
DONGXING BAO, XIAOMING LI , “A CACHE SCHEME BASED ON LRU-
LIKE ALGORITHM”, PROCEEDINGS OF THE 2010 IEEE CONFERENCE
ON INFORMATION & AUTOMATION (ICIA),PAGES 2055-2060.

4/8/2014

A Cache Scheme Based
on LRU-Like Algorithm

1 of 58

Ishan Dalal

Memory Wall

4/8/2014

 The Growing Disparities between Processor &
Memory Systems is making cache misses
increasingly expensive.
 Memory Access Latencies have been a
bottleneck for high performance microprocessors.
 Way to get around this issue

 Improve cache memory by using intelligent
control over on-chip cache management, in
order to adapt caching decisions to dynamic
accessing behavior.

2 of 58

Direct-Mapped (DM) Cache
 Advantages :
 Less complicated organization enables reduced hit time.

 Reduce Design Cycle time

 Enable variety of cache size configurations easily.

 Disadvantage:
 Conflict Misses are more as compared as other

types of cache configurations.

4/8/2014 3 of 58

Different Cache Designs
 Decoupled Cache

 Multiple-Access Cache

 Augmented Cache

 Multilevel Cache

 Augmented Cache Characteristics
 Has a Direct-Mapped Cache & a smaller fully Associative Cache.

 Both caches accessed in parallel with small access latency because of small capacity of fully associative
cache.

4/8/2014 4 of 58

Reusability of Data & Cache Replacement
Schemes

4/8/2014

 Studies have shown that very small number of load/store instructions responsible for large
percentage of cache misses.
 This makes Selective Caching very important.

 Most caching schemes focus on reusability of data for optimizations to hold reusable data on
cache as long as possible.

 Replacement Algorithms like LRU, Random are used to decide which blocks should be replaced
on cache miss.

 Disadvantage of LRU
 Consumes large hardware resources on chip

 Increase Hardware complexity.

5 of 58

Proposed Scheme : LRU-Like Algorithm (1/2)
 Locality Principle
 A block most recently used (MRU Block) could be accessed again soon. On a cache miss, block

determined to be evicted should be least-recently used block (LRU block).

 LRU Design
 Each way in a set is attached to a counter to record the accesses recently.

 This enables to identify MRU & LRU block. When set is full, LRU block is replaced.

 LRU-Like Design
 Based on Augmented Cache Design, buffer used to filter the LRU Blocks.

 Holding all MRU Blocks in DM Cache in increase the hit rate.

4/8/2014 6 of 58

LRU-Like Algorithm (2/2)
 Suppose Bm block is in DM cache & other blocks are competing for same set are in
buffer.

 One bit is assigned to each block in DM Cache to indicate MRU block.

 METHOD
 On cache hit in DM cache, Bm is marked as MRU block.
 On cache hit in Buffer, block of same set as needed block in DM cache is marked

LRU block.
 On cache miss, location of replacing block is indicated by the bit value in

corresponding set.
 If bit = 1 (MRU), replacing block filled in buffer.
 If bit = 0 (LRU), replacing block filled in DM cache.

4/8/2014 7 of 58

LRU BLOCK FILTERING (LBF) CACHE SCHEME

4/8/2014

 Least-Recently-Used Block Filtering Cache used.

 For DM Cache, tag of each block is added one
MRU block judge bit (M bit), which is used to
detect if block was accessed recently.

 Block in DM cache obtains more reusability. So
evicted block from DM cache should be kept in L1
cache for longer time.

8 of 58

Working of LBF (1/2)
 CPU accesses DM cache & buffer in parallel.

 Cache Hit

 Hit in DM Cache : M bit for hit block set to 1.

 Hit in buffer : M bit for corresponding set in DM cache cleared.

 Cache Miss

 Fetched Block from next level of memory hierarchy is filled into DM cache if M bit for
same set of miss block is 0.

 Else, Block filled in buffer.

4/8/2014 9 of 58

Working of LBF (2/2)
 Block Transfer

 When CPU waits for required block, evicted block from DM cache fills in the buffer.

 Cache Refilling

 When block refilled into buffer for 1st time, M bit for same set in DM cache is
cleared to 0.

 When block refilled into DM cache for 1st time, M bit is set to 1.

