
1800 IEEE SENSORS JOURNAL, VOL. 11, NO. 9, SEPTEMBER 2011

Embedded Runtime Reconfigurable Nodes for
Wireless Sensor Networks Applications

Yana Esteves Krasteva, Jorge Portilla, Eduardo de la Torre, and Teresa Riesgo

Abstract—The use of reconfigurable hardware (HW) can im-
prove the processing performance of many systems, including
Wireless Sensor Networks (WSNs). Moreover, reconfigurable
devices permit remote and runtime HW reconfiguration, which
implies benefits in WSNs deployment and maintainability and,
finally, cost reduction.

In this paper, WSN node runtime reconfigurability is tackled
from several aspects. First, the sensor node includes a commercial
reconfigurable device, a Field Programmable Gate Array (FPGA),
that permits to take advantage of the tools and support provided
by the industry, while exploiting the inherent hardware paral-
lelism. Second, two software (SW) and hardware reconfiguration
scenarios are defined along with a support middleware. Third,
in order to provide runtime reconfigurability to the WSN node,
a complete runtime reconfigurable system has been defined and
designed for the FPGA included in the node. Fourth, the HW
reconfiguration cost has been evaluated, as well as the cost of
transmitting new HW configurations and SW programs through
the network, based on a set of defined parameters. Finally, the
feasibility of the runtime reconfigurable system has been demon-
strated with a use case.

Index Terms—Embedded systems, field programmable gate ar-
rays (FPGAs), reconfigurable architectures, wireless sensor net-
works (WSNs).

I. INTRODUCTION

W IRELESS SENSOR NETWORKS (WSNs) represent
one of the most challenging areas in today’s electronic

industry [1], [2]. These networks are expected to be au-
tonomous, low-power demanding, context aware, and flexible.
A final application may have hundreds or thousands of sensor
nodes spread out in an environment, making the deployment
and the support of WSNs a complex task. Although the inte-
gration technologies are clearly tending to smart sensor, there
is still an increasing variety of sensors. The interfaces and data
processing required for sensors control are very different not
only from one sensor to another, but also from one application
to another. In such context, the use of identical nodes or a
reduced set of nodes that are further adapted and/or customized
would simplify the deployment process and reduce the product
cost.

Manuscript received September 06, 2010; revised December 03, 2010; ac-
cepted December 31, 2010. Date of publication January 10, 2011; date of cur-
rent version July 27, 2011. The associate editor coordinating the review of this
paper and approving it for publication was Prof. Ralph Etienne-Cummings.

The authors are with the Centro de Electrónica Industrial, Universidad
Politécnica de Madrid, Jose Gutierrez Abascal 2, 28006, Madrid, Spain (e-mail:
yana.ekrasteva@upm.es; jorge.portilla@upm.es; eduardo.delatorre@upm.es;
teresa.riesgo@upm.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2011.2104948

Classic design approaches for WSNs node rely on the use
of a microcontroller (C) [3], [4]. However, processing and
functionality needs are continuously increasing due to new ap-
plication requirements and this includes WSNs applications.
This, added to the constantly increasing pressure for reducing
time-to-market, has led to new design alternatives, such as re-
configurable hardware (HW).

Reconfigurable systems have been studied in the last years
as an alternative for both: Application-Specific Integrated Cir-
cuits (ASICs) and General Purpose Processors (GPPs). GPPs,
for instance, suffer an imbalance between IO (device Input-Out-
puts) and processing. Differently, FPGAs provide not only a
large amount of IOs, but also high processing due to the of-
fered inherited of parallelism and pipelining. Furthermore, re-
configurable systems provide high flexibility as they can be up-
dated after system deployment and also permit time to market
reduction, since the proper prototype can be the final device. As
a result, reconfigurable devices are constantly gaining market
share and extending their industry application domains and re-
search interest [5], [6]. For instance, the work presented in [7]
focuses on the application of FPGAs in industry control sys-
tems. Even more, now, it is possible to implement neural net-
works and fuzzy control solutions on FPGAs [8] and also, recon-
figurable computing has been widely explored in accelerating
applications, like calculations related to molecular dynamics in
[9].

This paper is focused on the use of reconfigurable systems in
WSNs. Several research groups have already exploited the ben-
efits of HW parallelism by designing ad-hoc reconfigurable de-
vices prepared to be adapted to a set of prerecorded applications,
like in [10] and [11]. The flexibility achieved with this approach
is higher compared to ASIC-based solutions, but not as high as
with small grain reconfigurable devices, like FPGAs. In addi-
tion to this, custom solutions are more restricted as they require
specific Computer Aided Design (CAD) tools. Differently, this
paper exploits industry available reconfigurable devices looking
for high adaptability and flexibility through the use of the par-
tial runtime reconfiguration technique, while taking advantage
of the vendor provided CAD tools. In particular, this paper aims
to explore and evaluate the use of partial runtime reconfiguration
in WSNs, topic that has not been explored in the state-of-the-art.

Runtime reconfiguration is an advanced topic within the
reconfigurable computing area, where changes into the FPGA
configuration are done at runtime, while the device I/Os and
remaining logic is kept active. This powerful feature (only
included in Xilinx and Atmel FPGAs) permits not only to
perform HW updates at runtime and at anytime, but also to
save memory space and programming time compared to full
FPGA reconfiguration. Partial reconfiguration has already been

1530-437X/$26.00 © 2011 IEEE

KRASTEVA et al.: EMBEDDED RUNTIME RECONFIGURABLE NODES FOR WIRELESS SENSOR NETWORKS APPLICATIONS 1801

exploited in the automotive industry [12] and in shape-adaptive
video applications [13], where different reconfiguration strate-
gies are studied.

