
Meeting Points – Using
Thread Criticality to Adapt
Multicore Hardware to
Parallel Regions
QIONG CAI , JOSE GONZALEZ, RYAN RAKVIC, GRIGORIOS MAGKLIS , PEDRO
CHAPARRO & ANTONIO GONZALEZ , PACT ‘08, PROCEEDINGS OF THE 17 TH
INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURE &
COMPILATION TECHNIQUES,PAGES 240-249

 Ishan Dalal

 1 of 65 3/27/2014

Introduction
 Multicore Systems – ICs containing two or more processors for enhanced
performance, reduced power consumption and more efficient simultaneous processing
of multiple tasks (parallel processing).

Each Core contain one or more threads. Threads are an independent smallest sequence of
programmed instructions managed by OS.

On single Processor, multithreading achieved by time-division multiplexing i.e. Context Switching.

On Multi-Core Systems, Parallelism (True!) achieved by running threads simultaneously on each
of the cores or processors.

2 of 65 3/27/2014

Challenge with
Chip Multiprocessors (CMPs)

3 of 65 3/27/2014

 High Energy Consumption – Major hurdle in design of systems.
 Workload Imbalance among cores is source of energy inefficiency.

Example – In OpenMP’s fork-join parallel execution model, there is a barrier at
the joint point of the parallel loop that synchronizes all threads.

 If Lucky, all cores reach this barrier at the same time.

 In normal cases, some threads reach the barrier earlier than others and spend
a large amount of time waiting for slower ones.

 Fast threads have been executed at maximum possible speed and power
consumption which leads to the inefficiency.

Possible Solutions
 Put fast threads to sleep as soon as they arrive at the barrier and then shut down the
core.

 Feasible Approach if the waiting time is long enough so that the energy saved in
sleep mode pays off the energy/performance wasted by putting the cores to sleep
and waking them up.

 If the thread is known beforehand to reach the synchronization point early, the
voltage and frequency of the core running that thread could be reduced dynamically
without compromising the performance.

 Better than former because Dynamic Voltage Frequency Scaling (DVFS) achieves
greater energy reduction compared to putting a core to sleep due to cubic
relationship of power to voltage/frequency.

4 of 65 3/27/2014

Approaches & its challenges
 Detection of Critical and Non-critical threads.
 Used Slack as proxy to know the Criticality level of parallel thread.

 Slack is the amount of time a thread can be delayed with no impact on final
performance.

Critical thread is one with zero slack while other threads have non-zero slack.

Thus Other threads can be delayed as long as they don’t impact the
performance.

 Slack determines the level of criticality of each thread.

5 of 65 3/27/2014

 Challenge – Detecting critical threads and level of criticality since one could
not know a priori whether a thread is going to be the last one to reach the
barrier.

Meeting Point Thread Characterization
(MPTC)
 Each thread has a counter to accumulate the number of iterations executed for the
parallel loop.

 At specific intervals of time, all threads broadcast the information so they can know
the number of iterations being executed by each one of them.

 Slack can be calculated from its own iteration counter and counter of the slowest one.

 Applications done by the Study Using this Optimization

1) Thread Delaying (CMP)

2) Thread Balancing (SMT – Simultaneous Multi-threading)

6 of 65 3/27/2014

1) Thread Delaying
 Goal : To reduce overall energy consumption by dynamically scaling down the voltage
and frequency of the cores executing non-critical threads.

 At specific intervals of code execution, each core utilizes the MPTC to estimate the slack
of the parallel thread.

 It computes the voltage/frequency depending on the current slack for the next interval
of time so that the energy is minimized but the expected arrival time to the barrier does
not exceed that of the current critical thread.

7 of 65 3/27/2014

2) Thread Balancing
Goal : To reduce the overall execution time by speeding up the Critical thread.

 Used for simultaneous multithreading processors running parallel threads.

 Thread balancing does sharing of resources by issuing slots in such a way that if both
threads have ready instructions, both are allowed to issue the same number of them.

 But when a critical thread is identified, it is given priority in the utilization of the issue
slots.

Note : Threads come from the same parallel application.

8 of 65 3/27/2014

MPTC - Mechanism

9 of 65 3/27/2014

Figure (a) Figure (b)

Code Performance
 Figure (a) shows code written in such a way that the input data set is partitioned
to achieve workload balance.

 However there exists workload imbalance on a two-core system as shown in
Figure (b).

