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Abstract—High-Performance Reconfigurable Computers 
(HPRCs) are parallel computers but with added FPGA chips. 
Examples of such systems are the Cray XT5h and Cray XD1, the 
SRC-7 and SRC-6, and the SGI Altix/RASC. The execution of 
parallel applications on HPRCs mainly follows the Single-
Program Multiple-Data (SPMD) model, which is largely the case 
in traditional High-Performance Computers (HPCs). In addition, 
the prevailing usage of FPGAs in such systems has been as co-
processors. The overall system resources, however, are often 
underutilized because of the asymmetric distribution of the 
reconfigurable processors relative to the conventional processors. 
This asymmetry is often a challenge for using the SPMD 
programming model on these systems. In this work, we propose a 
resource virtualization solution based on Partial Run-Time 
Reconfiguration (PRTR). This technique will allow sharing the 
reconfigurable processors among the underutilized processors. 
We will present our virtualization infrastructure augmented with 
an analytical investigation. We will verify our proposed concepts 
with experimental implementations using the Cray XD1 as a 
testbed. It will be shown that this approach is quite promising 
and will allow full exploitation of the system resources with fair 
sharing of the reconfigurable processors among the 
microprocessors. Our approach is general and can be applied to 
any of the available HPRC systems.   
 

Index Terms—High Performance Computing, Field 
Programmable Gate Arrays (FPGA), Reconfigurable 
Computing, Dynamic Partial Reconfiguration 

I. INTRODUCTION 
Reconfigurable Computers (RCs) have recently evolved 
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from accelerator boards to stand-alone general purpose RCs 
and parallel (multi-node) reconfigurable supercomputers 
called High-Performance Reconfigurable Computers 
(HPRCs). Examples of such supercomputers are the SRC-7 
and SRC-6 [1], the SGI Altix/RASC [2] and the Cray XT5h 
and Cray XD1 [3]. In these systems, FPGAs are used to 
implement coprocessors to accelerate in hardware the critical 
functions causing the poor performance of the general purpose 
processors, following HW/SW codesign approaches. Several 
efforts have proved the significant speedups obtained by these 
systems for many different applications [4 - 10]. 

The development of applications on HPRCs mainly follows 
the same programming model for HPC platforms, i.e. the 
Single-Program Multiple-Data (SPMD), which is the most 
common style of parallel programming [11]. In SPMD [12], 
multiple autonomous processors simultaneously execute the 
same program at independent points. In other words, tasks can 
be deployed and executed in parallel [12, 13] using either 
shared memory and/or message passing techniques such as 
MPI. 

However, because current HPRC technology utilizes the 
reconfigurable processors as coprocessors to the main host 
processor, heterogeneity can be challenging to most accepted 
SPMD programming paradigms. In particular, when the ratio 
of microprocessors, reconfigurable processors, and their 
communication channels differs from unity, SPMD programs, 
which generally assume a unity ratio, might underutilize some 
of the system processing resources, e.g. microprocessors [11]. 

In this work, we propose to share the reconfigurable 
resources among the underutilized microprocessors by 
providing a virtual SPMD view and thus improving the 
overall system versatility. In other words, the pool of 
reconfigurable resources will be virtually increased to 
maintain the required symmetric view of SPMD, i.e. unity 
ratio among the microprocessors, reconfigurable processors, 
and their communication channels. The implementation of 
these concepts will be based on Partial Run-Time 
Reconfiguration (PRTR) from a practical perspective. We will 
provide a formal analysis of the execution model supported by 



experimental work. Our work utilizes PRTR on one of the 
current HPRC systems, Cray XD1. 

This paper is organized such that section II provides a 
discussion of related work in context of run-time 
reconfiguration and hardware virtualization. Section III 
describes our analytical model and explains the formulation 
steps of this model. Section IV shows the experimental work 
and presents the implementation of a partially reconfigurable 
architecture in Cray XD1. Section IV also includes the 
implementation of an Operating System (OS) virtualization 
infrastructure for sharing reconfigurable resources. Finally, 
section V summarizes and concludes the paper. 