4/8/2014 10 of 58

Effectiveness of Scheme for Different
Reference Patterns
 Conflict Between Loops
 For conflicts between references inside two different loops, there is memory access

pattern:(𝑨𝒎𝑨𝒉
𝟗𝑩𝒎𝑩𝒉

𝟗)𝟏𝟎

Superscript denotes frequency usage of particular data word address scheme.

 Behavior of conventional DM-cache is
 Miss rate = 20/200 = 10%

4/8/2014 11 of 58

Contd..
Behavior of Augmented Cache Scheme
 When A refilled into DM cache, M bit is set. B is requested after nine hits of A, it will be refilled into

the buffer.

 For next nine cycles, no conflict occurs.

 On other hand, if A is refilled into buffer for 1st time, M bit for corresponding set in DM cache is
cleared. So B is refilled into DM cache.

 For both refilling conditions, access behavior is 𝑨𝒎𝑨𝒎
𝟗𝑩𝒎𝑩𝒉

𝟗(𝑨𝒉
𝟏𝟎𝑩𝒉

𝟏𝟎)𝟗

 Miss rate = 2/200 = 1.0 %

Thus LBF cache may gain more hits in this condition.

4/8/2014 12 of 58

Conflict Between Inner & Outer Loops
 Conflict arises between reference inside a loop with another reference outside inner loop.

 Memory access pattern is (𝑨𝒎𝑨𝒉
𝟗𝑩𝒎)𝟏𝟎

 Miss rate = 2/11 = 18%.

 Using Augmented Cache Scheme. Same refilling process guarantees both block A & B will be
reserved in L1 cache.

 Behavior of LBF cache would be 𝑨𝒎𝑨𝒉
𝟗𝑩𝒎(𝑨𝒉

𝟏𝟎𝑩𝒉)𝟗

 Miss rate = 2/110 = 1.82 %

4/8/2014 13 of 58

Conflicts within Loops
 There are two references A & B within a single loop mapping to same location in cache.
 Behavior of DM cache is (𝑨𝒎𝑩𝒎)𝟏𝟎

 Miss rate = 𝑀𝐷𝑀 = 20/200 = 100%

 For LBF cache, after initial A miss & B miss in L1 cache, next time A & B will be put in DM cache
and buffer.

 Behavior is 𝑨𝒎𝑩𝒎𝑨𝒎
𝟗𝑩𝒉

𝟗

 Miss rate = 2/20 = 10 %

Thus LBF cache may improve hit rate of direct-mapped cache.

4/8/2014 14 of 58

Simulation Environment
 Sim-outorder in SimpleScalar toolset used as Simulator. Mlcache used to replace
corresponding cache program in sim-outorder.c

 Simulation was done to evaluate performance of L1 Dcache. Icache & bus were supposed to
ideal.

 All benchmarks for simulation were from SPEC95.

4/8/2014

Processor & Memory Characteristics

Fetch Mechanism Fetches up to 4 instructions in program order per cycle.

Branch Predictor Bimodal Predictor with 2048 entries.

Issue Mechanism Out-of-order issue of up to 4 operations per cycle, 16 entry re-order
buffer, 8 entry load/store queue.

Functional Units 4 integer ALUs, 4 FP ALUs, 1 integer MULT/DIV, 1 FP MULT/DIV

Data Cache Write-back, write-allocate, 32-byte lines, 4 read/write ports, non-blocking

15 of 58

Performance Metrics
 Effective Access time
 If h is hit rate in L1 cache, t is access time of L1 cache & teff is effective access time, then Effective

access time = 𝒕𝒆𝒇𝒇 = 𝒉 ∗ 𝒕 + 𝟏 − 𝒉 ∗ 𝒎𝒊𝒔𝒔𝒑𝒆𝒏𝒂𝒍𝒕𝒚.

Access time of L1 cache is one cycle, & miss penalty is 18 cycles.

 Miss rate = L1 Dcache miss number / L1 Dcache reference number

 Speedup = 𝒕𝒆𝒇𝒇 of the target structure / 𝒕𝒆𝒇𝒇 of the base structure

 Bus traffic that indicates words L1 Dcache swaps with next level of memory hierarchy is
another important metric.

 Relative Bus Traffic = Bus Traffic of base structure – Bus Traffic of target structure.
 If relative bus traffic is more, speed of processor is faster.

4/8/2014 16 of 58

Results
 DM cache, 2-way associative cache victim and assist cache are simulated to be compared to LBF cache.

