of this paper can be summarized as under:

1) We present a Modified Logistic Map which has better

properties than the Logistic Map - in terms of higher

confusion (larger Lyapunov exponent) and a flatter dis-

tribution for various parameter values in the bifurcation

diagram.

2) To the best knowledge of the authors, this is the first

hardware implementation of a chaotic stream cipher.

3) We present an optimized implementation of 64 bit mul-

tiplication in FPGA leading to savings in hardware re-

source requirements.

4) A throughput of 1.5 Gbps was obtained for Virtex-6

XCVLX75TL FPGA. The design was synthesized and

implemented using the Xilinx ISE 11.0 tool.

II. ALGORITHMIC DESCRIPTION

The logistic map is a polynomial mapping of degree 2. It

demonstrates chaotic behavior although using a simple non-

linear dynamical equation. Mathematically, the logistic map is

written as

xn+1 = λLM × xn(1 − xn)

where λLM is a positive number.

The behavior of logistic map is dependent on the value of

λLM . At λLM ≈ 3.57 is the onset of chaos. Most values

beyond 3.57 exhibit a chaotic behavior, but certain isolated

values of λLM appear to show non-chaotic behavior and are

referred to as islands of stability. Beyond λLM = 4, the values

eventually leave the interval [0, 1] and diverge for almost all

initial values.

A rough description of chaos is that chaotic systems exhibit

a great sensitivity to initial conditions – a property of the

logistic map for most values of λ between about 3.57 and

4. This stretching-and-folding does not just produce a gradual

divergence of the sequences of iterates, but an exponential

divergence, evidenced also by the complexity and unpre-

dictability of the chaotic logistic map.

The Modified Logistic Map (MLM): Our initial experi-

mentation involved generation of pseudo-random number se-

quences by varying the parameter λLM in the range [3.57, 4].
It led to several observations:

1) The histogram obtained for different λLM values (with

50000 samples) is skewed and not uniform or flat. This is

illustrated for the λLM = 3.61 and λLM = 3.91 values

in Figure 1(a-b).

2) For λLM = 4, the logistic map equation xn+1 =
λLM × xn(1 − xn) has the same domain and range

intervals (0, 1). For λLM < 4 and input xn in range

(0, 1), the range of xn+1 in the expression is (0, λLM/4]
and the distribution of random numbers is biased towards

0 or 1 (as seen in the distributions in Figure 1(a-b)). It

is desirable to have a distribution of random numbers

symmetric around 0.5.

Fig. 1. Histogram for 50000 samples obtained using Logistic map with initial
seed 0.100010 and (a) λLM = 3.61 and (b) λLM = 3.91 (c) λLM = 4

and (d) λLM = 3.83

3) There are certain isolated values of λLM that appear to

show non-chaotic behavior and are referred to as islands

of stability. For example: λLM = 1+
√

(8) ≈ 3.83 show

oscillation between three values.

4) The distribution for λLM = 4 is most flat and symmetric

(see figure 1(c)). It is desirable to have a flatter distri-

bution of samples drawn from the logistic map in order

to increase its randomness.

We address these issues by developing a MLM, defined by

the following equation:

xn+1 = λ × xn(1 − xn) + µ

where the xn values are restricted to the interval [α, 1 − α],
α < 0.5. The maxima of this function occurs at xn = 0.5
and the maximum value is λ/4 + µ while the minimum (in

specified domain) occurs at xn = α or xn = 1 − α and the

minimum value is λ× α(1− α) + µ. Equating the maximum

and minimum values to the range [α, (1 − α)] leads to the

following equations:

α = λα(1 − α) + µ

1 − α =
λ

4
+ µ

On solving these equations, we get λ = 4
1−2α

and µ =
α(2α−3)

1−2α
. Substituting these values, we get a flatter histogram

for the new logistic map as evident in Figure 2. This mod-

ified logistic map addresses the requirements of flatter and

symmetric distribution and also avoids islands of stability by

generating a flat distribution for all values of α.

Quantization

The output of the modified logistic map (xn) is quantized

to get a 16 bit value yn. The value xn, (0 < xn < 1) is



Fig. 2. Histogram for 50000 samples obtained using Modified Logistic map
with α values corresponding to (a)λLM = 3.61 and (b) λLM = 3.91

represented in fixed point as follows:

xn =

N−1
∑

j=0

{aj} × 2j−N

where aj are individual bit values.

We target the hardware architectures to use N bit fixed point

arithmetic (N¿16) but restrict yn to the least significant 16 bits

only. The larger the value of N, the more secure our system

becomes. Thus, yn is given by:

yn =
15
∑

j=0

{aj} × 2j−N

The quantization step or truncation of more significant bits

is non-linear in nature (it is a many-one mathematical function)

thereby increasing the complexity of any attacks that try to

recover the logistic map information from the cipher text

using any cryptanalysis. We extract another single bit from

the logistic map output which is used later for the random

feedback scheme. For example, the single bit output sequence

bn can be obtained from the bits of xn as follows:

bn = {aN−1}

i.e. the MSB of xn is used to get bn.