Runtime reconfiguration will be tested in a HW platform for
WSNs developed at CEI, called Cookies and first presented in
[14]. This platform is overviewed in the paper, along with an
outline of the WSNs state-of-the-art, in order to highlight its
distinguishing characteristics.

This paper describes the entire reconfigurable system de-
sign that includes: the definition of the node reconfigurability
scenarios, the support SW definition and implementation and,
a detailed description of the partial runtime reconfigurable
system definition and design process. In order to test the de-
signed system, a work flow, also described in this paper, has
been used to generate node HW configurations. Furthermore,
a set of general parameters have been defined to evaluate the
system reconfiguration cost and applied to the target node.
Finally, a partial runtime reconfiguration use case has been
created to validate the feasibility of remote runtime reconfigu-
ration in WSNs.

The rest of this paper is organized as follows. Section II in-
cludes the review of the available industrial and academic WSN
along with the brief description of the Cookie modular node ar-
chitecture. The identified node reconfiguration scenarios, along
with a general view of a reconfiguration control middleware,
are included in Section III. Section IV presents the design of
the proposed partial runtime reconfiguration system for WSN
and the complete reconfiguration workflow. A system evalua-
tion based on general reconfiguration cost parameters and the
results can be found in Section V. A discussion of some recon-
figurable system aspects related to WSN nodes can be found in
Section VI. Finally, conclusions are included in Section VII.

II. COOKIE SENSOR NODE

In this section, a general state-of-the-art in HW platforms
for WSNs nodes is presented. Both industrial and academic
approaches are presented. The Cookie node is described in
Section II-B.

A. WSNS Hardware Platforms State-of-the-Art

Several HW platforms with different approaches have been
developed by different research groups during the last years.
Most of them present a SW point-of-view in which the core of
the processing stage is a microcontroller. Researchers from UC
Berkeley developed the TelosB sensor node, one of the widely
used platforms for WSN research and development [3]. This
platform is based on an ultra-low-power microcontroller and a
low data rate low-power IEEE 802.15.4 [15] compliant radio
chip. Sensors can be added to the platform through an expansion
connector. Hitachi has developed a sensor node with a modular
approach [4], based on a microcontroller resized for dimension
reduction, proprietary battery technology and IEEE 802.15.4
compliant radio chip.

These are two examples of SW-based platforms for WSNs.
Although they are very good solutions, they are resource lim-
ited, so in high data processing applications, problems related
to overhead can occur.

Traditionally, reconfigurable devices like Complex Pro-
grammable Logic Devices (CPLDs) or FPGAs are not included
in designs for sensor nodes, mainly due to their high power
consumption. On the other hand, solutions in which such
devices are integrated can target a wider set of computationally
intensive applications, as well as adding flexibility to the sensor
node. For example, in the platform used in the present work, a
Spartan 3 FPGA from Xilinx and an ADuC841 microcontroller
from Analog Devices are used to carry out the processing tasks.
There is a processing layer version, to be available in the near
future, composed of a MSP430 microcontroller from Texas
Instruments and an Actel Igloo FPGA. This low-power version
will consume 10 A in sleep mode, which is a real competitive
power consumption value compared with the state-of-the-art
platforms. As a reference, the Cookie node version used in
this paper consumes 30 mA, while the widely used Crossbow
TelosB platform that does not include HW reconfigurability
consumes 5.1 A (in standby mode).

However, some solutions for WSN nodes include reconfig-
urable HW elements. A modular reconfigurable platform has
been developed by Microsoft Research Labs [16]. In this plat-
form, several layers can be added to the final platform, with
several microprocessors depending on the application require-
ments, and the reconfigurable HW (CPLD in this case) is used to
achieve communication abstraction through the entire modular
platform. Therefore, the processors within the platform commu-
nicate directly with the CPLD, which makes possible different
final implementations. Tyndall National Institute has developed
another modular platform [17], which allows the inclusion of an
FPGA layer to carry out Digital Signal Processing (DSP) tasks.
They make a division between processing, sensing, communi-
cation, and power supply, which is the way in which the sensor
nodes functionality is divided.

The groups described in the previous paragraph use commer-
cial reconfigurable devices in their designs. On the other hand,
other groups work in developing new integrated circuits, which
incorporate reconfigurable HW as part of the entire circuit. In
[10], a specific integrated circuit with a microcontroller unit and
a reconfigurable part is presented. Their goal is to provide the
node with flexibility in order to adapt it to environment changes.
In [11], an approach in which the system adapts itself to execute
the tasks more efficiently, in terms of power, is presented.

B. Cookie Sensor Node

The distinguishing characteristic in Cookie is that it has been
designed in order to provide flexibility and adaptability, by ap-
plying modularity at the physical HW level through a layered
printed circuit board (PCB) structure (see Fig. 1) and providing
it with reconfigurable HW (FPGA).

Modularity allows dividing and encapsulating the function-
ality included in the node. Therefore, future redesigns may
involve only part of the platform, which is desirable consid-
ering time-to-market and evolving technologies and standards.
Moreover, due to the node flexibility, it is possible to carry out
a design space exploration for the HW node, by interchanging
different implementations for each layer, depending on the
application.

1802 IEEE SENSORS JOURNAL, VOL. 11, NO. 9, SEPTEMBER 2011

Fig. 1. On the top part, the Cookie processing layer (uC on the left and the
FPGA on the right) and on the bottom, a complete Cookie node.

The Cookie is composed of four main layers (more layers
can be added in future versions): processing, communications,
power supply, and sensors. Every layer carries out a specific
task. In the following paragraphs, these layers are detailed.