 All augmented caches for compare are 8 KB DM cache & 1 KB buffer. Block size is 32B for all caches.

4/8/2014

MISS RATES OF 6 L1 DCACHE SCHEMES

compress gcc li ijpeg perl hydro2d su2cor swim

DM:8K 0.0673 0.0462 0.0231 0.0564 0.0597 0.1195 0.0891 0.4068

DM:16K 0.0557 0.0288 0.0178 0.0221 0.0373 0.1063 0.0796 0.1424

8K2W 0.0563 0.03 0.0148 0.0448 0.0288 0.1112 0.0768 0.3904

Victim 0.0553 0.0259 0.0141 0.0111 0.0246 0.1094 0.0709 0.0473

Assist 0.0562 0.0287 0.0148 0.0118 0.0281 0.1095 0.0722 0.0472

LBF 0.0543 0.0265 0.0137 0.0104 0.0235 0.1078 0.0723 0.0463

17 of 58

Miss Rates
 Miss rates of LBF cache are basically lower than those of assist cache except that of su2cor.

 Also miss rates of LBF are lower than those of victim cache except for gcc & su2cor.

 Among three cache schemes, average miss rates of LBF cache, victim cache & assist cache are
5.34%, 5.38% & 5.48% respectively.

 Compared to 16 KB DM cache & 8 KB 2-way associative cache, the average miss rate of (8+1)
KB LBF cache decreases about 26% & 53% respectively.

4/8/2014 18 of 58

Bus Traffic
Relative Bus traffic of four L1 Dcache Schemes (million word)

compress gcc li ijpeg Perl hydro2d su2cor Swim

LBF -3.3 -6.4 -3.0 0.5 2.07 -129.8 -90.9 177.9

Victim -11.1 -64.4 -122.9 -6.4 -14.3 -319.8 -309.1 -449.5

Assit -8.2 -30.1 -57.9 -0.3 -3.4 -274.9 -212.9 124.8

8K2W 0.1 -0.4 16.4 -2.1 2.4 -8.8 11.4 -144.0

4/8/2014

 16KB DM cache is considered as base structure.
 Accesses to bus for LBF cache is the least among four cache structures.

19 of 58

Speedup

4/8/2014

8KB DM cache is base structure. Among the four, speedup of LBF cache is highest.

20 of 58

Hardware Overhead
 LBF is easier to implement than victim & assist cache.

 LBF cache only utilizes a one-direction path to transfer evicted blocks while victim cache needs
two paths.

 On judgement of data transfer, assist cache needs the help of software interpreter while LBF
cache doesn’t require one.

4/8/2014 21 of 58

Shortfalls !
 There are no individual bits per block used in Direct Mapped Cache in Victim Cache Scheme. So
LBF has little hardware costs than victim cache.

 Simulations were done only for L1 Dcache. Same for L1 Icache could have been carried out
since instructions generally exhibit better locality than data. So other schemes could have
performed better.

 Performance comparisons could have been made with other Direct-Mapped schemes like Non-
Temporal Streaming (NTS), Memory Address Table (MAT) & Allocation By Conflict (ABC) to gain a
better understanding.

4/8/2014 22 of 58

Conclusion
 LRU-Like algorithm introduces new augmented cache structure called LBF and it gives better
simulation results than victim & assist cache.

 Results show miss rates of LBF cache are better than that of Direct Mapped & 2-way
Associative Cache.

 LBF also performs better than other augmented cache designs like victim & assist cache.

4/8/2014 23 of 58

QUESTIONS ??

4/8/2014 24 of 58

Fixed Segmented LRU
Cache Replacement
Scheme with Selective
Caching
KATHLENE MORALES & BYEONG KIL LEE, PROCEEDINGS OF
INTERNATIONAL PERFORMANCE COMPUTING & COMMUNICATIONS
CONFERENCE (IPCCC), 2012 IEEE 31 ST INTERNATIONAL, PAGES 199 -200.

 Ishan Dalal

4/8/2014 25 of 58

Introduction
 Cache Replacement Policies like LRU (Least Recently Used), Random, FIFO etc. play an
important role in bridging the gap in speed between CPU & memory.

 Some policies better than the more common LRU perform significantly better in
reducing cache misses.

 But hardware cost of implementing them is more.

 For mobile computing & SOC technologies, such hardware costs are unacceptable.