 In figure (b), x-axis represents the number of iterations of the outermost loop that
each core executes. Y-axis represents the cumulative execution time of this parallel
loop for each core.

 We can see, core 1 is slower than 0.

 Probable Reasons :
 Core 1 suffers many more cache misses than core 0.
 Parallel threads follow different control path in the parallel loop or that

application exploits task-level parallel, rather than loop level.

10 of 65 3/27/2014

Check/Meeting Points
 Check the workload Balance at intermediate points of a parallel loop. These points are
check/meeting points.

 Location : Back edge of a parallel loop because it is visited many times by all threads
at runtime. Total amount of work assigned to each thread should be same since the
total number of times each thread visits the meeting point is roughly the same.

 The Process of MPTC consists of the three steps :

1) Insertion of meeting points

2) Identification of Critical Threads

3) Usage of Criticality Information

11 of 65 3/27/2014

1) Identification of Meeting Points

12 of 65 3/27/2014

 Meeting point should be the one that is visited
many number of times in the parallel region.

 As seen in the code below, last statement of the
outermost loop (or the parallelized loop) satisfies
the criteria.

 Insertion of meeting point can be done by the
hardware, compiler or the programmer.

Identification of Critical Threads
 Every time a core decodes an instruction encoding a meeting point, a thread-private
counter (located in the processor frontend) is incremented.

 Critical thread is the one with smallest counter while slack for other threads is
calculated as the difference of its counter and the counter of the slowest counter.

 Software Only Identification Mechanism Used : Application is rewritten so that it
includes an array of counters indexed by thread identifiers. Each thread increments its
own counter every time it arrives the end of the parallel section.

 Current Study inserts meeting points by means of pragma & the counters are
implemented in hardware.

 The compiler translates the pragma into new instruction that once decoded,
increments the private hardware counter of the thread.

13 of 65 3/27/2014

Using the Criticality Information :
1) Thread Delaying

3/27/2014 14 of 65

 Thus DVFS is a clear winner for non-critical threads.

Implementation on CMP with multiple
clock domains
 CMP Microarchitectures consists of many Intel64/IA32
cores and each core is single-threaded in-order Core with
bandwidth of 2 instructions per cycle.

 Each core contains private first-level instruction cache and
data cache and private second-level unified cache. A shared
third-level cache is connected to all cores through a bus
network. MESI cache controller is used to keep data
coherent.

 All caches have their own clock domains. Also L3 cache also
has its own clock domain.

 This allows each domain to run at different frequency and
secondly adapt the frequency of each domain dynamically
and independently of the others.

15 of 65 3/27/2014

Voltage-Frequency Table
 Each one of microprocessor domains can operate at a
distinct voltage and frequency.

 Voltage and frequency can be changed dynamically and
independently for each domain.

 Having few levels allows to switch between them very
quickly.

 Each domain includes an on-chip digital clock multiplier
connected to the external PLL.

 Frequency changes per domain are effected by changing
the multiplication factor of the domain clock multiplier;
external PLL frequency is fixed. This allows extremely fast
frequency changes.

16 of 65 3/27/2014

Implementation of Thread Delaying
 Each Core contains two tables :

1) MP - Counter – Table

 Contains as many entries as number of cores in the processor.

 Each entry contains a 32-bit counter that keeps track of the
number of times each core has reached the given meeting point.

2) History Table

 Contains entry for each possible frequency level.

 Each entry contains a two-bit up-down saturating counter used
to determine the next frequency the core must run at.

 The table is initialized so that entry corresponding to the
maximum frequency level has the highest value.

17 of 65 3/27/2014

Working (1/2)

18 of 65 3/27/2014

Working (2/2)

19 of 65 3/27/2014

Using Criticality Information :
2) Thread Balancing
 Speeding up the critical thread for a parallel application running more than one thread
on a single 2-way SMT core by accelerating the critical thread.

 Base Issue Logic:

 If both threads have ready instructions, each one of them is allowed to issue 1
instruction.

 If one thread has ready instructions and other does not, the one with ready
instructions can issue upto two per cycle.

20 of 65 3/27/2014

 But if both threads exist on same parallel application, fairness may not be the best
option and priority has to be given to the critical thread.

Thread Balancing : Implementation

3/27/2014 21 of 65

 Two hardware counters are located in the processor
frontend to detect critical thread between two
threads running in the same core.

