
13

Hardware/Software Partitioning and
Pipelined Scheduling on Runtime
Reconfigurable FPGAs

MINGXUAN YUAN, ZONGHUA GU, and XIUQIANG HE

Zhejiang University and Hong Kong University of Science and Technology

XUE LIU

McGill University

and

LEI JIANG

University of Pittsburgh

FPGAs are widely used in today’s embedded systems design due to their low cost, high perfor-
mance, and reconfigurability. Partially RunTime-Reconfigurable (PRTR) FPGAs, such as Virtex-2
Pro and Virtex-4 from Xilinx, allow part of the FPGA area to be reconfigured while the remainder
continues to operate without interruption, so that HW tasks can be placed and removed dynam-
ically at runtime. We address two problems related to HW task scheduling on PRTR FPGAs: (1)
HW/SW partitioning. Given an application in the form of a task graph with known execution times
on the HW (FPGA) and SW (CPU), and known area sizes on the FPGA, find an valid allocation
of tasks to either HW or SW and a static schedule with the optimization objective of minimiz-
ing the total schedule length (makespan). (2) Pipelined scheduling. Given an input task graph,
construct a pipelined schedule on a PRTR FPGA with the goal of maximizing system throughput
while meeting a given end-to-end deadline. Both problems are NP-hard. Satisfiability Modulo The-
ories (SMT) is an extension to SAT by adding the ability to handle arithmetic and other decidable
theories. We use the SMT solver Yices with Linear Integer Arithmetic (LIA) theory as the optimiza-
tion engine for solving the two scheduling problems. In addition, we present an efficient heuris-
tic algorithm based on kernel recognition for the pipelined scheduling problem, a technique bor-
rowed from SW pipelining, to overcome the scalability problem of the SMT-based optimal solution
technique.
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1. INTRODUCTION

Reconfigurable HW devices, such as FPGAs, are very popular in today’s em-
bedded systems design due to their low cost, high performance, and reconfig-
urability. FPGAs are inherently parallel, that is, two or more tasks can execute
on a FPGA device concurrently as long as they can both fit on it. Partially
RunTime-Reconfigurable (PRTR) FPGAs allow part of the FPGA area to be
reconfigured while the remainder continues to operate without interruption,
so that HW tasks can be placed and removed dynamically at runtime. Early
versions of Xilinx FPGA devices, such as Virtex-II and Spartan, only support
1D reconfiguration, where each task occupies a contiguous set of columns. In
2006, Xilinx introduced the Early-Access Partial Reconfiguration flow (EAPR)
to permit 2D reconfiguration. Virtex-4 and Virtex-V devices support indepen-
dent reconfiguration of a minimum of 16 Configurable Logic Blocks (CLBs) in
the same column, making it possible to have 2D dynamic reconfiguration [Xilinx
2005], where each task occupies a rectangular area with a width and height
in terms of number of Configurable Logic Blocks (CLBs), also referred to as
cells, on the two dimensions. Even though 2D reconfiguration is feasible with
today’s FPGA technology, there are still many technical obstacles to its wide
adoption in industry, hence we limit our attention to 1D reconfigurable FPGAs
in this article. As an example, Figure 1 shows a 1D reconfigurable FPGA with
5 columns C1 to C5, and two tasks on it: T1 occupies 2 columns and T2 occupies
1 column.

Task scheduling for 1D reconfigurable FPGAs bears some similarity to
scheduling on identical multiprocessors [Carpenter et al. 2004], where all pro-
cessors in the system have identical processing speed. The difference is that
each HW task may occupy multiple contiguous columns on the FPGA while a
SW task always occupies a single CPU at any given time. For example, consider
the problem of scheduling a task graph on a FPGA with 3 columns. If each task
occupies 3 columns, then it is identical to a single-processor scheduling prob-
lem, as the entire FPGA can be viewed as a single CPU. If each task occupies
1 column, then it is similar to a multiprocessor scheduling problem (except
for the constraints imposed by a single configuration controller, as discussed
later), as each FPGA column can be viewed as a CPU. But if each task can
occupy multiple columns, then it becomes a more general and difficult problem
than multiprocessor scheduling.
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Fig. 1. A 1D reconfigurable FPGA with two HW tasks running.

HW task reconfiguration on a FPGA has some unique characteristics com-
pared to SW task context-switch on the CPU: large reconfiguration delay and
unique reconfiguration controller as a global shared resource.

—Unlike CPU scheduling, where task context-switch overhead is often small
enough to be ignored, FPGA reconfiguration carries a significant overhead
in the range of milliseconds which is proportional to the size of area being
reconfigured. Several techniques have been proposed to reduce the impact of
reconfiguration delay. Notably, configuration prefetch [Li and Hauck 2002] is
an effective technique for hiding the large reconfiguration delay by allowing
a task’s configuration to be loaded on the FPGA sometime before the start
of its actual computation. As a result, a task’s reconfiguration and execution
stages may be separated by a time gap. Each task invocation consists of two
distinct stages: reconfiguration and execution. This can be useful for reducing
or eliminating impact of reconfiguration delays by overlapping one task’s
reconfiguration stage with some other task’s execution stage.

—The typical commercial FPGA has a single reconfiguration controller, so the
reconfiguration stages of different tasks must be serialized on the timeline,
while their execution stages can be concurrent as long as they occupy dif-
ferent areas on the FPGA. This is a major source of complexity of real-time
scheduling on FPGAs. (Although there are research prototypes that support
multiple reconfiguration controllers [Noguera and Badia 2006], we do not
consider them in this article. )

In this article, we consider applications described as task graphs. A task
graph is a directed acyclic graph where each vertex represents a task, and each
edge represents precedence relationship between two tasks. taski has a tuple
of attributes (Ei, Ri, Wi), where Ei is its computation time, Ri is its reconfig-
uration delay, and Wi is its width in terms of the number of contiguous FPGA
columns it occupies. A task’s reconfiguration delay Ri is proportional to its
width Wi. Each task invocation consists of a reconfiguration stage with length
Ri followed by an execution stage with length Ei. A task’s execution stage can
start when all its predecessors have finished their execution stages, that is,
precedence relationships in the task graph constrain task execution stages, not
reconfiguration stages, which can occur in arbitrary order.
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In this article, we address the following two problems.

—HW/SW Partitioning and Scheduling on a Hybrid FPGA/CPU Device. Given
an input task graph, where each task has two equivalent implementations:
a HW implementation that can run on the FPGA, and a SW implementation
that can run on the CPU, partition and schedule it on a platform consisting
of a PRTR FPGA and a CPU, with the objective of minimizing the schedule
length (makespan). The CPU may be a softcore CPU carved out of the con-
figurable logic in the FPGA, for example, MicroBlaze for Xilinx FPGAs, or a
separate CPU connected to the FPGA via a bus. We present a Satisfiability
Modulo Theories (SMT) encoding for finding the optimal solution, and com-
pare its performance with a heuristic algorithm in the literature [Banerjee
et al. 2005, 2006].

—Pipelined Scheduling on a PRTR FPGA. Given an input task graph, construct
a pipelined schedule on a PRTR FPGA with the objective of maximizing
system throughput while meeting a given task graph deadline.1 The deadline
constraint is imposed since certain applications may be latency sensitive as
well as throughput oriented, hence maximizing throughput without regard to
latency may negatively impact application QoS. We present a SMT encoding
for finding the optimal solution, as well as a heuristic algorithm based on
Kernel Recognition [Aiken et al. 1995].

These two problems are found in different application contexts: the first prob-
lem is useful when different task graph iterations do not overlap with each
other, perhaps the task graph is executed only once, or periodically driven by
a periodic timer; the second problem is useful when the task graph is iterated
many times. The objective is to maximize system throughput, hence finish the
“batch job” of all task graph iterations as soon as possible by overlapping exe-
cution of different task graph iterations. This article is an extended version of
our previous conference paper [Yuan et al. 2008], which addressed the problem
of HW/SW partitioning and scheduling.

We make the following assumptions.

—The FPGA is 1D reconfigurable with a single reconfiguration controller, as
supported by commercial FPGA technology.

—Each HW or SW task has a known worst-case execution time. Each HW task
has a known size in terms of the number of contiguous columns it occupies
on the FPGA.

—Tasks are not preemptable on either the FPGA or the CPU. This is a common
assumption adopted in the literature on HW/SW partitioning.

—The communication delay between a HW task on the FPGA and a SW task
on the CPU is proportional to the data size transmitted. (We make the sim-
plifying assumption that each edge in the task graph represents the same

1It is also possible to formulate the pipelined scheduling problem for a hybrid CPU/FPGA device,
where the CPU is used to execute one or more pipeline stages. However, this approach has the
drawback that the CPU is typically very slow, and the pipeline throughput is limited by the slowest
pipeline stage, so we do not consider it in this article.
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communication data size, hence the communication delay is the same for all
task graph edges that cross the FPGA/CPU boundary. Our framework can be
easily extended to handle the more general case.) Intertask communication
between two HW tasks on the FPGA or between two SW tasks on the CPU
takes place via shared memory and takes no time.

—The entire FPGA area is uniformly reconfigurable, and each dynamic task
can be flexibly placed anywhere on the FPGA as long as there is enough
empty space. In practice, it is common to preconfigure some FPGA columns
for dedicated purposes as static components where dynamic tasks cannot be
placed. This situation can be handled by denoting these columns as always
occupied. In particular, it is common to allocate an area of shared mem-
ory that spans the entire width of the FPGA and acts as a global shared
communication medium, which reduces the height of the FPGA columns
that are available to dynamic tasks but does not affect our task model
otherwise.

This article is structured as follows: we present the SMT model for HW/SW
partitioning on a hybrid CPU/FPGA device in Section 2; the SMT model and a
heuristic algorithm based on kernel recognition for HW task pipelined schedul-
ing in Section 3; related work in Section 4; performance evaluation results in
Section 5; conclusions in Section 6.