 Challenge is to design a cache replacement algorithm that is low cost but at the
comparable performance.

4/8/2014 26 of 58

Proposed Scheme : Segmented LRU

4/8/2014

 Idea : If Line has been accessed while occupying the cache space, it should be more
difficult to be evicted than a line that has never been accessed.

 Implementation : Adding a reference bit into each cache line.

 This Bit divides the cache set into two segments :

1. Protected Segment

2. Probationary Segment.

27 of 58

Implementation & Advantage
 All lines entering the cache are initially part of probationary segment.

 If cache hit occurs on a line in probationary segment, that line is promoted to the
protected segment.

 On a cache miss, victims for replacement are chosen from probationary segment.

 Lines from protected segment are victimized only if the probationary segment is
empty.

 Advantage over LRU

 Better exploits temporal locality of lines by protecting more frequently used lines.

4/8/2014 28 of 58

Enhancements to SLRU
1. Apply fixed number of lines in protected & probationary segments to emphasize on

the protected segments.

2. Selective caching method that prevents predicted dead blocks from entering the
cache.

4/8/2014

29 of 58

SLRU with fixed Segmented Sizes (1/4)
 Based on Observations, it was found that only 1-2 lines occupied the protected
segments.

 Study proposed to fix a constant number of protected & probationary ways to
increase the protected segments & avoid dynamic segmentation cost.

 In contrast to normal SLRU, this scheme also handles the eviction of lines from the
protected segment.

 When cache hit occurs in probationary segment , it is promoted to protected
segment.

 If protected segment is full, then a line is evicted from it to maintain fixed ratio.

 That Line is evicted using LRU.

4/8/2014 30 of 58

SLRU with fixed Segmented Sizes (2/4)
 Notation N:P is used for fixed SLRU policy where N is number of protected segments &
P is number of probationary segments.

 N+P must equal the associativity of cache.

 N:P affects the cache performance.

 In order to find optimum ratio, multiple simulations were performed using SPEC 2006
benchmarks with default cache configuration

 1k 16-way set associative cache, 64 bit block size.

 All traces were simulated for 100 million instructions, after fast-forwarded 40 billion
instructions.

4/8/2014 31 of 58

SLRU with fixed Segmented Sizes (3/4)
Benchmark Best Segmentation Ratio

Bzip2 11:5

mcf 15:1

Hmmer 14:2

Gcc None

Sjeng 9:7 – 15:1

Namd 11:5

Groamcs 14:2

Milc None

Solpex 11:5

povray 8:8 – 14:2

4/8/2014 32 of 58

SLRU with fixed Segmented Sizes (4/4)

4/8/2014

 Table shows best performing segmentation ratios for benchmarks.

 Three benchmarks such as bzip2, milc & namd have lowest CPI with ratio of 11:5.

 Two benchmarks such as sjeng & povray have their lowest CPI over range of segment ratios,
which included 11:5.

 Three other benchmarks including hmmer, mcf & gromacs have their lowest CPI at segment
ratio of 11:5, but overall higher segment ratios performed better for these benchmarks.

 For milc & gcc, the segment ratios did not affect the CPI.

 Based on results, 11:5 was chosen to be an optimum ratio.

33 of 58

SLRU with Selective Caching
 Selective Caching selects instructions to be bypassed based on their reference history.

 Bypassing “Dead” Blocks which are blocks that are replaced in the cache before they
are accessed can effectively increase performance.

 Study predicts the blocks that were considered dead last time they occupied cache
will tend to be dead blocks the next time they occupy the cache.

 By bypassing these blocks, cache does not have to needlessly evict lines that are more
likely to be accessed to make room for dead blocks.

4/8/2014 34 of 58

Implementation
 An additional one bit per line is required for implementing this to fixed SLRU.

 This bit will represent whether a line has been accessed at least once while in cache.

 If it has not, its tag will be updated to a table, called bypass table.

 Based on experiments, it was found bypass table to be most effective when it held a
max of 16 tags.

 After tag has been used to bypass cache once, the line is cleared from table.

 Tags were first written to any empty lines in the table. If no empty lines are available,
tags are overwritten to the first line in table.

 Selective caching can be implemented without increasing cache access latency by
treating bypass table as an extra way in cache.