1) Processing: This is the heart of the node. It includes an
8051 microcontroller core enhanced with several pe-
ripherals from Analog Devices (ADuC841) and a Xilinx
XC3S200 Spartan 3 FPGA. The microcontroller and the
FPGA share three 8-bit ports for communication. Part of
one port of the microcontroller is connected to the Join
Test Action Group (JTAG, IEEE 1149.1 [18] standard)
programming port of the FPGA.

2) Communications: The last version of this layer includes
a ZigBee module (ETRX2 from Telegesis). This module
is managed by the microcontroller through the Universal
Asynchronous Receiver Transmitter (UART) port. Another
layer version with Bluetooth is also available.

3) Power supply: This layer generates all voltages needed
within the Cookie. Two versions have been developed. The
one used in the work presented in this paper includes a Uni-
versal Serial Bus (USB) connection, which allows power
supply from a PC, as well as serial programming for the

C.
4) Sensors: This layer includes those elements which are in-

tended to take measurements from the environment. Three
different layers have been developed for the Cookie. These
layers include sensors of acceleration, temperature, hu-
midity, light, infrared, and deformation (strain gauge).

Additionally, other layers can be added to the modular plat-
form like, for instance, a memory layer suitable for expanding
the microcontroller program memory and/or for holding a HW
configuration library.

One of the features of the sensor layer is that it can include
sensors with both digital and analog interfaces (they will be
called digital sensors and analog sensors respectively from now
on). In Fig. 2, the architecture of the system is shown. Signals
from analog sensors are connected to the ADC of the micro-
controller. On the other hand, signals from digital sensors are
connected to the FPGA. In principle, the FPGA carries out all

Fig. 2. Sensor node system architecture. Analog sensors are connected to the
uC ADCs, while digital sensors are connected to the FPGA.

processing related to digital sensors in order to release the C
that is in charge of managing the node communications and pro-
cessing data from analog sensors. Nevertheless, if an external
ADC is included in a sensor layer version, analog sensors could
be directly connected to the FPGA.

Nowadays, there are a myriad of sensors in the market with
several different interfaces. Many of them are digital sensors,
with different protocols such as SPI, I2C, 1-Wire, etc. When
this kind of signals have to be processed using a microcontroller,
problems related to timing and processor overhead can appear.
In fact, some manufacturers offer Hardware Description Lan-
guage (HDL) code to implement the sensor interfaces in a co-
processor, for instance, Dallas Semiconductor with its 1-Wire
interface [19].

In this context, a proprietary library of generic HW inter-
faces [20] has been developed in order to process sensor signals
with very different digital interfaces. Currently, the interfaces
included in the library are as follows.

• I2C and I2C modified (interface for Sensirion Company
sensors).

• PWM.
• Period/Frequency.
• 1-Wire.
The library is divided in modules which represent sensor

interfaces (actuator interfaces can be added as well). Every
module has been designed following a philosophy inspired in
the IEEE 1451 family of standards, but they can also be used
without being compatible to them. Each sensor or actuator
(transducer) is “seen” as a channel (or set of channels) by the
transducer controller. Two channel types are recognized: sensor
channel and actuator channel. Some sensors, like the SHT11
from Sensirion, supply two or more measures (in this case,
humidity and temperature). Therefore, for the same sensor, two
different channels are needed.

The microcontroller sends triggers to the FPGA, specifying
the sensor from which the measure has to be taken, and the
FPGA activates the appropriate sensor interface. Then, the
FPGA sends the result to the microcontroller. The FPGA acts
as a reconfigurable coprocessor for the microcontroller by
taking the signals from the digital sensors, and processing
the information for the microcontroller. In other cases, this
coprocessing cannot be made by the microcontroller, such as
the case of relatively complex filtering stages, which could not
be covered due to data bandwidth restrictions.

KRASTEVA et al.: EMBEDDED RUNTIME RECONFIGURABLE NODES FOR WIRELESS SENSOR NETWORKS APPLICATIONS 1803

These interfaces along with HW coprocessing in the FPGA
will be used to show the runtime reconfiguration capabilities of
the platform, using partial reconfiguration techniques.

III. NODE RECONFIGURATION SCENARIOS AND CONTROL SW

In this paper, node reconfigurability is associated not only
with loading new SW programs in the microcontroller (SW re-
programming), but also new HW configurations in the reconfig-
urable fabric (HW reconfiguration). Related to this, two general
reconfiguration scenarios have been differentiated and applied
to the Cookie node.

• The first one covers reconfiguration at network level that is
mostly required during deployment, where the final func-
tion of each network node is defined (this includes the used
sensors and data processing) or, when the network func-
tion is changed (like in an emergency situation). Gener-
ally this scenario may cover both, SW reprogramming and
HW reconfiguration. In the context of the Cookie platform,
HW reconfiguration is mandatory when modifications af-
fect digital sensors (marked with “D” in Fig. 2), as they
are connected directly to the FPGA. Contrary, SW repro-
gramming is required when analog sensors (marked with
“A” in Fig. 2) are involved, because they are directly con-
nected to the microcontroller ADCs. Furthermore, Cookie
runtime reconfiguration in this scenario is possible only
when dealing with HW reconfiguration, because SW re-
programming requires rebooting the system.

• The second scenario, reconfiguration at node level, mainly
involves HW reconfiguration. In this case, a reconfigurable
array acts as a reconfigurable coprocessor where computa-
tion intensive tasks take advantage of the HW parallelism
in order to lighten the microcontroller, like in [10]. With
respect to the Cookie platform, when dealing with analog
sensors, the entire FPGA is perceived as a coprocessor.
Different, when dealing with digital sensors, two function-
alities have to be allocated in the FPGA (the coprocessor
and the digital sensors control).