2. HW/SW PARTITIONING

As motivation for HW/SW partitioning using FPGA as the coprocessor, FPGAs
may be used in place of ASICs as HW coprocessors, also called HW accelera-
tors, for computation-intensive kernels in the application. As HW coprocessors,
FPGAs have a number of advantages over ASICs.

—FPGAs are more cost effective than ASICs in terms of ease of design and
reduced time-to-market.

—FPGAs are more flexible than ASICs. Whereas ASIC coprocessors accelerate
specific functions, coprocessors based on FPGAs can be applied to the speedup
of arbitrary SW programs with some distinctive characteristics, for example,
programs with parallelizable bit-level operations.

—Dynamically reconfigurable FPGAs may be used to achieve further cost ef-
fectiveness and flexibility by reconfiguring the FPGA to run different accel-
eration tasks at different times, thus avoiding the need for multiple ASIC
coprocessors.

There are some commercial products that support using of FPGA-based co-
processors as HW accelerators, for example, Altera developed HW and design
tools for a flexible coprocessor architecture. Figure 2 shows one possible con-
figuration using Altera’s FPGA coprocessor with Texas Instruments’ digital
signal processor, where the coprocessor is Direct Memory Access (DMA)-driven
via the TI External Memory InterFace (EMIF), and the data is buffered using
First-In First-Out (FIFO) buffers. It is also possible to build a System on a
Programmable Chip (SoPC) with the NIOS embedded processor core instead
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Fig. 2. One example configuration of Altera FPGA coprocessor, taken from Altera’s Web site
(www.altera.com).

Table I. Task Graph Example for HW Task
Scheduling on FPGA

ID Wi Ri Ei

1 1 1 3
2 2 2 1
3 1 1 2
4 1 1 1
5 2 2 2

of an external processor. Combined with PRTR feature of modern FPGAs, this
provides a flexible and high-performance approach to HW acceleration.

2.1 Motivating Examples

We first present an example of HW task scheduling on FPGA, then present
another example of HW/SW partitioning and scheduling on a hybrid CPU/FPGA
device.

Consider the problem of scheduling the task graph in Table I on a FPGA with
3 columns. Figure 3 shows some possible schedules. Dark areas denote the
reconfiguration stage; white areas denote the execution stage; striped areas
denote the gap between a task’s reconfiguration stage and execution stage,
within which no other task can execute. After a taski ’s columns are reconfigured
and before taski finishes execution, they are reserved for taski and should not
be allocated to other tasks, as indicated by the shaded areas. However, taski
may not be able to start its execution stage immediately since it has to wait
for all its predecessors to finish. For example, in schedule (d), reconfiguration
of column C3 for task3 has finished at time 2, but task3’s execution stage E3
cannot start until time 3 when task1’s execution stage E1 finishes due to task
graph precedence constraints.

Even though only one task graph iteration is shown, the task graph can be
executed repeatedly and periodically in an actual system. Figure 3 shows that
the task graph is executed with a period of 13. The source tasks task1 and task2
that start at time 0 are preconfigured at the end of the previous period and
before the start of the current period, so their reconfiguration delays do not
contribute to the schedule length. This implies that there is enough slack time
at the end of each period to preconfigure certain source tasks for the next period.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 13, Pub. date: February 2010.



Hardware/Software Partitioning and Pipelined Scheduling • 13:7

Fig. 3. Some possible schedules of the task graph in Table I on a FPGA with 3 columns. Vertical
axis denotes time; horizontal axis denotes the column position on the FPGA.

For example, for the schedule in Figure 3(a), the task graph period should be
larger than or equal to 13 (SL+R1+R2 = 10+3 in order to leave enough slack at
the end of each period for reconfiguration of tasks T1 and T2 for the next period,
while for the schedule in Figure 3(d), the task graph period must be larger than
or equal to 10 (SL+R1+R2 = 7+3). This approach results in reduced task graph
latency compared to the approach where all task configurations are performed
at the beginning. This should be beneficial to the application QoS, similar to a
common approach to implementation of control loops, where time-consuming
state updates are performed after computing controller output [Klein et al.
1993].

Figure 4 shows one possible HW/SW partition and schedule for the task graph
in Table II, assuming task graph period is 11. Each task has an additional at-
tribute SEi to denote its execution time on the CPU for its SW implementation.
task6 is assigned to the CPU and the other tasks are assigned to the FPGA.
The box labeled “com” represents the communication delay between the CPU
and FPGA when SW task6 on the CPU sends a message to HW task5 on the
FPGA.

2.2 SMT Model for HW/SW Partitioning

Scheduling problems are typically NP-hard, and efficient heuristic algorithms
are often devised to obtain near-optimal solutions. Researchers have also used
various techniques to obtain exact solutions to these NP-hard problems, includ-
ing Integer Linear Programming (ILP) solvers, Constraint Programming (CP)
solvers, Binary Decision Diagram (BDD) packages, Satisfiability (SAT) solvers,
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Fig. 4. One possible schedule of the task graph in Table II on a hybrid FPGA/CPU device.

Table II. Task Graph Example for HW/SW Partitioning on a
Hybrid CPU/FPGA Device

ID Wi Ri Ei SEi

1 1 1 3 12
2 2 2 1 4
3 1 1 2 8
4 1 1 1 4
5 2 2 2 8
6 2 2 1 4

model-checkers, etc. In particular, SAT is a well-known NP-complete problem of
assigning values to a set of boolean variables to make a propositional logic for-
mula true. The formula is typically written in Conjunctive Normal Form (CNF)
consisting of a conjunction of boolean disjunctions. SAT solvers have become
amazingly fast in recent years, and a good SAT solver can routinely handle up
to 10300 states. SAT can encode bounded integers with bit vectors, but it cannot
encode unbounded types such as real variables, or infinite structures such as
queues or linked lists. Even for bounded variables, the number of variables can
be very large, and SAT solving can be very slow if there are a large number
of variables. Since the number of boolean variables needed to encode integer
variables grows large quickly for large integer values, SAT is not very suitable
for optimization problems involving large integer values.

Satisfiability Modulo Theories (SMT) is an extension to SAT by adding the
ability to handle arithmetic and other decidable theories, such as equality with
uninterpreted function symbols, linear integer arithmetic, linear real arith-
metic, integer difference logic, and real difference logic. Early attempts at solv-
ing SMT problem instances involved translating them to boolean SAT instances
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(e.g., a 32-bit integer variable would be encoded by 32 boolean variables, and
word-level operations such as addition would be replaced by lower-level boolean
operations) and passing this formula to a boolean SAT solver. This allows us to
use existing SAT solvers and leverage their performance and capacity improve-
ments over time. On the other hand, the loss of high-level semantics means that
the SAT solver has to work a lot harder than necessary to discover obvious facts
such as x + y = y + x for integer addition. This observation led to the develop-
ment of a number of SMT solvers that tightly integrate the boolean reasoning
of a Davis, Putnam, Logemann, and Loveland (DPLL)-style search [Davis et al.
1962] with theory solvers that handle conjunctions of predicates from a given
theory. This architecture, called DPLL(T), gives the responsibility of boolean
reasoning to the DPLL-based SAT solver which, in turn, interacts with a solver
for theory T through a well-defined interface. The theory solver checks the fea-
sibility of conjunctions of theory predicates passed onto it from the SAT solver
as it explores the boolean search space of the formula. Different SMT solvers
may use different theory solvers and different techniques of integrating them
within the DPLL(T) framework. Integration of SAT with a theory solver results
in dramatic performance improvements for problems that can be expressed di-
rectly in the theory solver compared to developing a boolean encoding and using
a SAT solver only. In this article, we use the SMT solver Yices [Dutertre and
de Moura 2006] from Stanford Research Institute (SRI), as an alternative to
more conventional optimization techniques such as ILP. We can view all time-
related variables as either integer or real variables. The SMT solver Yices pro-
vides the Linear Integer Arithmetic (LIA) theory or the Linear Real Arithmetic
(LRA) theory, so either option is acceptable. The solutions generated with ei-
ther the LIA or LRA theory are the same, but their runtime efficiency may be
different. Our experience shows that SMT with LIA theory exhibits better per-
formance for most examples, so we declare all variables to be integers in this
article.

Since SMT does not support optimization directly, but only provides a yes/no
answer to the feasibility of a given constraint set, we use a binary search algo-
rithm at the top level to search for the shortest schedule length SL, as shown in
Algorithm 1. The SMT solver is invoked as a subroutine to check the feasibil-
ity of each possible schedule length SL. LB and UB denote the minimum and
maximum possible values of the schedule length, respectively. To ensure that
LB is a safe lower bound, we set LB to be one less than the length of the critical
path in the task graph, that is, the longest delay path from the source task’s
task to the sink tasks assuming zero reconfiguration delays. To ensure that UB
is a safe upper bound, we set UB to be sum of the execution times of all tasks
and their reconfiguration delays. “GenSMTModel” refers to the code generator
that takes as input the schedule length SL to be checked for feasibility, and
generates the SMT model as input to Yices.

