
A Memory Management Architecture for a Mobile
Computing Environment

Shigemori Yokoyama’, Takahiro Okuda2,
Tadanori Mizuno2 and Takashi Watanabe2

Mitsubishi Electric Corp. Faculty of Information, Shizuoka Univ.

Abstract
In recent years, the rapid progress of hardware technol-

ogy has enabled people to use mobile terminals away from
the ofice or home with the use of cellular phones. However
there are not a little remaining issues which are narrow band-
width of wireless communications, the limited battery dura-
tion of mobile terminals, and others. This paper proposes a
common memory management mechanism for mobile termi-
nals and servers called Memory Management Architecture
for Mobile Computing Environment (MMM). MMM allocates
a part of the memory ofa mobile terminal and a part ofthe
memory of a server as common memory and maintains the
consistency of the common memory areas. We evaluate MMM
using sample application program models against traditional
memory. The result shows that MMM can reduce wireless
trafic to maintain consistency, and that depending on the
charge policy, a different prefetching scheme is e$cient in
minimizing communication cost.

1. Introduction

A mobile computing environment has been realized ac-
cording to the rapid progress of wireless communications
and computer technology and the rapid popularization of
cellular phones and mobile terminals. But at present sev-
eral issues still exist related to how a mobile computing
environment is limited due to the narrow bandwidth of
wireless communications, unstable connectivity, and the
limitations of the battery duration at mobile terminals, CPU
performance, memory capacity, and disk capacity. Addi-
tionally, it is hard to develop application programs that co-
operate in mobile computing environments because of the
complicated nature of wireless communications.

An application program on a mobile terminal can ac-
cess data on a server by only accessing its own memory if
part of the memory of the server could be included in part
of the memory of the mobile terminal. An application pro-
gram on the server also can do the same thing.

In this paper we propose a memory management ar-
chitecture called MMM. It controls a part of the memory

0-7695-0571-6/00 $10.00 0 2000 IEEE

of a mobile terminal and a part of the memory of a server
which are common to each other. The main purposes of
MMM are to achieve the following in a mobile computing
environment. They include the synchronization of common
data between a mobile terminal and a sever, easy program-
ming of applications with the cooperation of a mobile ter-
minal and a server, the increase of processing speed, the
reduction of communication cost and power reduction.

In Chapter 2 the architecture of MMM is described, in
Chapter 3 the result of evaluation by simulation is described
and the last chapter concludes the paper.

2. Architecture of MMM

Some of the traditional memory architectures are intro-
duced to MMM. The memory architecture most related to
our study is cache memory [I]. MMM is similar to cache
memory in that the current data used are fetched from the
memory at a remote location and stored in local memory.

The second aspect of MMM is similar to distributed
shared memory. To enhance processing performance many
kinds of systems composed of multiple processors have been
proposed and researched [2-61. MMM is a kind of distrib-
uted shared memory in which some common address spaces
at physically different locations are controlled to have a
shared address.

The third aspect of MMM is that it provides virtual
memory space to mobile terminals. In normal virtual
memory the actual memory content is in external memory,
and external memory is normally disk memory. In the vir-
tual memory system used in MMM, the external memory
for virtual memory corresponds to a common memory space
on the server.

2.1 Outline and features of MMM

The concept of MMM is shown in Fig. 1. In MMM a
mobile terminal can access a part of a server’s memory space
as its own memory space, and also a server can access a part
of a mobile terminal’s memory space as its own memory
space.

Employing MMM, programming becomes easier as ap-

23

plications on a mobile terminal do not need to program the
communication procedures to read or write data on a server,
and communications can be more efficient by communi-
cating only at the necessary time and in only a necessary
amount.

We summarize the features and the differences from
other systems as follows.

a. Mobile terminals and a server have different address
spaces and share some of this space. (It is possible
to have a single address space.)

b. Mobile terminals and a server are located at physi-
cally different locations, and fundamental commu-
nication media is wireless.

c. The bandwidth of wireless communication is narrow
and not stable.

d. Applications can use data conditionally even if wire-
less communication is disconnected.

e. MMM can be implemented by additional hardware
of conventional circuits.