 Counters are compared at every 10 executions and if
the difference is greater than given delta, thread with
lowest counter value is designated as the critical
thread. This info is passed to issue logic.

 If the critical thread has two ready instructions, it is
allowed to issue both instructions regardless of the
ready instructions the non-critical thread has.

Experiments : Setup (1/2)

22 of 65 3/27/2014

 Functional Simulator : SoftSDV for Intel64/IA32. It can simulate not only multithreaded
primitives including locks and synchronization operations but also shared memory and
events.

 Guest OS : Redhat 3.0 EL

 Less than 1% of simulated instructions are from OS, this minimizing its impact on
performance.

 Functional Simulator feeds Intel64/IA32 instructions into performance simulator,
which provides cycle accurate simulation.

 AGGRESSIVE BASELINE : every core is running at full speed and stops when it is
completed. Once the core stops it, it consumes zero power.

 Evaluations from experiments include dynamic energy, idle energy and leakage
energy.

Experiments : Setup (2/2)
 Thread delaying is evaluated for Multi-core systems where each core contains only one thread
while thread balancing is evaluated for a single SMT core (each core contains two threads).

 Simple In-order core is low power and is suitable for a many-core chip such as Sun’s Niagra.

23 of 65 3/27/2014

Process Model In-Order Intel64/32

L1 Instruction Cache (private) 32 KB, 4-ways

L1 Data Cache (private) 32 KB, 8-ways

L2 Cache (Unified & private) 512 KB, 16-ways

L3 Cache (Unified & shared) 8MB, 16-ways

Network Protocol MESI

 Architectural Parameters

Benchmarks used
 Recognition, Mining & Synthesis (RMS) workloads from Intel are multi-threaded applications
for Tera-Scale systems.

 RMS workload includes highly compute-intensive and highly parallel applications including
computer vision, data mining on text and media, bio-informatics and physical simulation.

24 of 65 3/27/2014

Benchmarks Application

Gauss Financial Analysis

PageRank (sparse) Search Engine

PageRank (lz77) Search Engine

Summarization Text Data Mining

FIMI Data Mining

Research Bioinformatics

SVM Bioinformatics

Characteristics of Benchmarks

25 of 65 3/27/2014

 All RMS benchmarks except Gauss show workload imbalance. Gauss is chosen for testing
robustness of thread delaying algorithm.

 All workloads are parallelized by using OpenMP to achieve maximal scalability but they still
exhibit different degrees of workload imbalance and therefore inefficiency in the energy
consumption.

 The simulated section for each benchmark is chosen by first profiling its single-threaded
counterpart and then selecting the hottest region, which is a parallel loop.

 Each thread runs a fixed number of iterations and when slowest thread has executed N
iterations, the simulation has finished.

 At least 100 million instructions are executed for simulation.

Performance Results for Thread Delaying (1/2)

26 of 65 3/27/2014

Performance Results for Thread Delaying (2/2)
 Thread Delaying achieves significant energy reductions for selected RMS benchmarks
under three different hardware configurations : two, four & eight cores ranging from 4%
to 44% energy savings.

 For most configurations, there is little performance loss, ranging from 1% to 2%.

 In couple of cases, thread delaying even obtains speedups !!

 All cores except the critical thread are more spread out over time, allowing the
critical thread to have more priority in the interconnection.

 This side effect of per-core DVFS accelerates the critical thread and thus reduces the
total execution time.

27 of 65 3/27/2014

Results Analysis (1/4)

28 of 65 3/27/2014

Results Analysis (2/4)
 X-axis represents number of iterations of the parallelized loop that each core executes.

Y –axis of figure (a) & (b) represent cumulative execution time of loop while figure (c)
represents frequency of the core.

 Large gaps between critical thread (cpu0) and rest of the threads.

All non-critical threads except cpu3 stay at lowest frequency after iteration 6600.

 Big Energy savings come from large frequency decreases on non-critical threads.

 For cpu3, it says at the lowest frequency until iteration 12200 and increases, because the gap
between cpu0 and cpu3 is getting smaller.

29 of 65 3/27/2014

Results Analysis (3/4)

3/27/2014 Slide 30 of 65

Results Analysis (4/4)
 The effectiveness of thread delaying depends on whether the algorithm can quickly adapt at
runtime.