Next, we present the SMT model for HW/SW partitioning on a hybrid
FPGA/CPU device for a given upper bound on schedule length SL in Condi-
tions 1 to 10. Table III summarizes the notations used in this section. We follow
the convention of using lower-case letters to denote variables, and upper-case
letters to denote constants.
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Table III. Notations Used in This Section

M size of the reconfigurable area on the FPGA in terms of number of contiguous columns
N number of tasks in the task graph
Ri taski ’s reconfiguration delay on the FPGA
Ei taski ’s execution time on the FPGA
Wi taski ’s size in terms of the number of contiguous FPGA columns it occupies
SEi taski ’s execution time on the CPU for its SW implementation
SL upper bound of the schedule length
Period period of the task graph, assuming the task graph is executed periodically
ri actual reconfiguration delay of taski

pli position of task i’s leftmost column on the FPGA
pri position of task i’s rightmost column on the FPGA
tri start time of task i’s reconfiguration stage
fri finish time of taski ’s reconfiguration stage
tei start time of task i’s execution stage
fei finish time of taski ’s execution stage
hsi boolean variable denoting if taski is a HW task on the FPGA (hsi = 0) or a SW task on

the CPU (hsi = 1)

Algorithm 1. Top-Level Binary Search Algorithm for Finding the Minimum Schedule
Length

Input: Lower bound LB and upper bound UB of the schedule length
Output: Minimum schedule length and the corresponding schedule
lb = LB, ub = UB;
while lb < ub do

SL = �(lb + ub)/2�;
hasSolution :=InvokeYices(GenSMTModel(SL));
if hasSolution then

ub := SL, and record the schedule.;
else

lb := SL + 1;
return ub as the minimum schedule length, along with the corresponding schedule.

As shown in Figure 5, each HW task occupies a 2D rectangle in the 2D
time-position chart, which consists of a reconfiguration stage and an execution
stage plus a possible gap between them due to configuration prefetching. The
thick border indicates the “forbidden” task area not available for use by other
tasks. HW task scheduling can be formulated as a problem of nonoverlapping
placement of rectangles.

—A HW task must fit on the FPGA.

∀i, hsi = 0 =⇒ pri = pli + Wi − 1 ∧ pli ≥ 1 ∧ pri ≤ M (1)

—Preemption is not allowed for either the execution stage or the reconfigura-
tion stage of a HW task, or for a SW task.

∀i, hsi = 0 =⇒ fri = tri + Ri ∧ fei = tei + Ei

∀i, hsi = 1 =⇒ fei = tei + SEi (2)

—If a HW task is a source task in the task graph without any predecessors
and it starts at time 0, then it has been preconfigured in the previous period
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Fig. 5. taski on the 2D time-FPGA position chart.

and does not experience any reconfiguration delay. (Note that the FPGA may
not be large enough to permit preconfiguration of all source tasks. The SMT
model encodes all possible choices of the subset of source tasks to be precon-
figured, so that the SMT solver will find the optimal choice as part of the
solution to the optimization problem. )

∀i, (taski is not a source node ∧ hsi = 0) =⇒ ri = Ri

∀i, (taski is a source node ∧ hsi = 0) =⇒
((ri = 0 ∨ ri = Ri) ∧ (3)
(ri = 0 ⇔ tei = 0))

—Related to Condition 4, the task graph period (if it is periodically executed)
should be larger than or equal to sum of reconfiguration delays of all source
tasks whose reconfiguration stages have been pushed to the end of the pe-
riod, that is, their reconfiguration delays do not contribute to the schedule
length.

SL +
∑

i

Ri ≤ Period, where ri = 0. (4)

In this article, we assume the task graph period to be large enough so that
this condition becomes a null constraint.

—A task’s reconfiguration stage (which may have length 0) must precede its
execution stage.

∀i, hsi = 0 =⇒ (fri ≤ tei) (5)

—Two HW task rectangles in the 2D time-position chart should not overlap
with each other.

∀i, j , i �= j , hsi = 0 ∧ hs j = 0 =⇒
(fei ≤ tr j

∨ fe j ≤ tri (6)
∨ pri < pl j

∨ pr j < pli)
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This constraint ensures that at least one of the 4 listed conditions must be
true, that is, if two tasks do not overlap on the time dimension, then they
can overlap on the space dimension, and vice versa. This guarantees that the
two rectangles representing Ti and Tj do not overlap in the 2D time-position
chart.

—Reconfiguration stages of different tasks must be serialized since the recon-
figuration controller is a shared resource.

∀i, j , i �= j , hsi = 0 ∧ hs j = 0 =⇒
fri ≤ tr j (7)

∨ fr j ≤ tri

—If there is an edge from taski to task j in the task graph, then task j can only
begin its execution after taski has finished its execution, taking into account
any possible communication delay between the FPGA and CPU. Note that
there is no precedence constraint on the two tasks’ reconfiguration stages,
which enables configuration prefetch.

∀i, j , i �= j , Edgeij = true ∧ hsi = hs j =⇒ fei ≤ te j

∀i, j , i �= j , Edgeij = true ∧ hsi �= hs j =⇒ fei + ComDelay ≤ te j (8)

—Two SW tasks cannot overlap on the time axis due to the shared CPU re-
source.

∀i, j , i �= j , hsi = 1 ∧ hs j = 1 =⇒
(fei ≤ te j (9)

∨ fe j ≤ tei)

—Sink tasks must finish before the specified schedule length SL (this is the
deadline constraint).

∀i, (taski is a sink node) fei ≤ SL (10)

Conditions 1 to 10 form a constraint set that can be input to a SMT solver to
check satisfiability.

3. PIPELINED SCHEDULING

The pipelined scheduling problem is motivated by high-performance,
throughput-oriented streaming applications implemented on a HW platform,
which can be a PRTR FPGA, or a platform consisting of multiple FPGAs like
the Galapagos prototyping platform [Noguera and Badia 2006]. The application
is divided into multiple pipeline stages, and different iterations are scheduled
in an overlapped manner to maximize throughput. If the HW platform is large
enough to place all pipeline stages on it simultaneously, we should let each ap-
plication pipeline stage occupy a fixed processing element on the HW platform.
This corresponds to the traditional multiprocessor pipeline design, where each
processor executes a pipeline stage. But sometimes it may be necessary and
desirable to let two or more pipeline stages share the same processing element
on the HW platform with time-multiplexing to increase resource utilization.
There may be several possible reasons for this.
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Fig. 6. Example to show that time-multiplexing multiple pipeline stages on the same processor
can increase resource utilization. The subscript i j denotes the j th iteration of task i in the task
graph. This figure is best viewed in color.

(1) The HW platform is not large enough to place all pipeline stages of an
application on it.

(2) Even if the HW platform is large enough, it may be desirable to minimize
limit the area occupied by one application in order to achieve isolation
among multiple applications running on the same HW platform.

(3) If all pipeline stages have equal length, then the occupied area is fully
utilized. But if certain pipeline stages are much shorter than the others,
the HW processing element dedicated to these shorter stages will have
long idle times, resulting in wasted resources. In this case, we can achieve
higher resource utilization by placing multiple shorter pipeline stages on
the same HW processing element.

As illustration of the third point preceding, Figure 6(b) shows a 3-stage
pipeline with each stage assigned its own processing element, which can be
either a CPU or a FPGA slot. We can see that processing elements PE1 and
PE2 are underutilized. Figure 6(c) shows that letting the 1st and 3rd pipeline
stage share a processing element results in increased resource utilization
and reduced resource requirements. Another example of time-multiplexing
of multiple pipeline stages is Piperench [Goldstein et al. 2000] (Figure 12 in
Section 4).
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Fig. 7. Pipelined scheduling example on a FPGA with 3 columns. P = 2, latency = 6. Label R
denotes task reconfiguration, and E denotes task execution. This figure is best viewed in color.

Fig. 8. Pipelined scheduling example on a FPGA with 4 columns. P = 5, latency = 8. This figure
is best viewed in color.

3.1 Motivating Examples

Figures 7 and 8 show two motivating examples of pipelined HW task scheduling
on a PRTR FPGA. In Figure 7, the FPGA is large enough to fit all three tasks,
so each task occupies a dedicated area on the FPGA. Reconfiguration of all
three tasks only needs to be done once in the pipeline initialization stage (the
prolog), but not during steady state execution. One of the FPGA columns (not
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Table IV. Notations for Pipelined Scheduling, in Addition to Those in Table III

P Initiation Interval (II) of the pipelined schedule, also called the pipeline period
ri actual reconfiguration delay of taski . ri = 0 if taski ’s occupied area has already been

configured with its reconfiguration pattern by its instance in the previous iteration;
ri = Ri otherwise.

tr ′
i relative start time of taski ’s reconfiguration stage within a pipeline stage

fr′
i relative finish time of taski ’s reconfiguration stage within a pipeline stage

te′
i relative start time of taski ’s execution stage within a pipeline stage

fe′
i relative finish time of taski ’s execution stage within a pipeline stage

shown) is idle. In Figure 8, the FPGA size is not large enough to fit all tasks,
so we need to time multiplex some columns between multiple tasks. In this
case, tasks 3 and 4 share two columns, and their reconfiguration needs to be
performed at every iteration; tasks 1 and 2 each occupy a dedicated column,
and their reconfiguration only needs to be done once in the prolog.

A pipelined design is characterized by its Initiation Interval (II), defined
as the time difference between the start of two consecutive iterations of task
graph execution in the steady state. The II is equal to the inverse of system
throughput. If we imagine a sliding time window with length equal to the II
on the steady state Gantt chart, then any position of the moving window is a
valid pipeline stage, which does not need to coincide with start or finish of any
task. However, we adopt the common convention and set the start time of the
first pipeline stage to coincide with the start time of the earliest source (initial)
task. (If there are multiple source tasks, then the one with the earliest start
time among them is chosen.) As a result, the finish time of the whole task graph
is equal to the finish time of the last sink task, and must fall within the last
pipeline stage. For example, the schedule in Figure 7(b) has 3 pipeline stages in
the steady state; the II is 2; end-to-end latency is 6. The schedule in Figure 8(b)
has 2 pipeline stages in the steady state; the II is 5; end-to-end latency is 8.
There may be many possible pipelined schedules with different throughput
and latency characteristics. Our objective is to find the optimal schedule with
maximum throughput (minimum II) under a user-defined task graph deadline
(latency) constraint.

