
Fast Design Space Subsetting

University of Florida

Electrical and Computer Engineering Department

Embedded Systems Lab

Motivation & Greater Impact

Energy & Data Centers

• Estimated¹ energy by servers data centers only

for 2011

– More than 100 billion kWh

– Apprx $7.4 billion annual cost in energy

– Require about 10 power plants

• At $1.5 billion dollars each

¹“Report to Congress on Server and Data Center Energy Efficiency”, U.S. Environmental Protection Agency, August 2, 2007

System Design Challenges

• Goal of system design

– Reducing energy, increasing performance, etc.

• Applications have specific system requirements

– Example

• System configurations affect application
energy/performance

– Examples: fast clock and I/O bound, cache size and data
size

• Myriad of options to consider = large design space

– Voltage, clock frequency, bus width, cache parameters, etc

Example

• Instruction cache
– Size 128B to 64kB = 10 options

– Line size 4, 8, 16, 32 or 64B = 5 options

– Associativity: 1, 2, 4, 8, 16 = 5 options

– Total is 250

• Data cache: same value, 250

• uProcessor to instruciton cache buses
– bit width: 2, 4, 8, 16, or 32

– bus encoding: binary, bus-invert, grey coding

– Total: 5*3 = 15 options

• uProcessor to instruciton cache buses to data cache bus:
– same options, 15

• Same parameters for address bus
– 15 and 15 for instruction and data caches

• Cache to main memory bus
– Two busses, same parameters

• Voltages:
– 1.0 to 4.1, in 0.1 increments: 32 options

• Total options = 250*250*15*15*15*15*15*15*32 = 22 trillion options!!!

Other Challenges

• Options exponentially grow in number for

multi- and many-core systems

• Determining best configuration becomes

harder

• What about target applications?

– Redesign for each set?

A Good Candidate for Research

• Cache memory consumes about 40% of core energy

• Cache memory is very well studied

• Configurable caches
– Enable parameters to be specialized to application requirements

– Provide plethora of options  very large design space  finding
best cache configuration is has challenging

• Cache tuning
– Process of changing cache parameters to obtain different cache

configuration

• Good configuration
– A configuration that adheres closely to the design goal; e.g.,

consumes nearly as much energy as a best configuration

Tradeoffs for Cache Tuning

• Large design space

– Finer optimization vs. tuning overhead

– Finer optimization = larger design space

– Even more with multi-/many-core and shared

memory systems

• Goal of study

– Reduce design space

– Keep good configurations

Reducing Design Space

• Reduce design space into smaller subsets
– Subsetting: trimming the design space to a very small subset of good

configurations

• Challenges
– How to select which configuration to remove?

• What is the energy impact if a configuration is removed
– Is this configuration the best configuration for most or some application?

– This set must contains most promising configurations

– Set must be large enough to contain good candidates and small enough
to reduce design space efforts

• Target
– smallest set meets the threshold

– Threshold is maximum energy consumption increase

• What configurations left in the subset?
– Good luck

Design Space Subsetting

• Brute Force method

– Evaluate all possible subsets size from 1 to m

– Decide a threshold

• Use clustering and data mining algorithms

– Hierarchical clustering

– Other data mining techniques

Brute Force

• Example: configurable cache

– 3 sizes, 2 associativities, 3 line sizes

– Subset size |S|

• Brute Force evaluation

– Selecting a configuration given by

– 𝑁 18
|𝑆|

= 262,14318
𝑆 =1

– For |S| = 4, ave energy within 5% of complete

design space!

 16B 32B 64B

2K_1W c1 c7 c13

4K_1W c2 c8 c14

4K_2W c3 c9 c15

8K_1W c4 c10 c16

8K_2W c5 c11 c17

8K_4W c6 c12 c18

 
 !|||!|

!
||

SmS

m
SN




Alternative Approach

• Using data mining algorithms
– If configurations can be viewed as data points

• Give best data points that resemble the entire design space

– This is analogous to data mining problems
• E.g., time series segmentation, graphic decimation

• Remove nuances of colors from a picture, reserve essential
nuances: i.e., remove nuances that won’t distort picture colors

• Nuances  configurations

• Color distortion  energy consumption

– What is a good time series segmentation algorithm

• SWAB
– SWAB is a combination of Sliding Window And Bottom-

Up data mining algorithms

SWAB & Design Space Exploration

• Evaluates adjacent pairs of configurations

– Compares energy of all applications using these

configurations

– Keeps the configuration resulted in lower energy

SWAB Requirements

• Based on previous algorithm, what do you

think a designer needs to know?