 Between Iteration 10 & 40, the time gap becomes smaller and smaller & algorithm increments
the frequency of the non-critical threads slowly.

 At iteration 65, there is cache miss with latency, which results in a time difference between
two threads again.

 The algorithm immediately observes the change and starts to decrement the frequency level
of non-critical thread.

 Thread delaying algorithm saves reasonable amount of energy for relatively balanced
workloads.
 Gauss is balanced workload and it is hard to distinguish which threads are critical or non-critical.

 Still, 6 % energy savings are obtained without any performance penalty.

3/27/2014 Slide 31 of 65

Performance Results : Thread Balancing

3/27/2014 32 of 65

Benchmark Name Opportunity % Correction %

FIMI 30 100

Research 24 49

SVM 56 100

PageRank (sparse) 4 1

Results Analysis (1/2)
 Performance benefit for the Four RMS workloads ranges from 1 to 20 %.

 PageRank shows huge imbalance during parallel execution and thus we have large
amount of energy savings from thread delaying.

 But due to cache misses, Thread Balancing cannot give much performance
improvement to PageRank.

 Prioritizing the issue of slow thread results in a shift in pipeline stalls from issue
stage to the backend of the in-order core because this benchmark suffers from a
significant amount of load misses.

Thus performance of slow threads is not greatly improved.

3/27/2014 33 of 65

Results Analysis (2/2)
 FIMI has a large level of thread imbalance and a corresponding amount of
performance improvement by administering issue priority to the slower thread. Thus
performance benefit correlates with imbalance levels.

 Using the algorithm described earlier about giving the priority to the slower thread,
FIMI & SVM have the most opportunity to give priority to the slow threads.

 Table shows the percentage of number of iterations that are caught up by the slow
thread with thread balancing method.

 FIMI and SVM have 100% imbalance correction with the algorithm and are operating
in an ideal situation.

3/27/2014 34 of 65

Shortfalls !
 Thread Delaying is ineffective for SMTs for cores having multiple threads since the
approach assumes only one thread per core.

 Also Thread Delaying applies DVFS at core level instead of thread level. So even if it’s
applied to SMT, both critical & non-critical threads in the same core will run at same f-V
resulting in no energy savings.

 In some cases when aggressive DVFS is applied, although energy savings are achieved
there are performance losses.

 Study could have covered more benchmarks having balanced workloads (only Gauss is
considered here) and applied Thread delaying & Thread balancing techniques to see the
effect on energy savings and speedups.

3/27/2014 35 of 65

Conclusion
 MPTC estimates the criticality of thread dynamically in a parallel execution which is
used in thread delaying & thread balancing to save energy and improve performance.

 Thread Delaying combines per-core DVFS & MPTC in CMPs to reduce energy
consumption on non-critical threads and achieves up to 40% energy savings without
performance loss for different core configurations.

 Thread Balancing gives higher priority in issue queue of an SMT core to critical thread
& improves performance for various RMS workloads ranging from 1% to 20%.

3/27/2014 36 of 65

Questions??

3/27/2014 37 of 65

Thread Shuffling : Combining
DVFS & Thread Migration to
Reduce Energy Consumption for
Multi-core Systems.
QIONG CAI , JOSE GONZALEZ, GRIGORIOS MAGKLIS , PEDRO CHAPARRO &
ANTONIO GONZALEZ, ISLPED '11 PROCEEDINGS OF THE 2011
INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN
PAGES 379-384

3/27/2014 38 of 65

Thread Delaying : Ineffective for SMTs
 Thread Delaying assumes each core can only execute one thread at a time.

 The local DVFS is applied at the core level instead of the thread level.

3/27/2014 Slide 39 of 65

Example
 Run time behavior of hottest region in PageRank-sparse.

 Baseline contains four SMT cores and each core has two hardware contexts. This allows two
threads to run at the same time.

 Each hardware context (HW0, HW1, HW2, HW3) is specified by its core identifier and thread
identifier. HW0 denotes a hardware context in core 0 & thread 0.

 HW0 is the critical hardware context most of the time while HW1 is a non-critical hardware
context all the time.

 If core contains only one hardware context, then the gap between HW0 & HW1 can be
reduced after thread delaying is applied.

 But since they are on same core, when thread delaying is applied there are no energy savings
as seen in second figure as the gap between them remains the same.

3/27/2014 Slide 40 of 65

Another Drawback & Results
 Difficult to recover performance loss when aggressive voltage and frequency scaling is
applied at the beginning of execution time.