4/8/2014 35 of 58

Simulations : Fixed SLRU with Selective
Caching

4/8/2014

 Fixed SLRU with selective caching was compared with both LRU & SLRU using 5
floating point benchmarks & 5 integer benchmarks.

 Simulations were performed with proposed replacement algorithm applied to LLC
(Last Level Cache).

 All other level of caches applied with LRU.

 1M 16-way set-associative LLC cache with 64 bit block size was used.

36 of 58

Results

4/8/2014 37 of 58

Results Analysis
 For single core simulations, average speedup of 1.67% over LRU (max – 14 %) & 1.85 % over
standard SLRU (max – 12.5%).

 Only Hmmer experienced a significant decrease in CPI versus LRU.

 Additional enhancements to this algorithm like aging, random promotion etc could result in
better performance replacement algorithm.

4/8/2014 38 of 58

Hardware Costs (1/2)
 For a 16-way cache, additional 6 bits per cache line is required.

 Four bits are required to indicate stack position, one bit is used to distinguish between
probationary & protected segment & one bit is used to mark whether a line has been referenced
while in cache.

 Partial tag of 16 bits can accurately represent 64 bits. So bypass table requires 256 bits of
memory.

 In total, single core implementation for a 16-way cache requires 96 bits per cache set & 256
bits for the bypass table.

4/8/2014 39 of 58

Hardware Costs (2/2)
 Compared to other replacement policies, hardware requirements for this algorithm are
relatively low.

 Dueling Segmented SLRU policy achieved speedup over LRU up to 8.6 % but at cost of 102 bits
per set, plus another 23.4K of additional hardware.

 Compared to LRU, proposed algorithm only requires an extra 32 bits per set & 256 bits for the
bypass table.

4/8/2014 40 of 58

Shortfalls !
 Compared to LRU & SLRU, It takes extra hardware to implement. Thus this algorithm cannot be
used in mobile, system-on-chip implementation and other apps where high hardware costs are
not acceptable.

 Study haven’t compared the performance of Dueling segmented SLRU with Fixed SLRU
although they have compared their respective hardware costs.

 Different benchmarks have different optimum segmentation ratios. So instead of using the
same segmentation ratio, performance adjustable segmentation ratio could have been used for
better results.

 Miss rates has not been compared between Fixed SLRU, normal SLRU & normal LRU.

 Insufficient information about the implementation of Selective Caching. For example – data
about the wait time used by the study to determine which blocks are dead etc. is not provided.

4/8/2014 41 of 58

Conclusion

4/8/2014

 Fixed SLRU with selective caching shows potential for high performance.

 Since the proposed algorithm did not use ideal segment ratio for every benchmark, an
enhancement that adjusts the segment ratio based on performance could improve speedup.

 Although goal of the study was reduce on the hardware costs associated with cache
replacement policies, it was not able to effectively achieve it.

42 of 58

Questions ??

4/8/2014 43 of 58

KATHLENE HURT & BYEONG KIL LEE, PROCEEDINGS OF
INTERNATIONAL PERFORMANCE COMPUTING & COMMUNICATIONS
CONFERENCE (IPCCC), 2013 IEEE 32ND INTERNATIONAL, PAGES 1-2.

4/8/2014

Proposed Enhancements to
Fixed Segmented LRU
Cache Replacement Policy

44 of 58

Introduction
 Due to Ineffective Simulation environment in the previous Paper, results obtained
were not fully analyzed which resulted in incomplete understanding of the fixed SLRU
with selective caching scheme.

 The current study has an improved simulation environment and focuses on three
enhancements to the algorithm : cache bypassing, random promotion, & aging.

4/8/2014 45 of 58

SLRU With Fixed Segment Size
 Multiple Simulations were carried out to find the optimum ratio of protected to probationary
segments.

4/8/2014 46 of 58

Results : Simulation (1/3)

4/8/2014

 Five benchmarks experienced their greatest speedups over LRU while using 11:5 segment
ratio.

 Gobmk, MCF had their greatest CPI at 15:1 while zeusmp & gromacs experienced their greatest
CPI at 1:15.

 From information, 11:5 is the ideal segment ratio to use in algorithm.

 When using 11:5, no benchmark experienced a decrease greater than 2.9% in CPI compared to
its ideal segment ratio.

47 of 58

Results : Simulation (2/3)
 Graph shows CPI speedup over LRU & SLRU when fixed SLRU algorithm was applied using 11:5
segment ratio.