3.2 SMT Model for Pipelined Scheduling

Table IV summarizes the notations used in this section. The nonoverlapping
rectangle constraints for nonpipelined scheduling are still applicable (Figure 5),
but in addition, we need to consider possible wrap-around of a task’s rectangle
on the time axis for pipelined scheduling when writing the constraint equations
due to the overlapped execution of different task graph iterations. For example,
in Figure 7, a pipeline stage contains one instance of each of the three tasks’
execution stage, while in Figure 8, no matter how we choose to divide up the
time axis into pipeline stages, there is always some task’s reconfiguration or
execution stage that is cut at the stage boundary and wraps around the pipeline
stage. In addition to the time variables tri, fri, tei, fei defined in Table III, we
define additional primed variables tr ′

i, fr′
i, te′

i, fe′
i, which are relative to the start

of the current pipeline stage. The unprimed variables are called absolute time,
and the primed variables are called relative time.
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The top-level binary search algorithm is similar to Algorithm 1, except the
binary search variable is the minimum II instead of the minimum schedule
length. The lower bound of the II is set to

∑
i Ei ∗Wi/M , that is, when the FPGA

is fully utilized without any gaps, and there are no reconfiguration stages in
the pipeline steady state (e.g., the example in Figure 7); the upper bound of
the II is set to the minimum schedule length SL obtained from the SMT model
in Section 2 assuming there is only a FPGA without a CPU. This is because
repeating the nonpipelined schedule as the pipeline steady state forms a valid
pipelined schedule with II equal to SL, and we aim to find pipelined schedules
with II values smaller than SL.

In addition to the same constraints as those for HW tasks in HW/SW parti-
tioning in Section 2, we add the following additional constraints that are specific
to pipelined scheduling due to the wrap-around of a task’s reconfiguration or
execution stages.

—Each task must fit into a pipeline stage.

∀i, fei − tri ≤ P (11)

—Taski ’s reconfiguration delay is either Ri or 0, depending on whether it can
exploit configuration reuse. If taski ’s reconfiguration stage has length 0, then
it exploits configuration reuse between two iterations, and it must have been
assigned its own dedicated HW area not shared with other tasks, for example,
tasks 1 and 2 in Figure 8. The reverse is also true.

∀i, (ri = Ri ∨ ri = 0) ∧ (ri = 0 ⇔ ∀ j , (i �= j ), (pri < pl j ) ∨ (pr j < pli)) (12)

—Relationship between absolute and relative time variables.

tr ′
i = tri%P

fr′
i = fri%P

te′
i = tei%P (13)

fe′
i = fei%P

—Conditions 14 to 16 are the constraints corresponding to the scenarios in
Figure 9 that illustrate possible spatial and temporal relationships between
two tasks in the same pipeline stage, depending on whether each task wraps
around the pipeline stage. (Note that there may be other tasks running con-
currently with taski and task j that are not shown.) Here is an explanation on
the use of < versus ≤ in Conditions 14 to 16: since we assume that all tasks
have nonzero execution time, we have tr ′

i < fe′
i if taski does not wrap around

the pipeline stage. In contrast, we have fe′
i ≤ tr ′

i if taski wraps around, since it
is possible to have fe′

i = tr ′
i if ri = 0 due to configuration reuse. This is when

taski executes back-to-back without any reconfiguration stage in-between
different iterations.
(a) For the cases in Figure 9(a), when neither task wraps around, we have

the follwoing.

∀i, j , i �= j , ((tr ′
i < fe′

i) ∧ (tr ′
j < fe′

j )) =⇒
((fe′

j ≤ tr ′
i) ∨ (fe′

i ≤ tr ′
j ) ∨ (pri < pl j ) ∨ (pr j < pli)) (14)
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Fig. 9. Possible placement relationships between two tasks.

(b) For the cases in Figures 9(b) and 9(c), when one of the tasks wraps around,
we have the following.
∀i, j , i �= j , (((tr ′

i < fe′
i) ∧ (fe′

j ≤ tr ′
j )) ∨ ((fe′

i ≤ tr ′
i) ∧ (tr ′

j < fe′
j )) =⇒

(((fe′
j ≤tr ′

i) ∧ (fe′
i≤tr ′

j )) ∨ (pri < pl j ) ∨ (pr j < pli))
(15)

(c) For the cases in Figure 9(d), when both tasks wrap around, we have what
follows.

∀i, j , i �= j , ((fe′
i ≤ tr ′

i) ∧ (fe′
j ≤ tr ′

j )) =⇒ ((pri < pl j ) ∨ (pr j < pli)) (16)
—We consider FPGAs with a single configuration controller as a global shared

resource, hence reconfiguration stages of different tasks must be serialized,
that is, they cannot overlap on the time axis. Conditions 17 to 19 encode
the constraints on the reconfiguration stages of a task pair, depending on
whether one or more of them wrap around the pipeline stage. (Note that
these constraints are not redundant with Conditions 14 to 16, since they en-
code the serialized execution of the reconfiguration stages of different tasks.)
Here is an explanation on the use of < versus ≤ in Conditions 17 to 19: since
it is possible for a taski ’s reconfiguration delay to be 0, we have tr ′

i ≤ fr′
i if

the reconfiguration stage does not wrap around the pipeline stage; in con-
trast, we have fr′

i < tr ′
i if the reconfiguration stage wraps around, since it

is not possible to have the reconfiguration stage occupy the entire pipeline
stage.
(a) For the case in Figure 10(a), when neither task’s reconfiguration stage

wraps around, we have the following.
∀i, j , i �= j , ((tr ′

i ≤ fr′
i) ∧ (tr ′

j ≤ fr′
j )) =⇒ (fr′

i ≤ tr ′
j ) ∨ (fr′

j ≤ tr ′
i) (17)

(b) For the cases in Figures 10(b) and 10(c), when one of the task’s reconfig-
uration stage wraps around, we have the following.

∀i, j , i �= j , ((fr′
i < tr ′

i) ∧ (tr ′
j ≤ fr′

j )) ∨ ((tr ′
i≤fr′

i) ∧ (fr′
j < tr ′

j )) =⇒
(fr′

i≤tr ′
j ) ∧ (fr′

j ≤tr ′
i) (18)
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Fig. 10. Possible placement relationships between two tasks’ reconfiguration stages.

(c) For the case in Figure 10(d), when both tasks’ reconfiguration stages
wrap around, we have what is presented next. This is an illegal scenario
that needs to be prevented.

∀i, j , i �= j , ¬((fr′
i < tr ′

i) ∧ (fr′
j < tr ′

j )) (19)

3.3 Kernel Recognition-Based Heuristic Algorithm

In this section, we present a heuristic scheduling algorithm to overcome the
scalability issue of the SMT-based optimal solution technique. For simplicity,
we assume that no deadline is associated with the task graph, although the al-
gorithm can be modified to take into account task deadlines. The greedy nature
of list scheduling prevents long schedule latencies even though no deadlines are
imposed. Even with this relaxed assumption, we will see in Section 5 that the
heuristic algorithm obtains inferior results compared to the optimal solution
obtained by SMT with deadline constraints.

SW pipelining refers to scheduling a SW loop on multiple functional units to
maximize throughput. Allan et al. [1995] presented a comprehensive survey on
many SW pipelining techniques, broadly classified in two categories: modulo
scheduling and kernel recognition. Modulo scheduling is not applicable to our
problem, since it cannot handle HW task configuration prefetch and reuse.
Kernel recognition, also called perfect pipelining [Aiken et al. 1995], is a SW
pipelining technique that works as follows.

(1) Unroll the loop and note dependencies.
(2) Schedule the operations as early as dependencies allow.
(3) Look for a block of instructions that form a repeating pattern. This block

represents the new loop body.

Recognition of a repeating pattern in the scheduled operations in SW pipelin-
ing is not trivial, and the repeating pattern may not even form if the scheduler
and the analysis of “available operations” is not constrained in some way. Aiken
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et al. [1995] presented constraints necessary to ensure the success of kernel
recognition (these constraints are rather weak and can be easily satisfied, in
particular, the problem of pipelined scheduling on FPGAs addressed in this
article satisfies all these assumptions).

—The scheduler is a function of the available operations in the state being
scheduled.

—The scheduler must schedule some operation in every state.
—The operation chosen can depend on the set of operations available and the

relative distance between the iteration numbers of the available operations,
but not on their actual iteration numbers.

Aiken et al. [1995] presented a SW pipelining algorithm that satisfies the
previous constraints. When resource allocation constraints (e.g., due to limited
number of functional units and registers) are considered, the preceding three
constraints need to be strengthened to prevent resource conflicts. Aiken et al.
[1995] also presented a modified SW pipelining algorithm that satisfies these
constraints by using resource reservation tables. A simple greedy list schedul-
ing heuristic is used without backtracking search. Pipelined scheduling of a
task graph is a similar problem to SW pipelining, since task graphs are a spe-
cial case of Homogeneous Synchronous DataFlow (HSDF) graphs considered in
SW pipelining by removing all initial delay tokens on the edges. We can ensure
the emergence and recognition of a repeating pattern by using a deterministic
list scheduling algorithm, which satisfies the constraints presented in Aiken
et al. [1995] with consideration of resource allocation. List scheduling is a well-
known greedy algorithm for task graph scheduling on multiprocessors based
on a priority function. At each scheduling step, the task node with the highest
priority value among all the ready tasks is chosen and scheduled.

Algorithm 2 shows the overall algorithm for pipelined scheduling based on
kernel recognition and list scheduling. Next, we elaborate on each of the steps.

3.3.1 Task Graph Unrolling. We assume there is no auto-concurrency be-
tween different iterations of the same task, that is, iteration i of a task must
be finished completely before iteration i + 1 of the same task can begin. (This
assumption may be unnecessary for some applications, since it is only neces-
sary for tasks that need to maintain an internal state that is persistent across
different iterations, but not for tasks that are stateless. It can be relaxed by
selectively allowing auto-concurrency for certain tasks.) Figure 11 shows the
unrolling twice of a linear task graph with 3 tasks with this assumption.