In order to cover both scenarios, a partial runtime reconfigu-
ration system has been built on top of the Cookie node FPGA
and partial reconfiguration has been used as a reconfiguration
technique. The resulting runtime reconfigurable system permits
to independently modify (while the remaining system is run-
ning): the digital sensor interfaces, the data processing and/or
the FPGA to microcontroller interface. The partial reconfig-
urable system design and implementation is the main topic of
Section IV (next, the focus is taken back on the overall node re-
configurability).

The microcontroller is the core element in the node reconfig-
urability control. It is in charge of receiving new HW configura-
tions and SW programs, manage them and deal with the FPGA
reconfiguration. Rather than extending an operating system to
support reconfigurability, like in [21] and [22], the goal within
this work has been to keep the system as simple as possible.
Therefore, the node reconfigurability is controlled by a simple
and independent software stack, briefly defined next and shown
in Fig. 3.

• On top of the node hardware, shown in Fig. 3 with dashed
lines, the first layer is an abstraction layer. Abstraction

Fig. 3. Reconfigurable node software stack that runs on the node microcon-
troller on top of the node hardware (dashed lines).

layers are defined to facilitate applications porting across
different platforms. In a reconfigurable system, the abstrac-
tion layer is composed of two parts: one is the traditional
Hardware Abstraction Layer (HAL) and the second one is a
Reconfigurable Hardware Abstraction Layer (RHAL). For
the Cookie, the RHAL includes: i) a definition of the par-
tial runtime reconfigurable system architecture along with
FPGA device descriptors (FPGA provider, available logic,
etc.) that are stored in a set of bits; ii) a HW configura-
tion library, that includes a set of partial configuration files
that can be loaded into the FPGA; and iii) the FPGA pro-
grammer, the software that is in charge of programming the
FPGA.

• Node descriptors and state variables: the descriptors define
the node currently available resources, like radio commu-
nication standards, sensors, and computational resources
located in libraries (HW and/or SW), while state variables
define the node resources that are currently used.

• The control layer includes the reconfiguration policy that is
directly related to the node decision taking independency.
Decisions are basically related to two main aspects: when
a node reconfiguration is required, or what to do if the
required configuration is not available.

• The application layer defines the node current goal
(sensing, retransmitting, data processing, etc.).

Up to now, following the software stack previously described, a
simple stack implementation that runs on the node C has been
set up in order to evaluate the delivery of new node configura-
tions using the network. Some relevant implementation details
are described in the following paragraphs.

Regarding the FPGA programmer, the available Spartan3
FPGA does not have an Internal Configuration Access Port
(ICAP) which is a better option for partial runtime reconfig-
urable systems given that, with it, the system is able to control
its own reconfiguration process. From the remaining configura-
tion options, which are Select Map and JTAG. JTAG has been
selected because it is supported by most of the commercially
available FPGA devices. A SW implementation of a JTAG
controller, provided by Xilinx, runs on the microcontroller and
acts as the FPGA programmer. As a result, no FPGA area is
required for controlling the reconfiguration process, opposite
to [23], where a Select Map controller is implemented in HW
(with FPGA logic). On the other hand, the main disadvantage

1804 IEEE SENSORS JOURNAL, VOL. 11, NO. 9, SEPTEMBER 2011

of using JTAG is the reconfiguration time (JTAG is serial, while
Select Map is parallel).

Regarding the node descriptors and state variable, a unique
code has been assigned to each HW configuration that allows
the identification of what processing, interface and/or sensing
configurations are currently loaded in the FPGA. This code can
be read and retransmitted trough the network by the micro-
controller.

On top of this, the defined node control is quite simple, and it
is in charge of receiving and/or sending new SW programs and
HW configurations through the network, and loading them in
the C program memory.

Regarding network data transmissions, a ZigBee communi-
cation module has been used and several tests have been done.
Evaluation results can be found in Section V.

IV. PARTIAL RUNTIME RECONFIGURABLE SYSTEM FOR WSN

The main advantage of exploiting partial reconfiguration in
embedded devices, like WSN nodes, apart from the possibility
of changing part of the configuration in runtime, is that partial
configuration files are much smaller than complete ones, and
this produces lower memory and bandwidth requirements (this
will be demonstrated in the results Section V).

In order to design a partial runtime reconfigurable system,
the FPGA array is divided into reconfigurable and fixed regions.
The resulting architectural division is usually called FPGA
structure, resource arrangement or partitioning [24]. In this
paper, the FPGA partial reconfigurable system has been built
based on Virtual Architectures (VAs) that integrate both the
resource division and the on-chip communications (the on-chip
interconnection of the different FPGA regions). This section
goes briefly through the main general steps for designing VAs,
presented in [25], particularized to the target Spartan 3 FPGA
(the one available in the Cookie sensor node) and, after that,
the workflow used for the reconfiguration process is described.

The first aspect to be taken into account for VAs is the model
and the reconfiguration granularity that are going to be sup-
ported. VA models can be one dimensional (1D) or two di-
mensional (2D). Partial reconfiguration in Virtex II-based ar-
chitectures (including Spartan 3 FPGAs) is frame-based [26],
where entire columns of logic elements are reconfigured. Thus,
1D-based VAs are well suited. In order to facilitate the recon-
figuration process of the system, the reconfiguration granularity
selected is coarse grain, since a reconfiguration implies a full IP
Core (Intellectual Property Core) to be loaded in the FPGA. In
the context of reconfigurable systems, these cores represent al-
ready placed and routed designs (partial configuration files) and
are referred as hard cores [27].