II. RELATED WORK  
The objective of this work is to share the reconfigurable 

resources in HPRCs among all system microprocessors in a 
SPMD view regardless of the system physical 
limitations/configuration. In other words, we will try to 
maintain a virtual 1:1 correspondence among the 
microprocessors and the reconfigurable resources irrespective 
of the actual ratio in the system. In achieving this objective, 
our approach is based on leveraging previous work and 
concepts that were introduced for solving similar and related 
problems, namely hardware virtualization. For example, we 
will adopt the concept of virtual FPGA (VFPGA) as proposed 
in [14]. In addition, we will maintain ideas and considerations 
related to hardware virtualization on generic HPC 
architectures [15] and leverage them to HPRCs.  

Most of the proposed solutions in many previous research 
work [17, 18] are to reproduce the same strategies adopted in 
Operating Systems to support virtual memory such as dynamic 
loading, partitioning, overlaying, segmentation, and paging, 
etc. The basic idea behind these techniques is to virtually 
enlarge the size of the FPGA from the point of view of the 
applications. Therefore, the concept of “virtual hardware” is 
an effective and efficient technique to increase the availability 
of hardware resources, implement larger circuits or reduce the 
costs by adopting smaller FPGA when the performance can 
still be satisfied. The possibility to apply this concept requires 
using special capabilities of the FPGAs namely Full Run-
Time Reconfiguration (FRTR) and/or Partial Run-Time 
Reconfiguration (PRTR) [16]. However, all these proposed 
techniques assume that the applications and related hardware 
functions are known previously and FRTR and/or PRTR are 
well supported on the system. Currently, this is true for FRTR 
while it is not the case for PRTR. Also, they do not take into 
consideration the architectural limitation of using partial 
reconfiguration on current HPRCs. To the end user, HPRC 
systems when compared to embedded systems are “closed 
black box” systems. Users do not have the possibility to 
modify the system nor have access to the FPGA configuration 
ports. They can only use the API functions provided by the 
vendor. With this regard, most of previous work is based on 
simulations rather than investigating such practical issues. 
Therefore, we approach the problem from a practical 

perspective by utilizing and building on the techniques and 
methodologies introduced in [16] by providing a virtualization 
infrastructure consisting of an OS Run-Time layer augmented 
with another layer of user APIs. The API layer abstracts the 
interactions between the user and the Run-Time layer in a 
transparent way. Furthermore, we extend the execution model 
to include this virtualization infrastructure for sharing the 
reconfigurable processors, and their communication channels. 

III. EXECUTION MODEL FORMULATION 
In order to investigate the performance potential of our 

techniques on HPRCs before conducting our experimental 
work, we will derive a formal analysis of the execution model. 
This analysis would provide us with theoretical expectations 
which would serve as a frame of reference against which we 
can project our experimental results. In addition, it will help 
us gain in-depth insight about the boundaries and/or 
conditions for performance gain. In achieving this objective, 
we will follow an approach in the derivation of the model 
similar to what has been proposed in [16, 19, 20, 21, 22, 23]. 

A. Analysis 
In our analysis we assume an HPRC architecture with 

asymmetric heterogeneity at the node level [11] with a SPMD 
view in which the system receives some applications as input. 
These applications require on the average a few hardware 
functions (tasks) that need to be executed on dedicated 
reconfigurable resources. The physical reconfigurable 
resources (FPGAs) will be virtualized and split into multiple 
virtual FPGAs (VFPGAs) to accommodate the requirements 
of the SPMD model, see Fig. 1. 

 
Fig. 1. SPMD view of reconfigurable resources on HPRCs  

 
Each VFPGA will be located in a separate partially 

reconfigured region (PRR) on the physical FPGA. The 
application tasks can then be distributed across the VFPGAs 
maintaining a 1:1 correspondence among the tasks and their 
dedicated resources (VFPGAs) and hence providing a SPMD 
view to the application. The required tasks by applications, 
Ntasks, are assumed to be equal to or less than the maximum 
number of VFPGAs/PRRs, Nregions. This condition, i.e. Ntasks ≤ 
Nregions, is necessary for providing SPMD behavior. In other 
words, the maximum number of VFPGAs/PRRs should not 
exceed the number of microprocessors per node, see Fig. 1. 



The execution cycle for any task on an HPRC consists of 
the computations time, the total I/O time and the configuration 
time [16, 19, 20], as shown in Fig. 2. The I/O time is the time 
necessary to transfer data between the microprocessor and the 
FPGA. 