3.3.2 Obtaining Ready List and Highest-Priority Ready Node. The ready
list can be easily obtained based on task graph dependencies. We define a simple
priority function for choosing the next ready task node to schedule as a weighted
sum of the task’s execution time, reconfiguration delay, and its width.

pi = w1 ∗ Ei + w2 ∗ Ri + w3 ∗ Wi (20)

We discuss setting of the weight parameters in Section 5.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 15, No. 2, Article 13, Pub. date: February 2010.



13:20 • M. Yuan et al.

Fig. 11. Task graph unrolling.

Algorithm 2. Pseudocode for Pipelined Scheduling Based on Kernel Recognition

while true do
Unroll the task graph once;
while Some nodes are not scheduled yet do

Obtain ready list;
Get the highest-priority node in ready list;
Place it on a suitable position on FPGA;
Mark it as scheduled;

if Repeating pattern detected then
break;

3.3.3 Finding a Suitable Position on FPGA. In list scheduling, a task can
be placed on any available processor if all processors are identical. If processors
are heterogeneous, then we need to have some additional criteria to decide on
which processor to place the task. For task scheduling on FPGA, we need to
decide on which position (column) to place a HW task. Even though all FPGA
columns are homogeneous in terms of HW task reconfiguration, it is necessary
to distinguish between different columns for the purpose of task placement,
since each task must occupy a contiguous set of columns. Here are the steps of
choosing a suitable position to place the highest-priority task.

(1) Initially, try to spread out all task configurations to cover the entire FPGA
area (or a user-specified portion of it) from left to right, in order to exploit
the available parallelism to reduce the II.

(2) Try to take advantage of any opportunity of configuration reuse. If a set of
contiguous columns have already been configured for one iteration of taski,
then we try to place the next iteration of taski on the same position to reuse
the configuration pattern and eliminate the reconfiguration delay. It may be
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necessary to postpone taski ’s start time to achieve configuration reuse, but
we should not blindly postpone taski ’s start time indefinitely for the sake of
configuration reuse. We observed in our experiments that doing so is likely
to cause an increase in the II, since tasks tend to be clustered within a
limited region and do not fully exploit the available parallelism. Therefore,
we adopt a user-defined parameter as the length of time to look into the
future for any configuration reuse opportunity, which is proportional to
Wi, the size of taski in terms of the number of contiguous FPGA columns
it occupies. A larger Wi implies a larger benefit brought by configuration
reuse.

(3) If configuration reuse is not successful, then look for any opportunity
of configuration prefetch by looking backwards from taski ’s ready time
Ready(taski) for a time instant t < Ready(taski) when the reconfiguration
controller is free. If successful, then we can start configuration prefetch at
time t so that taski can start execution at time t + Ri. We use a first-fit
policy to choose among multiple candidate positions, that is, we scan from
left to right, and choose the first position that is large enough to contain
taski. We have tried other policies such as best-fit and worst-fit, but did not
observe any significant performance differences.

(4) If configuration prefetch is not successful, then search forward from taski ’s
ready time Ready(taski) to look for a time instant t ≥ Ready(taski) and
a position P to configure taski. Since we assume that tasks do not have
deadlines, we can always find such a time instant and a position. taski ’s
execution starts immediately after its configuration.

3.3.4 Detecting Repeating Patterns. We adopt a discrete time model, and
use a global clock tick to drive system simulation. Two system snapshot states
si and sj are defined to be identical when every task is in the same configuration
or execution stage as one of its previous iterations, that is, every task and one
of its previous iterations are either both in the configuration stage and have the
same remaining reconfiguration delay, or are both in the execution stage and
have the same remaining execution time. During system execution, whenever
a task finishes execution, we record the current system snapshot state s0 and
compare it with what we have seen so far to detect a possible match. If s0 has
not been seen before, then we add it to a linked list of snapshot states from
time 0. If the current snapshot state is identical to a previous snapshot state
s1, then we have detected a repeating execution pattern as the pipeline kernel:
since our task scheduling algorithm is fully deterministic, this pattern must be
repeated in the future until all task graph instances have been unrolled and
executed. As an example, consider the execution trace in Figure 7(b). We record
snapshot states at time instants 3 and 5 when certain tasks finish execution.
At time instant 7, we detect an identical snapshot state at time instant 5, so a
pipeline kernel has been detected between time instants 5 and 7.

3.3.5 Complexity Analysis. We analyze the complexity of each operation
described before with regard to number of tasks N in the task graph and width
of the FPGA reconfigurable area M .
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—Task Graph Unrolling. Complexity is O(N ), since we need to traverse all
nodes in the task graph once.

—Obtaining Ready List and Highest-Priority Ready Node. Complexity is O(N ),
since we need to traverse all nodes once to obtain the ready list, then traverse
the ready list once to get the highest-priority node.

—Finding a Suitable Position on FPGA. Complexity is O(NM ), where M is the
width of FPGA reconfigurable area, since we need to examine O(M ) possible
candidate positions on the FPGA, and for some of the candidate positions, we
need to perform forward and backward search looking for configuration reuse
and prefetch opportunities within a time window size bounded by O(N ).

—Detecting a Repeating Pattern. Complexity is O(NM ), since we need to per-
form O(N) number of comparisons of the current snapshot to O(N ) previous
snapshots, and each comparison takes time O(M ).

So the complexity of the statements within the while loop is O(NM ), dominated
by the last two steps of finding a suitable position and detecting a repeating
pattern. The total number of times that the while loop is executed is the number
of times the task graph is unrolled before a repeating pattern is detected, which
is O(N ). So the overall algorithm complexity is O(N 2M ).

4. RELATED WORK

4.1 Work on HW/SW Partitioning

HW/SW partitioning of task graphs is a well-studied problem, but most prior
work did not consider FPGA dynamic reconfiguration, that is, each HW task is
typically assigned a fixed position on the FPGA and never reconfigured. Even
though sometimes a HW task may be inactive, that is, waiting its next invoca-
tion trigger, the area it occupies is not reclaimed for use by other tasks, that
is, there is no time-multiplexing of different tasks at the same FPGA position.
This model removes the major complexities in FPGA scheduling, but may not
be efficient if some HW tasks have low utilization on the time axis, for example,
large periods and small execution time. Fekete et al. [2001] addressed optimal
placement of a task graph on a 2D PRTR FPGA by treating each task as a 3D
box in space and time, and converting the problem into an optimal box pack-
ing problem solved using an efficient search algorithm. But if task precedence
constraints and configuration prefetch are considered, then there may be a gap
between a task’s reconfiguration and computation stages, so the problem is no
longer a box packing problem, and the algorithm in Fekete et al. [2001] is no
longer applicable. Shang et al. [2007] used a genetic algorithm to partition a
task graph between the CPU and FPGA, and a list scheduling heuristic for task
graph scheduling on the FPGA in the inner loop of the genetic algorithm. They
assume the HW task reconfiguration can be processed for each individual col-
umn independently, instead of for each HW task atomically, which may not be
very realistic for commercial FPGAs. Banerjee et al. [2005] presented a heuris-
tic algorithm for partitioning and scheduling of a task graph on an execution
platform consisting of a CPU and a FPGA, which we will compare with for the
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performance evaluation. They also presented an ILP encoding of the problem,
which works by using two boolean variables for each FPGA column at each
time point to describe the state of each task and their position on the FPGA.
Our SMT encoding is more compact and efficient than their ILP encoding, not
only due to the expressiveness of SMT compared to ILP for expressing disjunc-
tive constraints, but mainly because our SMT formulation turns the task graph
scheduling problem into a problem of nonoverlapping placement of rectangles,
where each HW task (including both its reconfiguration stage and computation
stage) is modeled as a rectangle in the 2D time-position chart, and the schedul-
ing constraint is that no two rectangles can overlap with each other (Eq. ( 7)).
In contrast, the ILP encoding in Banerjee et al. [2005] adds a new set of boolean
variables at every time step (clock tick), similar to the SAT formulation for the
problem of High-Level Synthesis [Memik and Fallah 2002], which can become
very inefficient, as the number of boolean variables can grow very large with
large task execution times, while our encoding is independent of the size of
task execution times. We implemented a tool that accepts as input the task
graph parameters and generates the corresponding ILP encoding according to
the method in Banerjee et al. [2005]. If the task execution times are relatively
large, we encountered “code explosion”, where the number of boolean variables
in the ILP encoding grew so large that the ILP solver lp solve was not even able
to read in the input file.

4.2 Work on Pipelined Scheduling

Some authors have applied ILP to pipelined scheduling of task graphs on mul-
tiprocessors. Jin et al. [2005] developed an ILP formulation for task mapping
on a multiprocessor system for maximizing throughput, with the assumption
that each pipeline stage is mapped to one processor, so the number of proces-
sors is equal to the number of pipeline stages. Lin et al. [2007] developed an
ILP formulation of mapping a hierarchical Synchronous Dataflow Graph (SDF)
onto a multiprocessor system with a Direct Memory Access (DMA) engine to
maximize throughput. Kudlur and Mahlke [2008] developed an integrated ILP
formulation of splitting of data-parallel actors and mapping of actors to proces-
sors on the Cell Broadband Engine, followed by a greedy algorithm to assign
actors to pipeline stages, with the objective of maximizing throughput. Kudlur
and Mahlke [2008] removed the constraint in Lin et al. [2007] on the maxi-
mum number of simultaneous DMA operations, which enabled them to use a
greedy algorithm for pipeline stage assignment instead of building it into the
ILP formulation.