The next step is to analyze the FPGA structure in order to
cover the requirements of granularity and architecture model.
The structure of the Spartan 3 FPGA is quite regular compared
to other FPGAs (Virtex II for instance). Therefore, the fixed area
of the FPGA occupies the leftmost and rightmost sides of the
FPGA array, spanning the area enclosed between the left/right
IOs and the embedded memory columns, marked with black
rectangles in Fig. 4. The fixed area on the left side is used to ac-
cess the external microcontroller, while the right side fixed area
is used to access the node sensors (see Fig. 4). The middle FPGA

Fig. 4. Sensor node Spartan 3 FPGA Virtual Architecture (VA)—schematic
view. The VA is composed of three slots with different width and a pipeline like
on-chip communication build by three types of bus macros.

section that is enclosed between the two memory columns has a
very regular structure, and is defined as the reconfigurable area.
This area is divided into Slots. A slot is defined as a group of
FPGA Configuration Logic Block (CLB) columns. CLBs are
the main reconfigurable components. Each CLB is composed
of four LookUp Tables (LUTs).

In the target Spartan 3 FPGA (XC3S200), the resulting re-
configurable area spans throughout 16 CLB columns, with 24
CLB rows. A pipeline-like triple slot distribution, where each
slot has a special function, has been selected. Runtime reconfig-
uration support applies [28] to three different functions: sensors
interface, reconfigurable coprocessor and C-to-FPGA com-
munication, and three different slot widths have been defined
for them, which are 2, 8, and 6 slots, respectively, according to
generic core size estimations. Slot 0 defines the communication
with the microcontroller (microcontroller interface, referenced
as uCIF in Fig. 4), slot 1 is used to allocate the reconfigurable
coprocessor (CP in the figure) and finally, in slot 2, the sensor
interface control (SIF) is allocated.

An important aspect in virtual architectures is the on-chip
communication. In the presented approach, each slot and/or
fixed region is connected to the neighboring areas to form the
pipeline. This connection is done using special communication
structures called Bus Macros. All signals that have to cross the
slot boundaries require a Bus Macro [26]. Apart from the unidi-
rectional Bus Macros, provided by Xilinx, two other bus macro
structures have been designed. First, a bidirectional macro that
passes four data bits from left to right and four bits from right
to left. The second type is also a bidirectional macro, but it is
used to cross the mentioned Block RAM/Multipliers columns
(BRAM/MUL column in Fig. 4). In some cases, a hard core
needs access to such embedded resources. In the presented VA,
this can be done by hard cores loaded in either slot 2 or slot 0.

Once all the previous VA design considerations have been set
up, the FPGA VA is defined by a set of files that result from the
design process: i) a user constraint file (.ucf file) that mainly de-
fines slots positions and boundaries and ii) the communication

KRASTEVA et al.: EMBEDDED RUNTIME RECONFIGURABLE NODES FOR WIRELESS SENSOR NETWORKS APPLICATIONS 1805

Fig. 5. Runtime WSN node partial reconfiguration working flow. The flow is
used to generate and send new HW configuration to the FPGA included in the
“mote” node.

macros used to build the on-chip communications, that are pro-
vided as relatively placed macros (.nmc files).

Once the VA to be used has been selected (several VAs can
be defined for a single FPGA) and the related definition files
identified, hard cores for the target system can be designed.
This process can be done with a variety of design flows, de-
pending on the FPGA provider. For Xilinx, one option is to use
the conventional ISE (Integrated System Environment) design
flow, provided by Xilinx. This flow ends with the generation of
a full design netlist, from which hard cores are generated using
bitgen (the Xilinx tool for bitstream generation) by applying
specific partial mask options. The second approach is to use
the Xilinx partial reconfiguration design flow that is based on
ISE and the PlanAhead tool (suitable for testing different floor-
planning approaches). Differently from the first approach, the
second one directly produces partial configuration files and has
better routing in most cases.

For the hard core design of the architecture presented in this
paper, the first approach was selected as it permits the use of
free of charge version of the tool (ISE web pack) and because
the floorplanning in our design method is already included in
the VA definition.

The list of the currently available cores are the following.
• Coprocessors (CP): An eight bits moving average filter

that constantly collects measured data and gives an average
value, and a FIR filter.

• Microcontroller Interface (uCIF): There is one version for
accessing digital sensors data (uCDIF).

• Sensor interface (SIF): There are hard cores available for
the temperature and the accelerometer sensors in two ver-
sions: i) one using the embedded multipliers (MULs) avail-
able in the BRAM/MUL column that correspond to slot 2,
and ii) a second version that implements the multiplica-
tions in LUTs.

The complete workflow used to test partial reconfiguration in
WSNs is presented in Fig. 5. As it can be noticed, the flow starts
with a virtual architecture selection and then continues with the

already described hard core design. After that, independently
from the method used to generate partial configuration files, the
next step is to use a JTAG FPGA programming tool (iMPACT
for Xilinx FPGAs) to generate the required binary formatted
boundary scan configuration file. After that, the next step of the
workflow is to send new configurations through the network to a
target node, where they are saved in a local memory and partial
reconfiguration is performed.

If the target FPGA is not a Xilinx one, then, a tool called
svf2xsvf [29] has to be used to generate complete configuration
files, but partial reconfiguration is not possible.

V. RECONFIGURABLE SYSTEM EVALUATION: PARAMETERS

DEFINITION, TESTS, AND RESULTS

Several parameters have been defined to evaluate: i) the use
of reconfigurable systems in WSNs and ii) the delivery of new
HW configurations and SW programs through the WSNs net-
work. The evaluation parameters, related to the main embedded
device restrictions, memory and energy, are based on relative
values of cost. Cost is a way of measuring how much resources
(energy and memory) are needed to perform an action. Addi-
tionally, the use of remaining energy or memory space allows
having an independent evaluation system. For instance, the eval-
uation system could be applied to other processing layer solu-
tions, like the Cookie power optimized version (mentioned in
Section II).