 
Fig. 2. Task execution time on an HPRC 

 
The baseline for our analysis is FRTR. In other words, we 

will consider the performance gain (speedup) of the system 
when using our methodology based on PRTR compared to the 
performance using conventional techniques based on FRTR. 
This will focus our discussions on applications that are broken 
down into hardware tasks only. Software tasks are excluded 
from our analysis because, we think, that would add 
unnecessary complications to model the partitioning schemes 
as well as the profiles of scheduling among software and 
hardware tasks. In addition, we assume that each task is fully 
characterized by its time requirement, Ttask, as shown in Fig. 2. 
The I/O and computations of each task can be overlapped to 
further enhance the overall execution time as proposed in [19, 
20]. 

The following notation will be used in our mathematical 
model: 

• Nregions is the maximum number of VFPGAs that can 
be provided based on the available microprocessors 

• Ntasks is the total number of hardware tasks 
• Tin is the average input transfer time from any 

microprocessor to its dedicated VFPGA 
• Tcomp is the average task computation time 

• Tout is the average output transfer time from any 
VFPGA to its associated microprocessor 

• Tconfig = TFRTR is the full configuration time for FRTR 
• TPRTR is the average partial configuration time for 

PRTR 
• TFRTR

total is the total execution time of FRTR 
• TPRTR

total is the total execution time of PRTR 
• S  is the speedup or performance gain of using PRTR 

relative to FRTR 
The execution model of FRTR on each node, see Fig. 3, is 

sequential among tasks. This is because the reconfigurable 
resource, assuming one per node, is not sharable among the 
node microprocessors rendering some microprocessors 
unused. The total execution time for the case of FRTR, as 
shown in Fig. 3, can be derived as follows: 

( )outcompinFRTRtasks
FRTR

total TTTTNT +++=  (1)
The execution model of our proposed virtualization 

technique and sharing mechanism can be viewed as a 
combination of three traffic (queueing) processes, namely 
entry/birth, computation, and exit/death processes. The 
entry/birth process is when tasks at the beginning of their 
execution life-cycle request configuration and data transfer 
from the microprocessors into the VFPGAs. The exit/death 
process is when tasks at the end of their execution life-cycle 
request data transfer from the VFPGA back to the 
microprocessors. The computation process represents the 
actual processing performed by tasks on their VFPGAs. In our 
model tasks can continue their computations in parallel while 
others are entering into and/or exiting from the system. 
Several different traffic scenarios occur depending on the 
relative speed rates among the three different processes. Fig. 4 
shows the different execution profiles of tasks when sharing 
the reconfigurable resources. 

 

 
Fig. 3. Typical task execution using FRTR on HPRC 

 
 

   
(4a) Faster entry than computation, with slower exit than entry 



                    
(4b) Faster entry than computation, with faster exit than entry 

 

      
(4c) Slower entry than computation, with slower exit than computation 

 

  
(4d) Slower entry than computation, with faster exit than computation 

 
Fig. 4. Execution profile for sharing virtual reconfigurable resources 



Combining the necessary condition for SPMD behavior, i.e. 
Ntasks, ≤ Nregions, with the entry and exit conditions as shown in 
Fig. 4, we can derive the following expression for the total 
execution time: 
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The performance gain (speedup) of PRTR in reference to 
FRTR can be expressed as follows by combining equations 
(1) and (2): 

( )
( ) ( )( )[ ]

( ) ( )( ){ }[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−

++−+++

+++
=⇒

=≡

compinPRTRtasksouttasks

compinPRTRtasksoutinPRTR

outcompinFRTRtasks

PRTR
total

FRTR
total

TTTNMINTNMAX

TTTNMAXTTT

TTTTN
S

T
TSpeedupS

,1,1

,1

 
(3)
 

In order to estimate the upper bound for the performance 
gain (speedup) using our techniques, we take the limit of 
equation (3) as the number of tasks increases indefinitely, i.e. 
(Ntasks=Nregions) ∞. This will help us estimate the asymptotic 
behavior with respect to FRTR as follows: 
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It can be seen from equation (4) that the asymptotic 
performance gain increases linearly with the task computation 
requirement, i.e. Tcomp. This is due to the fact that our 
proposed technique overlaps the computation of tasks with 
other tasks entry and/or exit which significantly reduces the 
total execution time. It can also be seen from equation (4) that 
for I/O intensive applications characterized by minimal 
computational workloads, i.e. Tcomp≅0, there is always a 
performance gain, i.e. S∞ ≥ 1. This is due to the fact that our 
techniques utilize PRTR rather than FRTR. 

