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Motivation & Greater Impact  



Energy & Data Centers 

• Estimated¹ energy by servers data centers only 

for 2011 

– More than 100 billion kWh 

– Apprx $7.4 billion annual cost in energy 

– Require about 10 power plants 

• At $1.5 billion dollars each 

¹“Report to Congress on Server and Data Center Energy Efficiency”, U.S. Environmental Protection Agency, August 2, 2007  



System Design Challenges 

• Goal of system design 

– Reducing energy, increasing performance, etc.  

• Applications have specific system requirements 

– Example 

• System configurations affect application 
energy/performance 

– Examples: fast clock and I/O bound, cache size and data 
size 

• Myriad of options to consider = large design space 

– Voltage, clock frequency, bus width, cache parameters, etc 

 



Example 

• Instruction cache 
– Size 128B to 64kB = 10 options 

– Line size 4, 8, 16, 32 or 64B = 5 options 

– Associativity: 1, 2, 4, 8, 16 = 5 options 

– Total is 250 

• Data cache: same value, 250 

• uProcessor to instruciton cache buses 
– bit width: 2, 4, 8, 16, or 32  

– bus encoding: binary, bus-invert, grey coding 

– Total:  5*3 = 15 options 

• uProcessor to instruciton cache buses to data cache bus:  
– same options, 15 

• Same parameters for address bus 
– 15 and 15 for instruction and data caches 

• Cache to main memory bus 
– Two busses, same parameters 

• Voltages: 
– 1.0 to 4.1, in 0.1 increments: 32 options 

• Total options = 250*250*15*15*15*15*15*15*32 = 22 trillion options!!! 
 



Other Challenges 

• Options exponentially grow in number for 

multi- and many-core systems 

• Determining best configuration becomes 

harder 

• What about target applications?  

– Redesign for each set? 

 



A Good Candidate for Research 

• Cache memory consumes about 40% of core energy 

• Cache memory is very well studied 

• Configurable caches 
– Enable parameters to be specialized to application requirements 

– Provide plethora of options  very large design space  finding 
best cache configuration is has challenging  

• Cache tuning 
– Process of changing cache parameters to obtain different cache 

configuration 

• Good configuration 
– A configuration that adheres closely to the design goal; e.g., 

consumes nearly as much energy as a best configuration 



Tradeoffs for Cache Tuning 

• Large design space 

– Finer optimization vs. tuning overhead  

– Finer optimization = larger design space 

– Even more with multi-/many-core and shared 

memory systems 

• Goal of study 

– Reduce design space 

– Keep good configurations 

 



Reducing Design Space 

• Reduce design space into smaller subsets 
– Subsetting: trimming the design space to a very small subset of good 

configurations 

• Challenges 
– How to select which configuration to remove? 

• What is the energy impact if a configuration is removed 
– Is this configuration the best configuration for most or some application? 

– This set must contains most promising configurations 

– Set must be large enough to contain good candidates and small enough 
to reduce design space efforts  

• Target 
– smallest set meets the threshold 

– Threshold is maximum energy consumption increase  

• What configurations left in the subset? 
– Good luck 



Design Space Subsetting  

• Brute Force method 

– Evaluate all possible subsets size from 1 to m 

– Decide a threshold 

• Use clustering and data mining algorithms 

– Hierarchical clustering 

– Other data mining techniques 



Brute Force 

• Example: configurable cache 

– 3 sizes, 2 associativities, 3 line sizes 

– Subset size |S| 

• Brute Force evaluation 

– Selecting a configuration given by    

–  𝑁 18
|𝑆|

= 262,14318
𝑆 =1  

– For |S| = 4, ave energy within 5% of complete 

design space!  

  16B 32B 64B 

2K_1W c1 c7 c13 

4K_1W c2 c8 c14 

4K_2W c3 c9 c15 

8K_1W c4 c10 c16 

8K_2W c5 c11 c17 

8K_4W c6 c12 c18 
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Alternative Approach 

• Using data mining algorithms 
– If configurations can be viewed as data points 

• Give best data points that resemble the entire design space 

– This is analogous to data mining problems 
• E.g., time series segmentation, graphic decimation 

• Remove nuances of colors from a picture, reserve essential 
nuances: i.e., remove nuances that won’t distort picture colors 

• Nuances  configurations 

• Color distortion  energy consumption 

– What is a good time series segmentation algorithm 

• SWAB 
– SWAB is a combination of Sliding Window And Bottom-

Up data mining algorithms 



SWAB & Design Space Exploration 

• Evaluates adjacent pairs of configurations 

– Compares energy of all applications using these 

configurations 

– Keeps the configuration resulted in lower energy 

 

 



SWAB Requirements 

• Based on previous algorithm, what do you 

think a designer needs to know? 