The first aspect, related to energy, follows the definition of
power, as the energy consumed during the time needed for fin-
ishing a certain task. Distinctions have been made below.

• Transmission Energy: The energy used during HW config-
urations and SW programs data transmission

(1)

where is the time needed to transmit a configura-
tion and is the power consumption in this working
mode.

The remaining definitions follow the same logic.
• Reception Energy

(2)

• Retransmission Energy

(3)

• Reconfiguration Energy is the energy needed for a single
reconfiguration

(4)

• Standby Energy is the energy spent in standby mode

(5)

The cost of doing a task is measured as the part of the
total currently available node energy that has to
be consumed to finish that task.

1806 IEEE SENSORS JOURNAL, VOL. 11, NO. 9, SEPTEMBER 2011

• Transmission Cost

(6)

• Reception Cost

(7)

• Retransmission Cost

(8)

• Reconfiguration Cost

(9)

• Total Reconfiguration Cost is the sum of
the costs of all needed reconfigurations when
passing from one application to another.

(10)

Additionally, the total Remote Reconfiguration Cost is
defined as the sum of all the and needed to
reach the Node Under Reconfiguration (NUR)

(11)

Nhop is the number of hops.
The second aspect, related to the node memory resources, is

the cost of having a configuration in the local library.
is defined as the memory space portion used by the con-

figuration of the total available memory in the node
, minus a coefficient related to the importance of this

configuration

(12)

Generally, a certain task is considered as worthy to be done
by a node only when the task cost, minus a coefficient related to
the importance of the task, is less that a defined cost threshold

. Importance coefficients related to both, memory and
energy, are derived locally, on each node, depending on the
WSNs main objective that is defined by a centralized admin-
istrator in charge of sorting the network priorities. Additionally,
the non total costs values are between 0 and 1. Thus, a task
cannot be done by the node if its cost is higher than 1.

Some of the parameters have been calculated for the Cookie
node. Before applying the defined equations, the power
consumption in each working mode (standby, transmitting,
receiving, retransmitting, and reconfiguring) has to be mea-
sured. This, static measure, can be done with a conventional
ampermeter during the sensor node consumption characteriza-
tion. For instance, the Cookie node runs at 3 V and the power
consumed in standby mode is 60 mW, 150 mW in
reconfiguration and 240 mW in transmission

TABLE I
DATA TRANSMISSION TIME AND RATE

TABLE II
TRANSMISSION COST

and reception modes and 110 mW in
retransmission mode .

The second value that has to be measured is the time needed
to perform a task (receive, retransmit, reconfigure) and can also
be measured statically. Time values depend on several aspects
and the most relevant (transmission media and packet sizes)
are described next in the context of the Cookies. The selected
time characterization testing updates correspond to: a slot 2 (six
CLB columns) HW configuration and the embedded SW pro-
gram used for the FPGA programming. These updates have
been transmitted to a NUR using different types of transmis-
sion media: i) through the available wireless ZigBee commu-
nication and ii) using a serial cable connection. Table I summa-
rizes both transmission times and data rates. Additionally, in the
table, two different packaging formats can be differentiated: one
of 16 bytes and another of 8 bytes. Both transmission packet for-
mats have been tested in two configurations: i) a direct connec-
tion with the NUR and ii) in a long distance connection, using
a node for intermediate routing (multihop). Results included in
Table I have been measured and calculated under a direct con-
nection mode (single hop).

With the measured power and time values, transmission and
retransmission energies have been calculated with the previ-
ously defined equations and can be found in Table II.

Now, in order to calculate cost parameters, the node available
energy has to be known. This value can be calculated dynami-
cally by constantly subtracting the node consumption from the
initially available energy. There is a solution for the node current
dynamic measurement where the Cookie is in charge of calcu-
lating the consumption. Although this solution has been tested,
it has not been integrated so far in the reconfigurable system.

The Cookie is powered by AA batteries of 1 Ah each that
are supposed to last for at least 100 h (this time is based on the
normal, nonreconfiguration, function of the node), then the node
has a limit consumption of 0,02 Ah. Now, let us suppose that the
node has just started working, then the currently available node
energy is .

KRASTEVA et al.: EMBEDDED RUNTIME RECONFIGURABLE NODES FOR WIRELESS SENSOR NETWORKS APPLICATIONS 1807

TABLE III
TRANSMISSION COST

TABLE IV
TRANSMISSION COST

With this data, transmission and retransmission costs have
been calculated and can be found in Table II for both packet
transmission formats.

Reliability in WSN applications is an important aspect, even
more if the network is also used for transmitting device updates.
Tests have shown that the 16 bytes transmissions fail with a
high rate in long distance connections compared with 8 bytes-
based transmissions that are much more reliable, but they are
more costly and reach values of 0.4 for a HW configuration
retransmission, that is, almost half of the available energy in the
node has to be spent (see Table II). Anyway, it is well known that
the ZigBee standard is intended for transmitting small amount
of data, and also, the ZigBee module currently used does not
permit low level protocol optimization.

With respect to the system memory cost, the FPGA partial
configuration file sizes in both .bit and .xsvf format (the one
transmitted in the network) are presented in Table III for hard
cores that use single slots and hard cores that use a slot and a
BRAM/MUL column.