 Slack between HW0 and HW2 is large at the beginning.

 When aggressive DVFS is applied, slack becomes very small.

 Under this situation, it’s difficult for thread delaying to react and change the voltage
and frequency level of core 1 back to maximal one. This causes big performance loss.

 For PageRank example, thread delaying has 30% energy reduction but 14 %
performance loss.

3/27/2014 41 of 65

Solution : Thread Migration
 Addresses the Non-Optimal core-level DVFS and aggressive DVFS problems in SMTs.

 Idea : To map threads with similar criticality degrees into the same core through
thread migration and then apply DVFS to cores containing non-critical threads.

 As in MPTC, criticality of thread is approximated as difference between its own
counter and the counter of the slowest one.

 Criticality degree of thread is the position of its own counter in a reverse sorted
sequence of all counters.

 If counter values are 200, 100, 300, 400 for thread 0, 1 , 2 & 3, then thread 1 is the
critical thread while thread 3 is the most non-critical thread.

3/27/2014 42 of 65

Example
 Thread shuffling addresses the problem of non-optimal DVFS in thread delaying by
first grouping threads with similar criticality degrees into the same core and then apply
DVFS.

 HW0 & HW2 contexts can be mapped into the same core at runtime.

 This remapping increases the chances of reducing gap between HW0 and HW2 and
thus the energy reduction increases.

3/27/2014 43 of 65

Multi-Core System with Multiple Clock
Domains (1/2)

3/27/2014 44 of 65

Block Diagram & Pipeline of SMT X86 core Voltage-Frequency Table

Multi-Core System with Multiple Clock
Domains (2/2)
 The system consists of multiple Intel64/IA32 cores. The pipeline of in-order SMT core is similar
to Intel ATOM core.

 Each core has their own L1 & L2 cache which have their own separate clock domains.

 Unified L3 cache has a separate clock domain with an interconnect.

 Each clock domain has its own local clock network that receives a reference clock signal as
input and distributes it to all circuits of the domain.

 Domains operate asynchronously; so interconnect communication can be synchronized
correctly to avoid meta-stability.

 Mixed-clock FIFO design is used to communicate values safely between domains.

3/27/2014 45 of 65

Thread Shuffling Algorithm

3/27/2014 46 of 65

 Algorithm is implemented in a centralized hardware manager called TS_Manager
which coordinates jobs between hardware contexts and itself.

 It then applies Thread migration and DVFS to hardware contexts and cores
respectively.

Algorithm Steps
 1) An Instruction encoding a meeting point is fetched in a hardware context say HW0. A
TS_Request is sent to TS_Manager

 2) Counters in MP_Counter_Table are sorted if necessary. TS_BK messages are sent to
cores containing HW candidates for thread migration. In this example, HW0 and HW2
are candidates for thread migration. So Core1 & Core 0 need to do bookkeeping for
thread migration.

 3) Cores 1 & 0 do draining pipelining and save architectural states.

 4) TS_BK_DONE message is sent to TS_Manager

 5) Thread migration is performed & TS_MIGRATION_DONE messages are sent to cores
containing HW candidates for thread migration.

 6) DVFS is applied for all non-critical cores.

3/27/2014 47 of 65

Condition for Thread Migration
 After TS_Manager receives shuffling request from hardware context, it checks
whether following condition is true or not :

(current cycle – last_config_cycle) > MAX_CONFIG_INTERVAL

current_cycle : current cycle when manager receives request.
Last_config_cycle : cycle when last shuffling is performed &
max_config_interval : parameter to adjust frequency of thread shuffling.

 max_config_interval is set to 5 million cycles, since thread migration is fine-grained
and light-weight to be implemented in hardware.

 If above condition is true, manager starts a new thread shuffling.

3/27/2014 48 of 65

Sorting Thread & Thread Migration (1/2)

3/27/2014 49 of 65

Algorithm for Sorting Threads
 Reset the Shuffling table
 Apply insertion sort to

MP_Counter_table and
update SHUFFLE_TABLE
correspondingly

 Send TS_Bookkeeping
message to HW if
SHUFFLE_TABLE[w].before
cpu ! =
SHUFFLE_TABLE[w].after.c
pu.