IV. EXPERIMENTAL WORK 
Our experiments have been performed on one of the current 

HPRC systems, Cray XD1 [3]. The Cray XD1 is a multi-
chassis system. Each chassis contains up to six nodes (blades). 
Each blade consists of two 64-bit AMD Opteron processors at 
2.4 GHz, one Rapid Array Processor (RAP) that handles the 
communication, an optional second RAP, and an optional 
Application Accelerator Processor (AAP). The AAP is a 
Xilinx Virtex-II Pro XC2VP50-7 FPGA with a local memory 
of 16MB QDR-II SRAM [3]. 

A. Virtualization Infrastructure 
In order to implement our concepts, we started by laying 

out an infrastructure based on two main techniques. The first 
technique, as proposed and explained in details in [16], is 
enabling the support for PRTR on HPRC systems. Because 
PRTR is not natively supported on Cray XD1, our work-
around approach was to use the Internal Configuration Access 
Port (ICAP) and develop a new configuration API. 
Additionally, we define an FPGA layout that supports single 
and dual Partially Reconfigurable Regions (PRRs) in addition 
to the static region. In dual PRRs, each region has access to 
two memory banks, one for input and the other for output 
transfers as shown in Fig. 5. Finally, it is worth mentioning 
that the interface services block, i.e. RT core provided by 
Cray, and the reconfiguration control unit are included in the 
static region. 

After establishing/enabling the low-level physical layer of 
partitioning/splitting the reconfigurable resources into 
multiple virtual reconfigurable resources through PRTR, we 
continue to provide a general infrastructure that manages these 
resources. This infrastructure, which is the main concern of 
this effort, is implemented as two layers. The first layer is an 
Operating System (OS) Run-Time Services layer on top of 
which lies the second layer which is an API layer. 

As shown in Fig. 5, the Run-Time virtualization layer 
consists of three major components: a virtualization manager 
(VM), a request queue, and a virtual memory space. The VM 
is responsible for partitioning the physical resource, i.e. 

 
 

Fig. 5. Run-Time virtualization layer using PRTR 



FPGA, into multiple virtual resources, i.e. VFPGAs, and 
providing a coherent access to these resources as being 
physical in a balanced SPMD view. It also manages all 
interactions among applications and their required resources 
by handling the traffic of application requests for 
reconfigurable resources, memory, and/or I/O channels, as 
previously explained in section III and shown in Fig. 4. The 
queue helps in streaming the requests from the μPs to the VM 
as well as in providing synchronization, e.g. hand shaking, 
mechanisms. The queue has priorities to avoid contention 
problems, e.g. one task taking all the resources, and to ensure 
that all parallel tasks are executed as fast as possible. Finally, 
the virtual space allows a coherent access of the virtual 
resources to the user. This space is implemented as a Run-
Time OS shared memory such that there is one memory 
space/region per VPGA. This space is used to exchange data 
between tasks and the VM, i.e. (re)configuration bitstreams, 
input data, and output data. 

The API layer abstracts the interactions between the user 
and the Run-Time System in a transparent way. The APIs are 
designed in a way such that they cover all possible task 
profiles that were described earlier in Figs. 2, 3, and 4. More 
specifically, the APIs are categorized as Setup APIs, 
Configuration APIs, Transfer of Control APIs, and Execution 
APIs (where execution includes data transfer among μPs and 
VFPGAs). 

B. Experimental Results 
A set of experiments were conducted in order to verify the 

proposed techniques of our infrastructure. For our 
experiments we selected the application of image feature 
extraction. In this particular application object edges were of 
interest and were extracted after first reducing high-frequency 
noise components. Two different algorithms were used for 
noise reduction. The final images were transferred back to the 

microprocessor for quality checks. More specifically, this 
application required the execution of a sequence of image 
processing functions, namely median filtering followed by 
sobel edge detection as well as smoothing filtering also 
followed by sobel edge detection. From those experiments we 
extracted the needed parameters, see Table I, for our model 
explained in section III. Table I shows data transfer times, 
configuration times as well as the bitstream size associated 
with the layout configuration that we considered. 