Regarding SW programs, an accelerometer control in-
terface (SW_ACCIF) that includes some data computation
in the microcontroller and the FPGA programmer software
(SW_FPGA_Prog) have been used as an example. Characteris-
tics for the SW program files can be found in Table IV.

The memory currently used for keeping HW configurations
and SW programs is the microcontroller program memory.

has been calculated for HW configurations and SW pro-
grams, taking into account that this memory is 62 KB. For sim-
plicity, has been assumed to be the lowest possible value

.
As a reference, it is important to mention that a complete

XC3S200 configuration file is 131 KB and this has an unafford-
able memory cost and therefore, makes partial reconfig-
uration well fitted for embedded, memory restricted, devices.
Also, it can be noticed that the memory cost of a HW configu-
ration file is higher than a SW program.

Reconfiguration costs can be found in Table V. It can be no-
ticed that the cost of transmitting configurations data is much
higher than the reconfiguration cost. The table includes the re-
configuration cost for the entire FPGA. This value could be used
as a reconfiguration cost threshold .

TABLE V
RECONFIGURATION COST

TABLE VI
SW CONFIGURATION SIZE

The FPGA area needed by some hard cores are presented in
Table VI: i) for the C interfaces (slot 0), the digital version is
included (uCDPr) as the analog one does not consume FPGA
LUTs; ii) a moving average coprocessor filter (HW_AVRF) is in-
cluded; and iii) for the sensor interfaces, one Freq/Period digital
temperature sensor (HW_DSTMP) and one digital PWM-based
accelerometer (HW_DSACC). Notice that there are two versions
of each interface hard core: one that uses the FPGA embedded
multiplier (_v2) and one that does not uses them (_v1). The table
also includes the percentage usage of the corresponding slot.

As it can be noticed from Table VI, it is not possible to have
all the interfaces and data processing loaded in the FPGA, that
is another advantage of using partial reconfiguration.

To define an application on top of a partial runtime reconfig-
urable system, the first step (before any partial reconfiguration)
is to perform an FPGA full configuration. In the approach fol-
lowed in this paper, the first FPGA configuration is used to load
the virtual architecture definition, that is, to reserve slot areas
and to load the on-chip communication resources. This config-
uration is kept in the FPGA boot-loading memory, in a separate
device from where the configuration is read on power up (in the
new Spartan3AN FPGA this memory is embedded in the silicon
die). In the initial configuration, feedthrough configurations are
loaded in slot 0 and slot 1, while slot 2 is left empty. After this,
any application can be arranged on the FPGA. Two applications,
described next, have been selected as a use case.

1) Analog sensors with HW average filtering
(AS_HW_AVRF). For building this application, a
feedthrough configuration is needed in slot 0, in slots 1
the average filter hard core and finally slot 2 has to be left
empty. The physical implementation of this application in
the FPGA can be seen on the left side of Fig. 6, where a
screenshot of the FPGA Editor tool (integrated in ISE)
is presented.

1808 IEEE SENSORS JOURNAL, VOL. 11, NO. 9, SEPTEMBER 2011

Fig. 6. FPGA Editor tool screenshots that shows two system applications. An analog sensor with average filtering (AS_HW_AVRF) is shown in the figure on the
left and a digital accelerometer sensor with the same average filtering (DS_HW_AVRF_ACCIF) in the figure on the right. The partial reconfigurable system slots
can be noticed: slot 0 defines the uC-to-FPGA interface, slot 1 is reserved data processing and slot 2 allocates digital sensor interfaces.

2) Digital accelerometer sensor with HW average filtering
(DS_HW_AVRF_ACCIF). For building it, an uCDPr con-
figuration is needed in slot 0, in slots 1 the average filter
hard core and finally the temperature sensor interface has
to be loaded in slot 2. The physical implementation of this
application can be seen on the right side of Fig. 6.

In order to validate the runtime reconfigurable system a se-
quence of partial runtime reconfigurations have been performed,
while the NUR C is kept sending data to a host system where
it is printed out on a terminal console (the C reprogramming
has also been tested, but it has not been included in this paper).
After the mentioned initial full configuration, several runtime
reconfigurations, listed next, have been executed.

1) The average filter HW configuration has been sent to the
NUR and loaded in slot 2 to pass from the empty configu-
ration to the AS_HW_AVRF application. This reconfigu-
ration has a cost of .

2) Slot 0 and slot 2 have been reconfigured to
pass from AS_HW_AVRF application to the
DS_HW_AVRF_ACCIF application with a total
cost of .

While performing these reconfigurations, no disruption or er-
rors in system data transitions have been noticed, thus the re-
mote partial runtime reconfiguration tests have been successful.

VI. SUMMARY AND DISCUSSION

In the previous sections, a runtime reconfigurable solution for
WSNs has been proposed and evaluated. The selected approach,
apart from the C reprogramming, provides a solution that ex-
ploits partial runtime reconfiguration capabilities of the FPGA
included in the Cookie, in order to increase flexibility, reduce

the amount of data to be transmitted and reduce the reconfigu-
ration time. The provided solution permits to modify at runtime:
i) the sensor HW interfaces; ii) the coprocessor allocated in the
FPGA for taking advantage of the HW parallelism; and ii) the

C-to-FPGA interface. Also, a use case has been set up and re-
mote runtime partial reconfiguration in WSNs nodes has been
validated. Furthermore, the presented system can be ported to
other FPGAs and also to other virtual architectures, except from
the hard core library that has to be regenerated from the source
code.