2.2 Memory management systems

(1) Memory lines and memory control status field
The common memory area of a mobile terminal and a

server is divided into fixed areas called lines. The memory
mapping is handled by line units. A line is divided into sev-
eral blocks, and memory write back for memory consis-
tency is handled by the blocks. The memory control status

Mobile ;Mobile Mobile
‘F‘orminal 1

1 ‘ ’ ’.

Terminal 2

1 :
I :

Terminal 3

hfemory

I ,

I Memnry I

memory is introduced to control the memory line status. It
contains memory control status fields corresponding to each
line and is used to ensure memory consistency, i.e., lines
on a mobile terminal and on a server having the same line
number are controlled to have the same contents by memory
control status fields. Fig. 2 shows the correspondence of
memory lines and memory control status fields on a mo-
bile terminal and a server. Line size and block size are as-
sumed to be from 16 bytes to 4096 bytes and from 16 bytes
to 1024 bytes, respectively.

(2) Memory control status field and memory line status
Memory line status is determined by the memory con-

trol status field. Each memory control status field is com-
posed of V bit, C bit and plural D bits.

V, bit in a memory control status field on a mobile
terminal is a valid bit which indicates whether the corre-
sponding line is valid or invalid. C , bit is a copy bit which
indicates whether the line has been copied to a server or
not. Similarly, V, bit in a memory control status field on a
server is a valid bit, and C, bit is a copy bit which indicates
whether the line has been copied to a mobile terminal or
not. D, and D, bits on a mobile terminal and a server are
dirty bits that show whether the write operation has been
performed in those blocks. Table 1 shows the meaning of
the status of the memory line determined by the memory
control status fields.

Mobile Terminal Memory
Blwk

Line o

1

I I
n- 1 1-1

Server
Block Server Memory

Fig. 1 Concept of MMM Lint 0

Table 1 Status of memory line
VCD 1 Memory Line Status n-I

100 I Latest, Not Altered
Latest, Altered
Possibly Old, Copied to Remote
Invalid, Initial State

Memory Control Slatus Field

I Diny

Memory Control Status Field

Fig. 2 Memory mapping and memory control
status field

24

Fig. 3 Transition of memory control status

(3) Memory access and line transfer control
When a memory access occurs, the kind of memory

operation and the succeeding memory line status are de-
termined by the kind of memory access and the current
memory line status. The line transfer control and related
memory line status control are performed in a memory ex-
ception interrupt which is invoked by a memory access.
Communications between a mobile terminal and a server
to transfer the lines are executed in a memory exception
interrupt. The transition diagram of the memory control
status is shown in Fig. 3.

Here, we explain some sample memory accesses and
line transfer controls. If an application accesses a line with
the latest status (VCM=lO) on a mobile terminal, the con-
tent of the memory is valid. Thus, the read or write opera-
tion on a mobile terminal is performed successfully. If it is
a write operation, DM bit is set. If the line status is invalid
(VM=O) or possibly old (VCM=l l), the memory exception
interrupt occurs to achieve memory consistency. Then the
routines of memory exception interrupt on the mobile ter-
minal and the server communicate to transfer the desig-
nated line. By receiving the line request from the mobile
terminal, the remote interrupt occurs on the server. In its
interrupt routine if the line status of the mobile terminal is
invalid (VM=O), the content of the line is transferred to the
mobile terminal. If the line status is possibly old (VC,=I 1)
then the memory control status field on the server is in-
spected further. If one of the D, bits is set, the correspond-
ing blocks are transferred. And if all D, bits are reset none
of the blocks is transferred because the line has not been
altered. Then the status on the server is set to possibly old
(VC,=I 1) and the remote interrupt routine is terminated.

In the interrupt routine on the mobile terminal when the
data from the server is transferred, the line on the mobile
terminal becomes the newest, the status is set to the latest
(VCDM=lOO), and the memory exception interrupt is ter-
minated. After the control retums to the interrupted instruc-
tion, the instruction reads or writes, and if it is a write op-
eration the dirty bit (D,) is set.