4/8/2014 48 of 58

Results : Simulation (3/3)
 Average Speedups of 7.00% & 4.22% are achieved over LRU & SLRU.

 Maximum speedup of 43.55% over LRU & 41.59% over SLRU are also achieved.

 Over LRU, only Soplex experienced a decrease in CPI (2.7%).

 Over SLRU, two benchmarks experienced a decrease in CPI, but neither was greater than
2.97%.

 When using the ideal segment ratio for every benchmark, an average speedup of 7.54% over
LRU & 4.73 % over SLRU was achieved.

4/8/2014 49 of 58

Enhancement 1 : Cache Bypassing

4/8/2014

 Based on experiments, bypass table is found to be most effective when it held a maximum of
64 tags.

 An average speedup of 7.15% over LRU & 5.11% over SLRU was achieved with a maximum
speedup of 48.97% & 46.94% respectively. It is 0.15% higher than LRU & 0.89% higher over SLRU
than fixed SLRU alone.

 Of then ten benchmarks, 6 of them experienced a slight decrease in CPI (up to 3.01%)
compared to 11:5 fixed SLRU.

 Since so many benchmarks experienced a decrease in CPI, and overall speedup was negligible.
So Cache Bypassing is not an effective enhancement to fixed SLRU.

50 of 58

Enhancement 2: Random Promotion

4/8/2014

 Previous Study showed randomly promoting lines from probationary segment to protected
segment can increase performance in SLRU.

 Enhancement of randomly promoting lines to protected segment as they enter the cache is
proposed.

 From experiments, it was found that even for small probabilities (0.001%), nine benchmarks
experienced decrease in CPI.

 Only Astar showed benefit from random promotion as it achieved max speedup of 61.7% over
LRU, which is 41.8% increase over fixed SLRU alone, using a 20% random promotion probability.

 Thus overall, it was found that random promotion was found to be not beneficial
enhancement for fixed SLRU.

51 of 58

Enhancement 3: Aging
 Idea: Ability to remove lines from protected segment and return them to probationary
segment.

 When a line is promoted to protected segment by a cache hit in the probationary segment, the
LRU line in the protected segment is demoted to probationary segment and it is set to be
evicted on next cache miss.

 Aging alters this algorithm by maintaining this lines stack position. So this line will not be
evicted on next cache miss and it would be given an increased chance to be promoted back into
protected segment.

4/8/2014 52 of 58

Results : Aging
 Average speedup over LRU of 4.78% & an average speedup over SLRU of 2.14% with maximum
speedups of 17.10 % & 15.51% respectively.

 Only bzip2 experienced a performance boost from aging with 11.66% CPI speedup over fixed
SLRU.

 This is a large decrease in CPI compared to 11:5 fixed SLRU alone.

 Thus from these results, aging is not an effective enhancement to add to fixed SLRU.

4/8/2014 53 of 58

Overall Result Analysis

4/8/2014

 Only Enhancement out of the 3 that showed overall increase in CPI was cache bypassing.

 But too many benchmarks experienced a decrease in CPI for cache bypassing to be considered
an effective enhancement.

 Random Promotion & aging were shown to decrease performance when applied to fixed SLRU.

 Overall, none of enhancements that were employed to SLRU were found to be effective.

54 of 58

Shortfalls !
 More information about process of chosing the number of tags in bypass table is required
because previous study used 16 tags while current study uses 64 tags.

 Instead of using 11:5 fixed segmentation ratio for all benchmarks, study could have used
performance adjustable segmentation ratios to getter better results.

 Although Study has shown through results why enhancements didn’t work for fixed SLRU, no
analysis has been carried regarding the same.

 More details about the implementation about aging enhancement could have been given. For
example – Data about the number of chances given to demoted line in probationary segment on
a cache miss.

4/8/2014 55 of 58

Conclusion
 Fixed SLRU using 11:5 segment ratio achieved a 7.00% average speedup over LRU & 4.22% over
SLRU.

 Maximum speedup of 43.55% over LRU & 41.59% over SLRU was obtained with improved
simulation environment.

 This is significant considering fixed SLRU does not require any additional hardware over SLRU
and only one extra bit over LRU.

 None of enhancements explored here were found to be beneficial to fixed SLRU.

4/8/2014 56 of 58

Questions ??

4/8/2014 57 of 58

Thank You !

4/8/2014 58 of 58