Ahn et al. [2006] discuss two categories of algorithms for mapping an ap-
plication onto a Coarse-Grained Reconfigurable Array (CGRA), that is, spatial
mapping, where each processing element has a fixed configuration, and tem-
poral mapping, where the configuration of each processing element is changed
at runtime to use time-multiplexing to reduce the number of processing ele-
ments required. Piperench [Goldstein et al. 2000] is a coarse-grained recon-
figurable fabric, an interconnected network of configurable logic and storage
elements, designed for stream-based multimedia applications. As an example
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Fig. 12. HW virtualization is used in Piperench to map a 5-stage application pipeline to a HW
device with 3 processing elements: (a) the virtual pipestage; (b) the physical pipeline stage (the
numbers in the ovals refer to the virtual pipeline stage).

of temporal mapping, Figure 12, taken from Goldstein et al. [2000], shows that
letting each pipeline stage occupy a separate HW processing element results
in resource underutilization, indicated by the idle times of the 5 processing el-
ements at pipeline steady state. Letting multiple pipeline stages share a single
processing element with time-multiplexing helps to eliminate all idle time and
make all 3 processing elements fully utilized at pipeline steady state, leaving
the other 2 processing elements available to other applications. It is a form
of HW virtualization [DeHon et al. 2006], where a HW-oblivious application is
implemented with limited HW resources using time-multiplexing “behind the
back” of the application programmer, who is given the illusion of unlimited HW
resources.

Different from pipelined scheduling on multiprocessors and CGRAs,
pipelined scheduling of HW tasks on FPGAs brings unique challenges due to
the unique characteristics of HW task reconfiguration on the FPGA (unique
reconfiguration controller, configuration prefetch and reuse to hide large recon-
figuration delays), and has not been adequately addressed in the literature.

4.3 Work on Reducing Reconfiguration Delay

The need for dynamic reconfiguration arises from insufficient FPGA area re-
sources to place all tasks simultaneously, thus making it necessary to use time-
multiplexing to share the same FPGA area among multiple tasks. If the FPGA
area is large enough to place all tasks, then obviously it is not necessary to
resort to dynamic reconfiguration. With the increasing size and complexity of
today’s embedded systems applications, we believe there is an increasing need
for using dynamic reconfiguration to support either a single large application,
or multiple different applications on a limited-size FPGA.
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One natural concern is whether dynamic reconfiguration is feasible consider-
ing the large reconfiguration delay of FPGAs. Especially, the pipelined schedul-
ing algorithm allows multiple pipeline stages to share a common reconfigurable
area, hence some columns are time-multiplexed between multiple tasks, mak-
ing it necessary to perform frequent reconfigurations during application execu-
tion. (The reconfiguration delay issue is less problematic for the HW/SW par-
titioning problem for minimizing schedule length, which has been extensively
addressed in related work, since the task graph may be executed only once, or
periodically executed with a large period.) In order to make pipelined schedul-
ing feasible, HW task reconfiguration times have to be small enough (compared
to their execution times) to justify the cost of frequent reconfiguration. Next, we
discuss some recent research advances that can reduce reconfiguration delay
significantly.

HW vendors have been improving HW design to increase reconfiguration
speed. The configuration bitstream is downloaded to the FPGA via a bus to its
Internal Configuration Access Port (ICAP), so reconfiguration delay is deter-
mined by the bitstream size, the bus speed, and the ICAP throughput. Virtex-II
Pro provides an ICAP with an 8-bit wide interface working at 50MHz, while
Virtex-4 provides an ICAP with a 32-bit wide interface working at 100MHz. This
means that the theoretical upper limit of reconfiguration throughput has been
increased from 50KB/ms to 400KB/ms from Virtex-II Pro to Virtex-4. What
prevents us from achieving the theoretical upper limit of today’s high-speed
ICAP is data transfer from memory to ICAP. Recent research advances demon-
strate that the reconfiguration delay can be reduced significantly for standard
commercial FPGAs compared to what was achievable a few years ago. The tra-
ditional ICAP controller is a slave attachment on the low-speed OPB (On-Chip
Peripheral Bus), which can be a throughput bottleneck. Claus et al. [2007] de-
veloped a framework for reducing reconfiguration delays by using the combitgen
tool to generate efficient bitstreams, and a new ICAP controller connected di-
rectly to the high-speed PLB (Processor Local Bus) as a master and equipped
with DMA (Direct Memory Access). As a result, the configuration speed can
be 20 times faster compared to the OPBHWICAP from Xilinx, where the ICAP
controller is attached to the OPB. Cuoccio et al. [2008] proposed a customized
ICAP controller based on that in Claus et al. [2007] to further reduce the con-
figuration delay. It stores part of the configuration bitstream in the internal
memory of the ICAP controller, so the ICAP can start the bitstream transfer
process immediately while the rest of the bitstream is retrieved from main
memory across the bus. Liu et al. [2009] proposed two additional ICAP-based
reconfiguration techniques: one, MST HWICAP, is to use an integrated bus
master with burst transmission support instead of DMA, hence the bus mas-
ter can actively fetch the bitstream from memory to avoid the communication
overhead between DMA and ICAP. The other, BRAM HWICAP, is to use a ded-
icated Block RAM on the ICAP to store the bitstreams (similar to Cuoccio et al.
[2008]), hence avoiding the need to transfer the bitstream from memory to
ICAP. This design requires that the bitstream size is small enough to fit in the
BRAM. The measured maximum reconfiguration speed using BRAM HWICAP
is 371.4MB/s on a Xilinx Virtex-4 FX20 FPGA, very close to the theoretical
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maximum of 400MB/s imposed by the physical limitation of the ICAP interface
(32-bit, 100 MHz). Since the typical HW task bitstream size is in the range
of a few hundred KBs, the reconfiguration delay can be potentially less than
1ms, which is smaller than the CPU context-switch latency of some operating
systems. Besides the these approaches, a complementary approach to reducing
reconfiguration delay is to reduce HW task bitstream size with difference-based
partial reconfiguration or bitstream compression, which we will not elaborate
here.

4.4 SMT vs. SAT or ILP

Some authors have formulated boolean encodings for the High-Level Synthesis
(HLS) problem, that is, finding the shortest schedule length of a control/dataflow
graph on a limited set of HW resources, in order to use a SAT solver to obtain op-
timal solutions. Memik and Fallah [2002] used the SAT solver Chaff [Moskewicz
et al. 2001] to solve the HLS problem, and showed that Chaff outperforms the
ILP solver CPLEX in terms of CPU time by as much as 59 fold. Cabodi et al.
[2005] developed a Bounded Model-Checking (BMC) formulation of the HLS
problem for control-intensive control/dataflow graphs, and used the BerkMin
SAT engine to solve the BMC problem. These SAT-based encoding techniques
add a new set of boolean variables at each time-step, hence the number of
boolean variables can grow quite large if the schedule length (number of time-
steps) is large. This approach is often adequate for HLS, where the maximum
schedule length is typically quite small in terms of the number of clock cycles,
but it is not very scalable for problems involving large timing attributes. By
handling integer or real arithmetic directly instead of using a boolean encod-
ing, SMT solvers are not sensitive to absolute time attributes and can be much
more efficient than SAT solvers for such problems.

ILP is a widely used technique for solving NP-hard combinatorial optimiza-
tion problems. It is also possible to use ILP instead of SMT in this article. Here
we briefly compare their pros and cons.

—SMT solvers can handle both disjunctive (∨) and conjunctive (∧) constraints
efficiently due to integration with a SAT solver, while ILP does not support
disjunctive constraints natively. Therefore, SMT is more expressive than ILP,
and allows us to express constraints more naturally and concisely. We can
transform a logical formula with both disjunctive and conjunctive constraints
into another equivalent formula with only conjunctive constraints supported
by the ILP solver using the Big-M method [Papadimitriou and Steiglitz 1998],
the size of the ILP constraint set may be much larger than the SMT constraint
set. For example, Suhendra et al. [2006] used a lot of “infinity” constants in
their ILP formulation of the pipelined scheduling problem to express dis-
junctive constraints, which can be avoided if SMT is used instead of ILP.
However, the number of variables is a poor metric to characterize the com-
plexity of the problem instance, so we cannot completely attribute the per-
formance advantage (if any) of SMT solvers only to the reduced number of
variables. Rather, any possible performance advantage of SMT over ILP may
be due to clever SAT algorithms, including nonchronological backtracking, a
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priori simplification to reduce the problem instance size, and efficient lemma
learning, etc.

—One advantage of ILP is that it can be used to encode and solve optimization
problems directly, while SMT is a decision procedure that does not support
optimization directly, but only provides a yes/no answer to the feasibility
of a given set of constraints, and a model when the constraints are feasible.
Therefore, using SMT, we need to use binary search, for example, Algorithm 1,
to find the optimal value of a given optimization objective. However, this turns
out not to be a major performance bottleneck for our problems.

The SMT encoding in this article can be reformulated equivalently with ILP.
However, the main contribution of this article is orthogonal to whether SMT or
ILP is used, so we do not present the ILP encoding or perform any performance
comparisons.

5. PERFORMANCE EVALUATION

We use the tool TGFF (Task Graphs For Free) [Dick et al. 1998] to generate
random task graphs for our experiments. Optimization performance depends
on the search space size, which in turn depends on many factors including
number of tasks, task graph shape, number of messages, and task assignment.
Generally, task graphs that are “tall and skinny” tend to have a smaller number
of possible execution paths than task graphs that are “short and fat.” For our
experiments, we keep the task graph shape to be relatively constant by setting
both the maximum input and max output degrees of each task node to be 2,
so we can compare the relative performance with different numbers of tasks.
In each generated task graph, the number of start nodes is between 1 and
3; each task’s execution time is between 4 and 12; its width (the number of
columns it occupies) is between 4 and 14; its reconfiguration delay is assumed
to be numerically equal to its width. We assume the FPGA has 20 columns.
The experiments are run on a Linux workstation with 4 AMD Opteron 844
(1.8 GHz) CPUs and 8GB RAM. We use the utility tool memtime to measure
the running time of Yices. The binary search process in Algorithm 1 typically
converges in 7–9 iterations to the final optimal result, and the optimization
algorithm running time for Yices refers to the total time taken to obtain the
optimal solution including all binary search iterations.