The operation of memory access on a server is funda-
mentally the same as the above-mentioned access on a mo-
bile terminal.

(4) Resolution of line access conflict
When a mobile terminal and a server request the same

line at the.same time, there is a possibility of memory dead-
lock. Preventing the deadlock, to accept the remote inter-
rupt is inhibited between the acceptance of memory ex-
ception interrupt and the completion of the first instruc-
tion execution after the end of the interruption. By this
method when the same line is used, the memory line is
accessed alternately between the mobile terminal and the
server.

(5) Control of communication failure
If a memory exception interrupt occurs, the connection

of wireless communication should be established. And if
the connection fails, the control program reports the status
of memory to the application. The application can use the
data conditionally.

2.3 Expansion of memory address space

By means that a common memory area on a mobile
terminal is controlled by virtual memory, memory on a mo-
bile terminal can be expanded.

Virtual memory of the common memory area on a mo-
bile terminal is mapped to real memory, and the necessary
memory for the time being is located in real memory. Vir-
tual memory and real memory are divided into pages. Vir-
tual memory uses pages as a base of control. Memory con-
trol status memory of MMM corresponds to a common
memory area of real memory. If the line size is different
from the page size and is smaller than the page size, the
page size should be equal to the integer times of the line
size. Similarly, if the line size is larger than the page size,
the line size should be equal to the integer times of the
page size.

Introducing a virtual memory system in MMM, the
common memory area on a mobile terminal can be ex-
panded. Additionally, conventional virtual memory systems
can be used so the architecture need not to be changed.

2.4 Hardware structure of MMM

Fig. 4 shows a block diagram of the hardware structure

25

of MMM. An MMM system can be realized as a processor
which has standard architecture and need not be modi-
fied, but only has appended RAM for memory control sta-
tus memory and related control circuits.

2.5 Prefetching of line

Memory control of MMM is a demand basis. If the
line that is transferred is used in succeeding instructions,
the efficiency of communication increases. Therefore, it
is better that the line size is larger to some extent. But if
the line size is too much larger, the unused memory area
will increase and the efficiency will decrease. Therefore,
it is expected that the proper line size exists. In MMM,
little effect occurs when expanding the line size to a size
too large for increasing execution speed because of the
interruption of program execution during line transfer. In-
creasing the line size increases wait time and reduces us-
ability, which is irritating for users. Giving usability pre-
cedence over others and waiting time being less than a
second, the maximum line size is less than 1024 bytes in
the case of 9600 bps communication speed. But if the pro-
gram execution and the line transfer are performed in par-
allel, it is possible to enhance the execution speed. This
can be realized to prefetch the lines that are probably used
next after the requested line is transferred. It is possible to
prefetch multiple lines. But if too many lines are prefetched,
unused data increase and the overhead increases. The ef-
fect of prefetching is proportional to concurrency of pro-
gram execution and line transfer. It is supposed that many
applications on mobile terminals are interactive. Thus, wait-
ing time for responding from a user can be used for
prefetching to enhance the processing speed.

3 Evaluation of MMM

3.1 Simulation

The MMM system was evaluated by simulation of vari-
ous application program models. Application models run-
ning solely on a mobile terminal are used first, and a model
running alternatively on a mobile terminal and a server is
used last. Initially, applications are stored in the memory
on the mobile terminal, and data are stored in the common
memory on the server.

Communication speed between the mobile terminal and
the server is 9600 bps, and the communication overhead
(command, line address, count and check code) is 10 bytes.