 



SWAB Requirements 

• Applications, configurations, energy to run 

applications for each configurations, etc 

• Can we eliminate any of these requirements? 

– Or at least reduce it? 

 



Less Applications? 

• Run SWAB on a small set of applications 

– Called training applications 

• Challenge 

– which applications? 

• Proposed research 

– Select applications randomly and analyze results 

– Select applications based on cache miss rate  

 

 



Random Application Selections 

• Randomly select a set of applications from all anticipated applications  

– These applications are the training set applications 

– The remaining, unselected applications, are the testing set applications 

• Apply SWAB to training set and complete cache configuration design space 

– Determines design space subsets for all subset sizes 

• Evaluate the subsets’ qualities: 

(A) With respect to best configuration in complete design space  

1. Run testing set with best configuration from subsetted design space, and measure energy consumption 

2. Run testing set with best configuration from complete design space, and measure energy consumption 

3. Compare these energy consumptions 

– Less energy increase means higher quality subset 

(B) With respect to base configuration 

1. Run testing set with best configuration from subsetted design space, and measure energy consumption 

2. Run testing set with base configuration from complete design space, and measure energy consumption 

3. Compare these energy consumptions 

– More energy savings means higher quality subset 

• Evaluate for all combinations sizes of randomly-selected training set applications 



Random application selection 

Results 

• Selected application group size 1 all 

• Compare energy w.r.t to full design space 

• T(n); n = number of applications  



Cache Miss Rate Application Selection 

• Given a set of anticipated applications, sort applications into domain-specific 
groups based on cache hierarchy requirements—miss rate using base configuration 

 

 

 

 

 

 

• Select three training applications from each group 
– Called domain specific training set applications 

– Unselected applications called testing set applications 

• Apply SWAB to training set and complete cache configuration design space 
– Determines design space subsets for all subset sizes for  

each group 

• Evaluate the subsets’ qualities: 
1. Run testing set with best configuration from domain-specific subsetted design space, and 

measure energy consumption 

2. Run testing set with best configurations from subsetted design space, obtained with random 
training sets, and measure average energy consumption 

3. Compare energy consumptions 

– Lower energy values using domain-specific subsets  means higher quality subset 



Cache Miss Rate Application Selection 

Results  



Random Training Set Subset Quality 

Analysis  

• Instruction and data cache exhibit similar  

energy consumption trends as random training 

set size increases 

• Larger training set sizes do not necessarily 

result in higher quality subsets 

• Training sets always provided energy savings, 

compared to base configuration 

 



Criticality of a Priori Application Knowledge 

Using Domain-Specific Training Sets Analysis 

• Domain-specific training applications of size 
three as compared to subsets created using 
random training sets of size three 

• Increased subset energy savings by 10% and 3% 
for instruction and data caches, respectively 

• Running applications using subsets targeted for 
different domains  

• Increased energy consumption (degraded energy 
savings) by as much as 290% and 640% for 
instruction and data caches, respectively 

 



Reduction in Design-Time Effort 

Using Domain-Specific Training Sets 

• Exploring the design space using domain-

specific training applications of size three is 

4X faster , compared to using all anticipated 

applications  

• Domain-specific training sets can significantly 

enhance subset quality and reduce design-time 

efforts, with only general knowledge of 

anticipated applications 

 



Conclusion 

• Configurable caches provide excellent solution to various domain-specific 
application requirements 
– However, highly configurable caches require prohibitive design space 

exploration time 

• Reducing design space exploration time 
– Used training set applications to evaluate design space subsetting, and 

evaluated the subsets' energy savings using disjoint testing applications 

• Subset quality 
– Random training set applications provided quality configuration subsets, and 

domain-specific training application increased subset quality 

• 4X reduction in design space exploration time using domain-specific 
training applications as compared to using all anticipated applications 

• Our training set methods enable designers to harness configurable cache 
energy savings with minimal design effort 

 



Questions? 

 