Pseudo-Random Sequence -2

We generate another pseudo-random sequence zn from the

given sequence yn by the following operation:

zn = yn ⊕ yn−1 ⊕ yn−2

There is no linear correlation between the two sequences yn

and zn. Statistical de-correlation makes it difficult to back-

track yn from zn.

Masking Operation and Random Feedback

The ciphertext Cn is obtained from the plaintext Pn by the

following operation:

Cn = Pn ⊕ zn ⊕ Fbn

where zn is the pseudorandom sequence and Fbn is the

random feedback input from the past ciphertext output. The

value Fbn is obtained as follows:

Fbn =

{

Cn−1 when bn = 0
Cn−2 when bn = 1

}

Fig. 3. Correlation test of the pseudo-random sequence. (a) Generated using
different initial values x0 and (b) different initial parameter α. The plots are
measured against initial value α = 0.110000 and x0 = 0.410021

The performance and accuracy of discrete chaotic ciphers is

a translation of properties of the underlying dynamical system

(or chaotic map). The chaotic properties of logistic maps and

hence MLM have been established in the past decades by

several researchers [17]. Some of the necessary conditions for

a secure stream cipher are long period, large linear complexity,

randomness and proper order of correlation immunity [3]. A

long period is assured by taking a large value of N (say

64). Figure 3 (a) and (b) show the low correlation between

sequences obtained using slightly different (a) initial value

x0 and (b) parameter λ. It can be seen that a very poor

correlation is obtained amongst sequences generated using

slightly different initial condition or parameter.

III. SECURITY

A serious drawback of chaotic crypto systems is that they

are weak against known-plaintext attacks. If the plain-text and

the cipher-text are known, it is easy to XOR both the values

and obtain the key value that was XORed to the original

plaintext. Our proposed scheme lays many practical difficulties

against such reverse engineering:

• The random feedback scheme makes it difficult to predict

the key value XORed to the original plaintext.

• The sequences zn and yn are linearly uncorrelated from

each other making it difficult to reverse engineer the

values of yn from zn.

• The sequence yn is obtained by sampling of xn which

is used to iterate the chaotic map. In the hardware

implementation (presented in the next section), we sample

the Least Significant 16 bits (out of 64) of xn to get yn.

Because the chaotic map is more sensitive to the MSB

than to the LSB (and we have 48 unknown MSB bits), it

is extremely difficult to trace back the xn value.

• We allowed 100 iterations of MLM in the beginning to

allow the diffusion of initial key bits and parameter val-

ues. It was found that within approximately 20 iterations

of Logistic Map the initial parameter values are fully

diffused: the two logistic maps with a slight difference

in initial conditions will appear completely de-correlated

in their outputs after at most 20 iterations. Allowing 100



iterations, help us to be on a safer side to allow full

diffusion of the initial key parameters.

Thus, the presented scheme is secure against known-

plaintext attacks. In the next section we present a hardware

implementation of the scheme that uses a 128 bit encryption

key (64 bits each for initial condition and parameterλ settings).

IV. HARDWARE IMPLEMENTATION

For hardware implementation, we chose a fixed-point im-

plementation over a floating point implementation because

fixed- point operations can be implemented more efficiently in

hardware. The bitwidth of the Plaintext and the Ciphertext are

16 bits or 2 bytes. However, for the implementation of MLM,

we chose a bit width of 64 bits. Thus, the iterating value of

MLM (x(i) and the parameters λ and µ, are all implemented

with 64 bits fixed point precision.

The permissible range of parameter α was chosen to be

(0, 0.375) which is represented in fixed point with 0 integer

bits and 64 fractional bits. This is represented shortly as 0.64

in Q I.F format. The range for parameter λ is then calculated

to be (4, 16) which is implemented with 5.59 Q I.F format.

The range for µ is (−3,−15.0975) which is represented using

5.59 Q I.F format. Thus, the multiplication λ×x(i)×(1−x(i))
is truncated to 5.59 I.F format and then added to µ to obtain

the new value for x(i).

The parameter α can take 3×261 values while the parameter

x0 can take approximately 263 values. Thus, we get an

effective keyspace with 3 × 2124 or approximately 2125 key

values to choose from.