SWAB Requirements

• Applications, configurations, energy to run

applications for each configurations, etc

• Can we eliminate any of these requirements?

– Or at least reduce it?

Less Applications?

• Run SWAB on a small set of applications

– Called training applications

• Challenge

– which applications?

• Proposed research

– Select applications randomly and analyze results

– Select applications based on cache miss rate

Random Application Selections

• Randomly select a set of applications from all anticipated applications

– These applications are the training set applications

– The remaining, unselected applications, are the testing set applications

• Apply SWAB to training set and complete cache configuration design space

– Determines design space subsets for all subset sizes

• Evaluate the subsets’ qualities:

(A) With respect to best configuration in complete design space

1. Run testing set with best configuration from subsetted design space, and measure energy consumption

2. Run testing set with best configuration from complete design space, and measure energy consumption

3. Compare these energy consumptions

– Less energy increase means higher quality subset

(B) With respect to base configuration

1. Run testing set with best configuration from subsetted design space, and measure energy consumption

2. Run testing set with base configuration from complete design space, and measure energy consumption

3. Compare these energy consumptions

– More energy savings means higher quality subset

• Evaluate for all combinations sizes of randomly-selected training set applications

Random application selection

Results

• Selected application group size 1 all

• Compare energy w.r.t to full design space

• T(n); n = number of applications

Cache Miss Rate Application Selection

• Given a set of anticipated applications, sort applications into domain-specific
groups based on cache hierarchy requirements—miss rate using base configuration

• Select three training applications from each group
– Called domain specific training set applications

– Unselected applications called testing set applications

• Apply SWAB to training set and complete cache configuration design space
– Determines design space subsets for all subset sizes for

each group

• Evaluate the subsets’ qualities:
1. Run testing set with best configuration from domain-specific subsetted design space, and

measure energy consumption

2. Run testing set with best configurations from subsetted design space, obtained with random
training sets, and measure average energy consumption

3. Compare energy consumptions

– Lower energy values using domain-specific subsets means higher quality subset

Cache Miss Rate Application Selection

Results

Random Training Set Subset Quality

Analysis

• Instruction and data cache exhibit similar

energy consumption trends as random training

set size increases

• Larger training set sizes do not necessarily

result in higher quality subsets

• Training sets always provided energy savings,

compared to base configuration

Criticality of a Priori Application Knowledge

Using Domain-Specific Training Sets Analysis

• Domain-specific training applications of size
three as compared to subsets created using
random training sets of size three

• Increased subset energy savings by 10% and 3%
for instruction and data caches, respectively

• Running applications using subsets targeted for
different domains

• Increased energy consumption (degraded energy
savings) by as much as 290% and 640% for
instruction and data caches, respectively

Reduction in Design-Time Effort

Using Domain-Specific Training Sets

• Exploring the design space using domain-

specific training applications of size three is

4X faster , compared to using all anticipated

applications

• Domain-specific training sets can significantly

enhance subset quality and reduce design-time

efforts, with only general knowledge of

anticipated applications

Conclusion

• Configurable caches provide excellent solution to various domain-specific
application requirements
– However, highly configurable caches require prohibitive design space

exploration time

• Reducing design space exploration time
– Used training set applications to evaluate design space subsetting, and

evaluated the subsets' energy savings using disjoint testing applications

• Subset quality
– Random training set applications provided quality configuration subsets, and

domain-specific training application increased subset quality

• 4X reduction in design space exploration time using domain-specific
training applications as compared to using all anticipated applications

• Our training set methods enable designers to harness configurable cache
energy savings with minimal design effort

Questions?