Sorting Thread & Thread Migration (2/2)
 After sorting is done, manager sends a TS_BK message to a hardware context if the
following condition is true :

SHUFFLE_TABLE[hw].before.cpu != SHUFFLE_TABLE[hw].after.cpu

 SHUFFLE_TABLE shows that hardware context 0 in cpu 0 will be replaced by
hardware context 2 in CPU 1.

 Hardware context 0 and hardware context 2 need to be swapped to make the
counters in MP_Counter_Table sorted.

 Above step is performed during thread migration when thread migration
bookkeeping is finished.

3/27/2014 50 of 65

Local DVFS on non-critical Cores (1/2)
 For each core containing non-critical threads, algorithm computes a scaling factor
based on two counter ref_counter and cmp_counter.

 ref_counter is largest counter value in critical core (Here it’s Core 0).

cmp_counter is smallest counter value in a non-critical core.

 Scaling factor for frequency is calculated by taking ratio of ref_counter to
cmp_counter.

 In the example, ref_counter = 300, cmp_counter = 400. So scaling factor = 0.75.

 There are 13 frequency levels and scaling factor is multiplied with 13 which results to
level 10.

3/27/2014 51 of 65

Local DVFS on non-critical Cores (2/2)
 Internal HISTORY_TABLE in the manager is updated after frequency is obtained.

 Each entry of the table contains a two-bit up-down saturating counter.

 The final frequency level for the next interval is the one with largest counter in
HISTORY_TABLE.

 The purpose of HISTORY_TABLE is to reduce effect of temporal noise in estimation of
slack.

 Final step of DVFS algorithm is to find out voltage for corresponding frequency from
the voltage-frequency table.

 Voltage 0.95 V and frequency 3.5 Ghz will be selected for core 1 in next interval of
time.

3/27/2014 52 of 65

Experiments : Setup (1/2)
 Functional Simulator : SoftSDV for Intel64/IA 32. It can simulate multithreaded
primitives including locks, synchronization operations, shared memory & events. OS is
Redhat 3.0 EL.

 Less than 1% of simulated instructions are from operating system and thus impact of
the OS is negligible.

 Functional Simulator feeds Intel64/IA 32 instructions into the performance simulator.

 Performance Simulator : x86. It uses power model based on activity counters and
energy access.

 Aggressive Baseline : Assume Core is running at full speed and stops when it’s
completed. Once core stops, it consumes zero power.

3/27/2014 53 of 65

Experiments : Setup (2/2)
Parameter Value

Processor In-order x86 core, 2-way SMT

L1 Instruction Cache (private) 32 KB, 4-way, 64B

L1 Data Cache (private) 32 KB, 4-way, 64B

L2 Cache (unified & private) 512 KB, 16-way 64B

L3 Cache (Unified & shared) 8 MB, 16-way, 64B

Memory Always hit, 500 cycles access penalty

Network Protocol MESI

3/27/2014 54 of 65

Architectural Parameters

Benchmarks
 Recognition, Mining & Synthesis benchmarks which are highly compute-intensive and
highly parallel applications including data mining on text, media, bio-informatics and
search engine.

 Benchmarks that clearly show workload imbalance are chosen for analysis.

3/27/2014 55 of 65

Benchmark Application Domain

PageRank-Iz77 Search Engine

PageRank-sparse Search Engine

Rsearch Bioinformatics

Summarization Text Data Mining

Characteristics of Benchmarks
 Kernel of PageRank performs multiple matrix multiplications on a large and sparse
matrix. The matrix can be stored in memory either in a native sparse format or a
compresses version.

 Compression is a simplified LZ77-based method. Research is used in bioinformatics to
search a homologous RNA in a database.

The simulated section for each benchmark is chosen by first profiling its single-
threaded counterpart and then selecting the hottest region, which is a parallel loop.

 Each thread runs a fixed number of iterations and when slowest thread has executed
N iterations, the simulation has finished.

 At least 100 million instructions are executed for simulation.

3/27/2014 56 of 65

Performance Results (1/2)

3/27/2014 57 of 65

Benchmarks Thread Delaying vs
Baseline

Thread Shuffling vs Baseline Thread Shuffling vs Thread
Delaying

Execution
Time

Energy
Consumption

Execution
Time

Energy
Consumption

Execution
Time

Energy
Consumption

PageRank-lz77 1.00 0.93 0.99 0.90 0.99 0.97

PageRank-
sparse

1.14 0.71 0.98 0.49 0.86 0.69

Rsearch 1.01 0.97 0.98 0.97 0.97 1.00

Summarization 1.00 0.82 1.00 0.76 1.00 0.93

Performance Results of Thread Shuffling on 4 cores

Note : Baseline configuration is whenever a thread reaches the barrier, thread is put
to sleep mode and consumes zero power.