5.1 Performance Evaluation of HW/SW Partitioning

Figure 13 shows how algorithm running time increases with increasing task
graph size (number of tasks). (Since the peak memory usage grows quite slowly
compared to running time, CPU time is the bottleneck factor that limits its
scalability instead of memory usage, hence we omit the memory usage figures.)
Since the running time is dependent on not only the number of tasks, but also
on other task graph characteristics, such as its shape and task execution times,
we generated multiple different task graphs and plotted their different running
times for each task graph size. In general, 22–23 tasks seems to be the upper
bound on the size of the task graph that can be handled within reasonable time.
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Fig. 13. SMT-based optimization algorithm running time for HW/SW partitioning on a hybrid
FPGA/CPU device.

We have implemented the heuristic algorithm for HW/SW partitioning
in Banerjee et al. [2005], which is based on the well-known KLFM (Kernighan-
Lin-Fiduccia-Matheyses) heuristic that iteratively improves a HW/SW parti-
tioning solution by moving tasks from FPGA to CPU or vice versa. The quality
of a move is evaluated by a heuristic list scheduler, and each task’s priority is
calculated as f = −A ∗ columns − B ∗ EST + C ∗ pathlength − D ∗ EFT, where
columns denotes the task’s size in terms of the number of FPGA columns it oc-
cupies; EST and EFT denote the earliest possible start and finish time points,
respectively; and pathlength denotes the length of the longest path through the
task graph. This formula has 4 parameters, A, B, C, and D, as weights of the
4 terms. The task with the largest f value is scheduled first during the list
scheduling process. In our implementation, we set the parameter values to be:
A = C = 1, B = D = 3, and fix the number of task moves to 10. Of course, differ-
ent parameter settings may lead to different results. As expected, the heuristic
algorithm runs very fast, but produces suboptimal results. Figure 14 shows
the comparison of the schedule lengths between SMT and the heuristic algo-
rithm. We can see that SMT provides an exact solution reasonably quickly for
small-scale problems within its scalability limit, and can result in significant
reduction in schedule length compared to the heuristic algorithm.

5.2 Performance Evaluation of Pipelined Scheduling

The task graph deadline can have a large impact on the pipelined scheduling
throughput. It is obvious that the minimum task graph schedule length SL
for nonpipelined scheduling obtained using the SMT model in Section 2.2 (on
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Fig. 14. Comparison of schedule length between Yices and Banerjee et al.’s [2005] heuristic algo-
rithm.

a FPGA without the CPU) is the minimum feasible task graph deadline for
pipelined scheduling. We set the task graph deadline to be 1.25 ∗ SL, 1.5 ∗ SL
or 1.75 ∗ SL for the SMT encoding in Section 3. (It is also possible to remove
the deadline constraint at the cost of increased search space size.)

For the Kernel Recognition (KR)-based heuristic algorithm, we set w1 = w2 =
w3 = 1 in Eq. (20) in the first set of simulation experiments. Next, in order to
find potentially better assignment of these weight values, we used Simulated
Annealing [Kirkpatrick et al. 1983] to optimize them. SA is a global optimiza-
tion method that tries to find the global optimal point in the design space by
jumping over local optimal points. SA works as follows: The temperature T
is gradually decreased as SA runs.2 At each step of SA, we make a random
move, and calculate the energy function Enew for the new solution obtained via
one of the random moves, then compare it to the energy function of the cur-
rent solution E. If Enew < E, then the new solution has an improved energy
function, so accept it; otherwise, if e(E−Enew)/T > random(0, 1), then accept the
new solution despite the energy increase; otherwise, reject the new solution
and attempt another random move. When the temperature is high, the proba-
bility of accepting a higher energy solution is high, to enable it to jump out of
any possible local minima; as temperature drops, the system gradually settles
down to a stationary state, possibly a local or global minima. The SA algorithm
behaves similarly to random search at high temperatures, and to hill-descent
at low temperatures. Important components of SA include the definition of the

2Different cooling schedules may be adopted, including geometric cooling, nonmonotonic cooling,
etc. We adopt the simple constant-rate cooling schedule, since it shows reasonably good performance
compared to other cooling schedules.
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Fig. 15. Comparison of IIs obtained with SMT-based pipelined scheduling algorithm with different
deadlines, and the KR-based heuristic algorithm with no deadline constraint.

energy function to be minimized, the annealing schedule, and the neighborhood
function that describes how a new solution is obtained by mutating the current
solution.

—The energy function to be minimized is the II of the pipelined schedule.
—The annealing schedule has a large impact on solution quality. The slower the

temperature cools down, the solution quality gets better, but the algorithm
running time also gets longer. Hence there is a trade-off between optimization
quality and running time of the optimization algorithm. In our experiments,
we set the initial temperature to be T0 = 1000, and the temperature decrease
per step as δt = 2. (We also tried slower cooling schedules, but did not observe
any appreciable difference.)

—For the neighborhood function, we randomly choose among one of the three
choices given next with equal probability.
—Swap any two values among the three variables w1, w2, w3.
—Randomly assign a new value in the continuous range of [0,10] to one of

w1, w2, w3.
—Randomly assign new values in the continuous range of [0,10] to all 3

variables w1, w2, w3.

Figure 15 compares the IIs obtained with different solution techniques. We
make the following observations.

—Increasing the task graph deadline in the SMT-based method can help im-
prove the throughput (reduce the II), since a looser deadline allows the sched-
uler more freedom to pack the tasks more tightly in the steady state of the
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Fig. 16. Comparison of algorithm running times for pipelined scheduling. The y-axis is drawn in
log-scale.

pipeline. (As we will show in Figure 19, there is a threshold deadline value,
and increasing the deadline above it no longer helps to reduce II.)

—As mentioned in Section 3.3, we assume that no deadlines are associated with
the task graph for the KR-based heuristic, hence it is theoretically possible
for the heuristic algorithm to achieve higher throughput than the SMT-based
method. However, even with this relaxed assumption, the KR-based heuris-
tic algorithm generates worse schedules (with larger II) than the scheduled
obtained with SMT. The magnitude of difference is not very large, that is, the
KR-based heuristic algorithm achieves reasonably good performance.

—SA can be used to optimize settings of the weight parameters (w1, w2, w3
in Eq. (20)), but the performance improvement over the that for the setting
w1 = w2 = w3 = 1 is limited. We thus conclude that the heuristic algorithm is
not very sensitive to the weight parameter settings (within a certain range),
and the setting of w1 = w2 = w3 = 1 is a reasonable one.

Figure 16 shows how algorithm running time varies with increasing task
graph size (number of tasks) and different task graph deadlines. For the SMT-
based method, the maximum task graph size that can be handled within an
upper bound of 10000 seconds (about 3 hours) is about 15. Comparing this to the
upper bound of 22–23 tasks for HW/SW partitioning, we conclude that the more
complex constraint set of the pipelined scheduling problem makes it harder
and more time consuming to solve than the HW/SW partitioning problem. The
running time of the SA algorithm shows that it is quite fast and scalable (for the
chosen cooling schedule). Running times of the KR-based heuristic algorithm
are very short and generally fall within 20ms, hence they are not shown in the
figure.

5.2.1 The Unsharp Masking Application. In this section, we use an ap-
plication example from Noguera and Badia [2005, 2006] for the performance
evaluation of our pipelined scheduling algorithm.
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Fig. 17. The 2-slot FPGA task model. R denotes reconfiguration, and E denotes execution. All
tasks are assumed to be different from each other, so there is no configuration reuse.

Noguera and Badia [2006] built a HW device based on Xilinx FPGAs called
the Galapagos prototyping platform. The HW architecture consists of a general-
purpose CPU, an array of Dynamically Reconfigurable Processors (DRPs) and
shared memory resources: a small on-chip L2 cache memory and a large off-chip
DRAM memory. Each DRP is implemented on a Xilinx Virtex-II FPGA using
its partial reconfiguration capability. A HW task is placed at the center of the
FPGA, which is dynamically reconfigurable; and the load/store units are placed
on the left and right sides, which are fixed and not dynamically reconfigurable.
This task model is a special case of the more general task model addressed in
this article, where each task can be placed on an arbitrary position on the FPGA,
except one minor difference in assumptions: the Galapagos platform allows si-
multaneous reconfiguration of multiple DRPs, since each DRP is a separate
FPGA, while we consider commercial FPGAs with a single reconfiguration con-
troller, hence only one HW task can be configured at any give time. We can
implement the task model that is (almost) equivalent to the Galapagos plat-
form (except for the different assumptions on the reconfiguration controller)
on a single PRTR FPGA by dividing the FPGA area into several equal-sized
slots or partitions, each corresponding to a DRP. This more restrictive task
model also has the benefit of making it easier to achieve intertask communica-
tion, as bus macros can be placed at interslot boundaries for communication.
As a real example of this task model, Dittmann [2007] implemented a 2-slot
FPGA prototype, where HW tasks in the two slots are configured and executed
in a pipelined manner so that task reconfiguration delays are hidden, either
completely or partially, as shown in Figure 17. The task model used for the
experiments in this section can be considered as a generalization of the 2-slot
model to multiple slots. (In this section, we use the term “DRP” to be consis-
tent with the terminology in Noguera and Badia [2006], but the terms “slot” or
“partition” on the FPGA can also be used in its place.)