Application models used are as follows.
(1) Schedule Book

The data amount per an item is 48 bytes, the data
amount per a day is 1152 bytes, the amount of the days is
50 days, and the total amount of the data is 60Kbytes. The

C P U

I *
Memory Cmitrol Status Write I

Moiuory Control Stntus Rcnd
b I

I

I - - - - - - - - - - - - - - -

Fig. 4 Hardware architecture of MMM

mobile terminal can display a day of data per a display
frame at a time. Several operation patterns were prepared
and simulated. They are the different combinations of des-
ignation of days, referencing, and updating schedule data.
(2) Address Book

The data amount per a record is 160 bytes, the amount
of the records is 500, and the total amount of the data is
86 Kbytes. For displaying and altering, Initial Frame, Se-
lect Frame and Alter & Display Frame are prepared. Ini-
tial Frame displays the table of initial letters to select the
name to inquire. Select Frame displays name lists selected
by the initial letter. Alter & Display Frame displays the
address and related data selected by the name on Select
Frame. Reference update and create are done on Alter &
Display Frame. The operation pattems having several com-
binations of references and updates were prepared.

88 16B 328 648 1288 256B 5128 10248 20a88 10968
Line Size

Figure 5 Line size and data transfer time
-Schedule book and address book-

26

3.2 Evaluation for optimal line size

The relationship between the line size and the data trans-
fer time is evaluated. Figure 5 shows the relationship for
the Schedule Book and the Address Book simulations. The
Schedule Book simulation uses three kinds of operation
pattems. The Address Book simulation uses the operation
pattern to search 10 records. The Schedule Book simula-
tion shows the optimal line size in which the data transfer
time becomes minimum is from 64 bytes to 5 12 bytes and
the Address Book simulations shows the minimum data

transfer time is about from 16 bytes to 128 bytes. The
smaller line size gets the bigger protocol overhead. The
more data transfer time according to increasing line size
is for the increasing ratio of unused data.

3.3 Comparison of MMM and a conventional
memory system on a mobile terminal and a
server

MMM is compared with the conventional memory sys-
tem using the mutual operation scenario of the Schedule

SLW Sec Sec
350 350 "

4 M M M , Normal

300 -A-MMM. P F l

+MMM, PFZ +MMM, PF2

250

200

150

100 100

50
43-Conventional.

168 328 6 4 8 1288 2568 5128 10248 20488 10968 168 328 648 1288 2568 5128 10248 20488 40968 168 328 648 1288 2568 5128 10248 20488 40968

L n o Size Line Size Line Size

Fig.6 Schedule book on the
mobile terminal bile terminal mobile terminal
Line size and total execution
time time

Fig.7 Schedule book on the mo- Fig.8 Schedule book on the

Line size and connection time Line size and data transfer

see Sec Sec
360 ...

4 M M M . Normal i
300 *MMM. PFl 4

+MMM. PF2 i

+Conventional.
BulkTransfer

~ ~ 250

2 0 0 - D - - - - - - n m m n n r l n
a :

100

50

0
168 328 648 128B 2568 5128 10248 20488 40968

Lne Slle

Fig.9 Schedule book on the
server
Line size and total execution
time

168 328 6 4 8 1288 2568 5128 10248 204ns 40968
Line Sire

Fig.10 Schedule book on the
server
Line size and connection time

4 M M M Normal

+MMM. PF2

43- Conventional,
Bulk Transfer I

168 328 618 1288 2568 5128 10248 20488 40968

L n e Size

Fig.11 Schedule book on the
server
Line size and data transfer time

27

Book model on a mobile terminal and on a server. In a
conventional memory system it is possible to only transfer
the necessary data, but composing applications is compli-
cated because applications on a mobile terminal should
handle communication procedures and also applications
on a server should be prepared to handle the data. There-
fore, for comparison the conventional memory system
model transfers all data in the beginning of program ex-
ecution from the server to the mobile terminal, and at the
end of program execution all data are transferred back. We
call this case the Bulk transfer method. The scenario is as
follows. First, on the mobile terminal ten days of schedule
data are referenced and five days are updated. Second, on
the server ten days of schedule data that were referenced
and updated on the mobile terminal are referenced. Third,
on the mobile terminal the same ten days of schedule data
are referenced and five days are updated, and finally, on
the server the same ten days of data are referenced. After a
day of data is displayed, 3 seconds are necessary for refer-
encing, and for updating, an additional 12 seconds are
needed for input of 24 letters. Total execution time includes
execution time of the program, referencing time, updating
time and 10 seconds of establishing time for the connec-
tion. MMM and the Bulk transfer method are compared.
MMM includes three cases, the normal case and two
prefetch cases. Prefetch consists of fetching the succeed-
ing lines using waiting time during connection time after
the fetch of the targeted line. Prefetch 1 is to fetch one line
(PF1 in Fig6-11). Prefetch 2 is to fetch multiple lines dur-
ing waiting time (PF2 in Fig6-11). In MMM, if all data are
transferred during the execution, the connection is discon-
nected at that time and reconnected at the beginning of last
data transfer to the server. If all data are not transferred
during the execution, the disconnection does not happen.