We synthesized the design over a Xilinx Virtex-6

XCVLX75TL FPGA using Xilinx ISE 11.0. The new

XtremeDSP DSP48E1 slice in Virtex-6 SXT series facilitates

faster and optimized DSP functions (including multiplica-

tions). They can deliver over 1 TeraMACs at 550 MHz with

up to 2016 user-configurable XtremeDSP DSP48E1 slices and

cuts the power consumption by 65% using innovative, efficient

power management. A direct implementation of the design

gave a clock frequency of 35 MHz. By adding two pipelining

stages to the multiplier (DSP48E1 slices), we obtain a clock

frequency of 70 MHz for the design.

A single DSP48E1 slice can perform a maximum of 25×18
bits multiplication and hence 12 slices are required for a

64 × 64 bits multiplication. Two multiplication require 24

DSP48E1 slices. However, since we truncate the 128 bit

output of 64 × 64 bits multiplication to only 64 bits, some

optimization is possible. Xilinx XST (synthesis tool) reduces

one DSP48E1 slice by optimization thus requiring 23 slices

for implementation.

We present an optimization of usage of DSP multipliers

based on above observations for the multiplication of two 64

bit numbers X and Y. X is sign extended to 72 bits (XSE)

and represented by XaXbXc where Xa,Xb and Xc are each

24 bit long sequences.

{XSE}
71
0 = {Xa}

71
48{Xb}

47
24{Xc}

23
0

Similarly, we can represent Y as combination of four 16 bit

numbers YwYxYyYz .

{Y }71
0 = {Yw}

63
48{Yx}

47
32{Yy}

31
17{Yz}

15
0

Numerically,

X = XSE = Xa × 248 + Xb × 224 + Xc

and

Y = Yw × 248 + Yx × 232 + Yy × 216 + Yz

The product X × Y can then be represented as:

X × Y = (Xa × 248 + Xb × 224 + Xc) × (Yw × 248

+Yx × 232 + Yy × 216 + Yz)

⇒ X × Y = 296 × XaYw + 272 × XbYw + 248 × XcYw

+280 × XaYx + 256 × XbYx + 232 × XcYx

+264 × XaYy + 240 × XbYy + 216 × XcYy

+248 × XaYz + 224 × XbYz + 20 × XcYz

Now, considering the product Xn(1 − Xn) in the logistic

map, we multiply two 0.64 Q I.F values to get an output which

is in 0.128 I.F format. We truncate the last 64 bits to get the 64

bit approximate value of Xn+1. Because X is represented in 72

bits, we can discard lower 72 bits of the product. Each of the

product XαYβ , such that α ∈ {a, b, c} and β ∈ {w, x, y, z}
is of size 40 bits and can be implemented in a single DSP48E1

slice.

Thus,

X × Y =296 × XaYw +272 × XbYw + 248 × XcYw

+280 × XaYx +256 × XbYx

+264 × XaYy +240 × XbYy

+248 × XaYz

The other multiplication operation can also be optimized

in a similar manner. Thus, we can reduce the hardware

requirements and critical path for the implementation. A direct

implementation of our scheme using the above optimization

achieved a clock frequency of 44 MHz on the above mentioned

FPGA. By adding two pipelining stages to the 64 × 64 bits

multiplier, we obtained a clock frequency of 93 MHz and

required only 16 DSP48E1 slices in the design. The design

summary are given in Table I. Further pipelining may lead to

higher clock frequency but will also increase slice registers

usage.

Figure 4 gives the block diagram of the hardware imple-

mentation of the encryption scheme. The input xn−1 is first

multiplied with (1 − xn−1) and the upper half bits (most

significant bits) are then multiplied with λ. The output of this

multiplication is then truncated and added with µ to get the

value of xn as shown in the figure. The output xn is also used

to extract the values yn and bn, both of which serve to generate

the output cipher text. As shown in the figure, the multiplexer



Fig. 4. Block Diagram showing the implementational details of the chaotic stream cipher

Orig. Design Opt. Design

Clock Frequency (MHz) 69 93

No. DSP48E1 slices 23 16

No. Slice Registers 228 160

No. Slice LUTs 354 643

TABLE I
RESOURCE UTILIZATION ON XILINX VIRTEX-6 FPGA

(mux) is used to provide the random feedback based on bit

bn.

Table I gives the resource utilization on a Xilinx Virtex-

6 FPGA. It can be seen that the clock frequency achievable

through the original design was 69 MHz and 23 DSP48E1

multiplier slices were utilized. The proposed optimization

reduced the requirements of DSP48E1 slices from 23 to 16

leading to a subsequent increase in achievable clock frequency

from 69 MHz to 93 MHz. By pipelining, we can further

increase the clock frequency of the design.

V. CONCLUSION

This paper presents a novel chaotic stream cipher based

on modified logistic map suitable for embedded real-time

applications. A hardware implementation of proposed scheme

was proposed and a clock frequency of 93 MHz was achieved.

A possible direction for future work is the study of more

complex chaotic maps, study of behaviors of coupled-chaotic

maps and their implementation over hardware platforms.
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