Performance Results (2/2)
Benchmarks Thread Delaying vs

Baseline
Thread Shuffling vs Baseline Thread Shuffling vs Thread

Delaying

Execution
Time

Energy
Consumption

Execution
Time

Energy
Consumption

Execution
Time

Energy
Consumption

PageRank-lz77 1.02 0.93 1.02 0.93 1.00 1.00

PageRank-sparse 1.29 0.65 0.99 0.50 0.77 0.77

Rsearch 1.00 0.94 0.96 0.92 0.94 0.98

Summarization 1.00 0.79 1.00 0.73 1.00 0.92

3/27/2014 58 of 65

Performance Results of Thread Shuffling on 8 cores

Results Analysis
 On 4 Cores, thread shuffling can obtain up to 51% energy savings w.r.t. baseline and
achieve 31% energy savings w.r.t. thread delaying.

 Thread shuffling is robust and does not cause any performance slowdown across
benchmarks, whereas thread delaying causes 14% & 29% slowdowns.

 Thread shuffling is scalable.

 Performance in terms of execution time and energy consumption with respect to
baseline and thread delaying is maintained when the number of cores is increased
from 4 to 8.

3/27/2014 59 of 65

Thread Shuffling : 3 Configurations
 By choosing largest counter value in the critical core for ref_counter and smallest counter
value in the non-critical core for cmp_counter, Scaling factor is around one.

 If the Scaling factor is small, it’s difficult to recover performance loss when DVFS is applied
aggressively.

 Using statistical methods like maximum, minimum and average, there are nine possible
combinations of ref_counter & cmp_counter. But the performance loss is huge when maximum
and average methods are used cmp_counter. Only minimum method is used for cmp_counter.

 So only three configurations are used.
 Minimum of counters in critical core and maximum counters in non-critical core.

 Aggressive configuration where maximum of counters of both critical & non-critical cores are used.

 Combination of average values of counters in critical core and maximum of counters in a non-critical
core.

3/27/2014 60 of 65

Performance Results
 Benchmarks Thread Shuffling Thread Shuffling -

Aggressive
Thread Shuffling – Midpoint

Execution
Time

Energy
Consumption

Execution
Time

Energy
Consumption

Execution
Time

Energy
Consumption

PageRank-lz77 0.99 0.90 1.03 0.87 1.03 0.87

PageRank-
sparse

0.98 0.49 1.06 0.43 1.01 0.44

Rsearch 0.98 0.97 1.00 0.95 0.99 0.95

Summarization 1.00 0.76 1.02 0.71 1.01 0.70

3/27/2014 61 of 65

Performance Results : Analysis
 Aggressive version achieves best energy reduction. For PageRank-sparse, it reduces up
to 57% energy consumption with respect to baseline.

 But aggressive version also has 6% performance slowdown for the same benchmark.

 For other 3 benchmarks, performance loss is negligible for aggressive version.

 Midpoint version achieves best balance between performance loss and energy
consumption reduction. It achieves energy consumption reduction up to 56% with
negligible performance penalty.

3/27/2014 62 of 65

Shortfalls !
 Thread Shuffling assumes that parallel section is statically scheduled.

 It cannot be used for benchmarks containing loops with variable iteration times.

 Technique is implemented in hardware targeting multi-core systems. Extension to
using Software level scheduling algorithm based on DVFS could have been explored for
reducing energy consumptions.

 Study like the earlier one could have covered benchmarks with balanced workloads to
understand the effect of algorithm on energy savings.

3/27/2014 63 of 65

Conclusion
 Thread Shuffling overcomes the shortcomings of Thread Delaying using thread
migration and then applying DVFS to non-critical cores.

 Technique is found to be effective for several RMS applications with energy savings up
to 56% with respect to baseline & up to 38% with respect to thread delaying without
any performance loss on 4 cores.

 Thread Shuffling is scaling since similar energy savings are obtained when number of
cores are increased from 4 to 8.

3/27/2014 64 of 65

Questions ??

3/27/2014 65 of 65

Thank You !

3/27/2014