Fig. 6, Fig. 7 and Fig. 8 show total execution time, con-
nection time and data transfer time on the mobile termi-
nal. Fig. 9, Fig. 10 and Fig. 11 show total execution time,
connection time and data transfer time on the server. In
Fig. 7 the connection time of the normal and PFl cases in
MMM are larger than that of the Bulk transfer method.
This is because the disconnection does not happen in the
execution. In the case of PF2 the reason for the decrease of
the connection time according to the expansion of the line
size is that in the execution all data are transferred and at
that time the disconnection occurs. If the communication
charge is determined per connection time, it is better to
prefetch multiple lines during connection time.

In contrast on the server the connection time in Fig. 10
and the data transfer time in Fig. 11 are different from those
on the mobile terminal. They decrease monotonously by
an increase of line size. This is because initially the origi-
nal content is on the server. The data transfer to the server
is only updated blocks and does not depend on the line

size, and most of the communication between the mobile
terminal and the server consists of transferring the control
information. The connection time and data transfer time
of the control information increase by a decrease of line
size for protocol overhead.

Fig. 6 and Fig. 9 show that the total execution times of
MMM are smaller than those of the Bulk transfer method.
The difference nearly corresponds to the bulk transfer time.
Fig. 7 and Fig. 10 show that the connection time of the
normal and PFl cases in MMM are not always smaller
than those of the Bulk transfer method. If the communi-
cation charge is determined per connection time, it is bet-
ter to prefetch multiple lines in MMM. Fig. 8 and Fig. 11
show that in all the MMM cases, excluding the 16 bytes
lines of PF2, the data transfer times are smaller than those
of the Bulk transfer method. The normal case in which the
prefetch is not performed is the minimum communication
time. Therefore, if the communication charge is determined
per amount data, it is better not to prefetch.

4 Conclusion

MMM (Memory Management architecture for Mobile
computing environment) is the most preferable memory
architecture for mobile terminals and for servers. It incor-
porates cache, virtual memory and shared memory archi-
tecture.

We described and evaluated MMM and demonstrated
that by introducing MMM the synchronization of com-
mon data on a mobile terminal and on a server could be
maintained, the applications could be composed easily be-
cause they did not need to consider the complicated com-
munication procedures, the applications could execute
faster and the efficiency of communications could increase
by decreasing the communication cost and by saving
power. Moreover, we showed that the efficiency of the com-
munications could increase by prefetching multiple lines.

References
[11 Alan Jay Smith “Cache Memories,” Computing Surveys, Vol.

14, No. 13, Sept. 1982.
[2] A.S.Tanenbaum, Translated by Mizuno et al., “Distributed Op-

erating System”, Prentice Hall in Japan, 1996.
[3] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta and J.

Hennessy, “The Directory-Based Cache Coherence Protocol for
DASH Multiprocessor,”l7th ISCA, 1990.

[4] J. Kuskin et a1 “The Stanford FLASH Multiprocessor,” Proc.
21st ISCA, 1994.

[5] T. Lovet and R. Clapp, “STING: A CC-NUMA Computer Sys-
tem for the Commercial Marketplace,” Proc. 23rd ISCA, 1986.

[6] T. Matsumoto, K. Nishimura, T. Kudoh, K. Hiraki, H. Amano
and H. Tanaka, “Distributed Shared Memory Architecture for
JUMP-1 a general-purpose MPP prototype,” IEEE 1996.

28