Noguera and Badia [2006] explored system-level power-performance trade-
offs when implementing streaming applications on the Galapagos platform. If
the number of HW tasks exceeds the number of available DRPs, then a HW-
supported dynamic scheduler is used to time-multiplex tasks on the available
DRPs. Data partitioning is used to split a HW task into multiple data-parallel
tasks to reduce size of the data buffers at a cost of increased reconfiguration
delay. The input dataset is partitioned into several data blocks of a given size,
and the task graph must be iterated as many times as the number of input data
blocks. Since off-chip memory consumes more power than on-chip cache, differ-
ent data block sizes can result in different trade-offs of power consumption ver-
sus performance. A smaller-size data block can fit into on-chip memory, so the
resulting implementation has lower power consumption. But reconfiguration
delay is more significant compared to task execution time, which may force
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Table V. Task Reconfiguration Delay (for the XC2V250 model of Xilinx
Virtex-II FPGA) and Execution Times on Each DRP for the Task Graph in

Figure 18 for Different Block Sizes

Reconfig Delay T1 T2 T3 T4 T5
64 × 64 0.949 0.201 0.069 0.135 0.135 0.205

256 × 256 0.949 3.275 1.092 2.181 2.181 3.278

All time units are in ms.

Fig. 18. Task graph for the unsharp masking application. Here are the actual task names shown
in parentheses: T1(RGB2YCrCb), T2(Blur), T3(Sub), T4(Add), T5(YCrCb2RGB).

some tasks to be mapped to the CPU to avoid dynamic HW reconfiguration. A
larger-size data block may need to be stored in off-chip memory, so the system
power consumption is higher. Since task execution time is longer, reconfigura-
tion delay is less significant compared to task execution time, making it feasible
to use HW dynamic reconfiguration to time-multiplex more tasks on the DRPs.
Noguera and Badia [2005] presented some task graph transformations to fur-
ther improve performance and/or power consumption.

Consider the task graph in Figure 18 with task execution times in Table V
for an image processing application called unsharp masking in Noguera and
Badia [2006]. The authors evaluated power-consumption versus performance
trade-offs of implementing the task graph in Figure 18 on the Galapagos
platform with 1 CPU plus a number of available DRPs. Task reconfiguration
times on each DRP are different for different models of Xilinx Virtex-II FPGA:
0.949ms for XC2V250, 1.087ms for XC2V500, and 1.337ms for XC2V1000.3 The

3The HW reconfiguration times are relatively small, perhaps due to the small size of task bit-
streams, which are not specified in the article.
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Table VI. Comparison of Total Execution Times Taken to Finish All 9 Task
Graph Iterations

(256 × 256, (256 × 256, (64 × 64, (256 × 256, (64 × 64,
N.D. Noguera) SMT P) SMT P) SMT NP) SMT NP)

2 105 84.6 584 116.6 625.0
3 100 65.1 459 108.1 468.9

All time units are in ms. N.D. denotes number of DRPs. Columns with label SMT P denote
the results from SMT-based pipelined scheduling; columns with label SMT NP denote
results from SMT-based nonpipelined scheduling to minimize makespan with the encoding
in Section 2.

reconfiguration times are different for different FPGA models, since the HW
task occupies different area sizes on the different FPGA models; but task ex-
ecution times are the same, since the task bitstream size is the same, and
the DRP runs at the same frequency (60 MHz). Consider an image with size
768x768 (pixels). If the block size processed by each task iteration is 64 × 64,
then the task graph is iterated 144 times; if the block size is 256 × 256, then the
task graph is iterated 9 times. Although pipelined scheduling is not explicitly
mentioned in Noguera and Badia [2005, 2006], the resulting schedule produced
by the online scheduling algorithm exhibits a pipeline pattern where multiple
pipeline stages may share a single processing resource using dynamic recon-
figuration. This application is an good candidate for our pipelined scheduling
algorithm with the objective of finishing the “batch job” of all task graph it-
erations as soon as possible by overlapping execution of different task graph
iterations.

Several implementation alternatives were considered in Noguera and Badia
[2006], with different block sizes and number of available DRPs in the HW
platform. For performance comparison, we applied our SMT-based pipelined
scheduling algorithm to the implementation alternative of mapping all tasks
to reconfigurable HW with either 2 or 3 DRPs, with block size of 256 × 256.
Since there are 5 tasks in the task graph, dynamic reconfiguration is needed
to schedule them on the platform of 2 or 3 DRPs. (We ignore the issue of power
consumption, and focus on system performance only.) Table VI shows that our
approach (256 × 256, SMT P) can indeed achieve higher throughput, hence
smaller total execution times than those in Noguera and Badia [2006] (256 ×
256, Noguera) for either 2 or 3 DRPs.4 Obviously, for the same block size, the
improvement in total execution times will become more significant with a larger
number of task graph iterations. For block size of 64 × 64, the reconfiguration
delay is relatively large compared to task execution times, so the SMT-based
pipelined scheduling (64 × 64, SMT P) results in much longer total execution
time than that block size of 256 × 256. We make the observation that pipelined
scheduling that involves frequent dynamic reconfiguration can be feasible if

4We achieved better results despite our assumption of a single reconfiguration controller, which
means that reconfiguration stages of different tasks cannot overlap, while the HW platform
in Noguera and Badia [2006] does not have this restriction. It is also possible to formulate a SMT
encoding to minimize the total execution time of the completely unrolled task graph treating all
task instances as distinct tasks, but this approach is not scalable with a large number of task graph
iterations.
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Fig. 19. Effects of task graph deadline on the II and total execution time. The numbers on top of
certain columns denote the minimum values among different deadline settings.

Fig. 20. Linear task graph for the unsharp masking application with task execution times sim-
plified to integers.
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Fig. 21. Schedules of the task graph in Figure 20 on a HW platform with 3 DRPs. The Label R
denotes task reconfiguration, and E denotes task execution. Each number in the box denotes the
task graph iteration number, counting from 0. This figure is best viewed in color.
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Fig. 22. Task graph for the unsharp masking application, where T3 and T4 are each split into 2
data-parallel tasks.

HW reconfiguration delay is relatively small compared to task execution times,
for example, for block size of 256 × 256, but not when HW reconfiguration delay
is relatively large, for instance, for block size of 64 × 64. Hence it is more appro-
priate for coarse-grained tasks, such as, when each task is a time-consuming
signal processing algorithm that processes a large block of data at each itera-
tion, but not for fine-grained tasks, such as, parallel HW implementation of a
program loop in C/C++ with a few instructions in the loop body.

For comparison purposes, we also include results from SMT-based non-
pipelined scheduling to minimize latency (makespan) of a single iteration with
the encoding in Section 2 in columns with label SMT NP in Table VI. Since
different task graph iterations do not overlap in the nonpipelined schedule, the
total execution time in this case is equal to the task graph latency multiplied by
the number of iterations (plus some possible additional reconfiguration delays
at initialization time). Compared to pipelined scheduling, we can see that non-
pipelined scheduling results in much longer total execution times for block size
of 256 × 256, but only slightly longer total execution times for block size of 64 ×
64. We offer the following explanation: the reconfiguration delay for block size
of 64 × 64 is relatively large compared to task execution times, and the single
reconfiguration controller on the FPGA forces the reconfiguration stages of dif-
ferent task instances (in the same or different task graph iterations) to be seri-
alized; therefore, there is limited opportunity for overlapped execution between
different task graph iterations, hence the advantages of pipelined scheduling
over nonpipelined scheduling become less pronounced.

The total execution time taken for finishing execution of a fixed number of
task graph iterations is dependent on not only the steady-state throughput (in-
verse of II), but also the task graph latency, which affects the time taken to
“drain the pipeline” when finishing the last iteration of the task graph execu-
tion. Figure 19 shows that for a given HW platform, there is a threshold dead-
line value that results in the minimum II, and perhaps a different deadline
value that results in the minimum total execution time. Increasing deadline
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Fig. 23. Schedules of the task graph in Figure 22 on a HW platform with 3 DRPs. This figure is
best viewed in color.
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above each threshold value no longer helps reduce II or the total execution
time, respectively. (The total execution times in Table VI were obtained with
the optimal deadline setting that results in the minimum total execution
time.)

Figures 21 and 23 compare the schedules from Noguera and Badia [2005]
with the SMT-based pipelined and nonpipelined schedules. (Task execution
times are written on the side of tasks. The task execution times and DRP re-
configuration delays are set to integer values to make the figures clearer, but
their relative sizes are similar to those of the actual application.) We can see
that the SMT solver-based method can indeed achieve higher HW utilization,
hence higher system throughput. (The schedules in Figures 21(a) and 23(a)
are slightly different from those in Noguera and Badia [2005]: Figure 21(a)
is a slightly optimized schedule after removing some unnecessary slack in
Figure 2 in Noguera and Badia [2005]; Figure 23(a) is different from Figure 3
in Noguera and Badia [2005] to account for our assumption of a single recon-
figuration controller, so that reconfiguration stages of different tasks cannot
overlap.)

6. CONCLUSIONS

FPGAs are widely used in today’s embedded systems design due to their low
cost, high performance, and reconfigurability. In this article, we address two
problems related to HW task scheduling on Partially RunTime Reconfigurable
(PRTR) FPGAs: (1) HW/SW partitioning. Given an application in the form of a
task graph with known execution times on the HW (FPGA) and SW (CPU), and
known area sizes on the FPGA, find an valid allocation of tasks to either HW
or SW and a static schedule with the optimization objective of minimizing: (1)
the total schedule length (makespan). (2) Pipelined scheduling. Given an input
task graph, construct a pipelined schedule on a PRTR FPGA with the goal of
maximizing system throughput while meeting a given end-to-end deadline. A
performance evaluation with both synthetic random task graphs and a real
application example demonstrates the effectiveness of our techniques.
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