 
TABLE I  EXPERIMENTAL VALUES FOR MODEL PARAMETERS 

 Data Size 
(Bytes) Time (msec) 

Full Configuration 2381764 1678.04 
Dual PRR 404168 19.77 

Input Transfer 4194304 2.991 
Output Transfer 4194304 641.092 

 

It is worth mentioning that the SPMD condition, i.e. Ntasks, ≤ 
Nregions, on Cray XD1 suggests that the maximum number of 
PRRs should not exceed the number of microprocessors per 
node which is two in this case. Therefore, we conducted the 
experiments on Cray XD1 using dual VFPGAs scenario. 
However, for the sake of completeness we developed an 
emulator that uses XD1 in as close to real setups as possible to 
emulate scenarios for larger number of VFPGAs (PRRs). 
Although the emulator accepts a minimum set of parameters 
for XD1 since it is running on the machine itself, it however 
can emulate any platform given its parameters. These 
parameters include full configuration time, partial 
reconfiguration time (calculated based on the size of 
bitsreams), I/O transfer bandwidth, and different computation 
time to emulate different tasks, etc. 

 
 
 

  
 

(6a) Behavior of I/O intensive applications 



 
 

(6b) Behavior of computational intensive applications 
 

 

 
 (6c) Speedup achieved using multiple PRRs (VFPGAs)  

 
Fig. 6. Performance of applications using virtual resources 

 
Results collected were compared to the actual runs on XD1 

as well as to the expected by the mathematical model 
presented in section III and were found in good agreement. 
Fig. 6 shows some of these experimental findings for different 
types of applications as well as for large number of VFPGAs 
versus conventional execution based on FRTR. Fig. 6(a) and 
6(b) show the efficiency of our virtualization layer shown in 
Fig. 5. It introduces a minimal overhead to the total execution 
time as the number of PRRs increases. The accuracy of our 
analytical model can be seen by applying equation (4) to the 
case of I/O intensive applications, i.e. Tcomp≅ 0, and comparing 

the experimental results shown in Fig. 6(c). The parameters 
collected from our experiments as shown in Table I are TFRTR= 
1678.040 ms, TPRTR= 19.771 ms, Tin=2.991 ms, and Tout= 
641.092 ms. Equation (4) suggests that the speedup value 
should be 3.49, which is consistent with the value measured 
and shown in Fig. 6(c). Fig. 6(c) also proves the potential of 
virtualizing reconfigurable resources using our technique 
based on PRTR. It can be seen from Fig. 6(c), as also 
expected by equation (4) and discussed in section III, that the 
performance reaches a linear increase as the number of 
VFPGAs increases. 



V. CONCLUSIONS 
In this paper we presented an effort of virtualizing and 

sharing reconfigurable resources based on Partial Run-Time 
Reconfiguration (PRTR) for High-Performance 
Reconfigurable Computing (HPRC). We investigated the 
performance potential of our proposed virtualization 
techniques on HPRCs from both theoretical and practical 
perspectives. In doing so, we derived a formal and an 
analytical model of SPMD execution on HPRC systems 
relative to the baseline of Full Run-Time Reconfiguration 
(FRTR). The model provided us with theoretical expectations 
which served as a frame of reference against which we 
projected our experimental results. In addition, it helped us 
gain in-depth insight about the boundaries and/or conditions 
for possibilities of performance gain using PRTR for resource 
sharing and virtualization. In achieving this objective, our 
approach was based on leveraging previous work and concepts 
that were introduced for solving similar and related problems. 

In conducting the experimental work, we utilized one of the 
current HPRC systems, Cray XD1. We also discussed the 
requirements and setups for PRTR-based resource 
virtualization on Cray XD1. Our setup included the design of a 
special configuration control unit managing the configuration 
of different layouts of Partially Reconfigured Regions (PRRs). 
In addition, we implemented an OS virtualization layer that 
manages the shared resources and the virtualization process. 
The experimental results showed good agreement with the 
analytical model expectations. Sharing reconfigurable 
resources among the underutilized microprocessors by 
providing a virtual SPMD view allows improving the overall 
system versatility and application performance. The approach 
we followed for Cray XD1 is general and can be applied to any 
of the available HPRC systems. 
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