Nevertheless, there are still some open points that may be dis-
cussed in this field, mainly related to the FPGA. A standard de-
sign decision in reconfigurable systems is the FPGA to C cou-
pling where several options are available: from standalone sys-
tems where the FPGA and the C are separate devices (like in
the system presented in this paper), to tightly coupled systems
where the C is embedded in the FPGA (either as soft-core im-
plemented with FPGA logic resources or melt in the silicon die).
The selection of one or another option depends on the specific
application requirements. In the work presented here, the node
standalone coupling has been maintained, instead of embedding
a soft-core C in the FPGA, because the main goal was to create
and test the runtime reconfigurable system. The target Spartan
3 FPGA belongs to the Xilinx low cost, small, device series. In
this device, reserving area to allocate the C has the effect of
high reduction of the number of reconfigurable slots and thus
system reconfiguration flexibility.

Other important aspects related to the use of FPGAs are
the power consumption (and thus, their ability to be used in
WSNs), configuration time, security of reprogramming actions,
etc. However, advances in electronic and communication tech-
nologies will accommodate the efficient use of reconfigurable

KRASTEVA et al.: EMBEDDED RUNTIME RECONFIGURABLE NODES FOR WIRELESS SENSOR NETWORKS APPLICATIONS 1809

hardware in commercial WSNs. As an example: low-power
FPGAs that consume less than 5 W in standby mode (Actel
IGLOO FPGA, mentioned in Section II) are currently available.
Furthermore, state-of-the-art FPGAs are constantly increasing
the diversity of embedded resources. Now, there are high per-
formance FPGAs that include up to four microprocessor and
specialized signal processing logic in the die (Xilinx Virtex 5
for instance) and others that include ADCs and PWMs (Actel
Fusion FPGA for instance). As a result, it could be said that
future highly reconfigurable devices have a place in WSN
industry.

VII. CONCLUSION

The work presented in this paper is an approach to open new
horizons to the use and development of runtime reconfigurable
Wireless Sensor Networks. The work shows the feasibility of
the integration of new reconfiguration techniques in WSN that
may lead to change the use of WSNs, afrom custom made for a
given application, to generic networks deployments where tasks
and functions are dynamically allocated. The considered up-
dates cover both runtime HW reconfiguration and SW updates,
and may include new functionalities, updating of security infor-
mation, dynamic task allocation, online testing, debugging and
repair, among other features.

The integration of reconfigurability in WSN nodes might re-
sult in alleviating some costly activities in the industrial use of
WSNs, like deployment and maintenance.

REFERENCES

[1] L. Q. Zhuang, K. M. Goh, and J. B. Zhang, “The wireless sensor net-
works for factory automation: Issues and challenges,” in Proc. IEEE
Conf. Emerging Technol. Factory Autom., ETFA’07, Sep. 25–28, 2007,
pp. 141–148.

[2] A. Willig, “Recent and emerging topics in wireless industrial commu-
nications: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp.
102–124, May 2008.

[3] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. 4th Int. Symp. Information Pro-
cessing in Sensor Networks, IPSN’05, Apr. 2005, pp. 364–369.

[4] S. Yamashita, T. Shimura, K. Aiki, K. Ara, Y. Ogata, I. Shimokawa,
T. Tanaka, H. Kuriyama, K. Shimada, and K. Yano, “A 15� 15, 1
�A, reliable sensor-net module: Enabling application-specific nodes,”
in Proc. 5th IEEE/ACM Int. Conf. Inform. Process. Sensor Networks,
IPSN’06, Apr. 2006, pp. 383–390.

[5] J. J. Rodrigez-Andina, M. J. Moure, and M. D. Valdes, “Features, de-
sign tools, and application domain of FPGAs,” IEEE Trans. Ind. Elec-
tron., vol. 54, no. 4, pp. 1810–1823, Aug. 2007.

[6] W. H. Mangione-Smith et al., “Seeking solutions in configurable com-
puting,” IEEE Computer, vol. 30, no. 12, pp. 38–43, Dec. 1997.

[7] R. Scrofano, M. B. Gokhale, F. Trouw, V. K. E. Monmasson, and M. N.
Cirstea, “FPGA design methodology for industrial control systems—A
review,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1824–1842, Aug.
2007.

[8] H. Chaoui, M. C. E. Yagoub, and P. Sicard, “FPGA implementation
of a fuzzy controller for neural network based adaptive control of a
flexible joint with hard nonlinearities,” in Proc. IEEE Int. Symp. Ind.
Electron., Jul. 2006, vol. 4, pp. 3124–3129.

[9] R. Scrofano, M. B. Gokhale, F. Trouw, and V. K. Prasanna, “Acceler-
ating molecular dynamics simulations with reconfigurable computers,”
IEEE Trans. Parallel and Distrib. Syst., vol. 19, no. 6, pp. 764–778, Jun.
2008.

[10] H. Hinkelmann, P. Zipf, and M. Glesner, “Design concepts for
a dynamically reconfigurable wireless sensor node,” in Proc. 1st
NASA/ESA Conf. Adaptive Hardware and Systems, AHS’06, Jun.
2006, pp. 436–441.

[11] A. E. Susu, M. Magno, A. Acquaviva, and D. Atienza, “Reconfigura-
tion strategies for environmentally powered devices: Theoretical anal-
ysis and experimental validation,” Trans. HiPEAC I, LNCS 4050, pp.
341–360, 2007.

[12] J. Becker et al., “Dynamic and partial FPGA exploitation,” Proc. IEEE,
vol. 92, no. 2, pp. 438–452, Feb. 2007.

[13] P. Sedcole, Y. K. Peter, C. George, A. Constantinides, and W. Luk,
“Run-time integration of reconfigurable video processing systems,”
IEEE Trans. VLSI Syst., vol. 15, no. 9, pp. 1003–1016, Sep. 2007.

[14] J. Portilla, A. de Castro, E. de la Torre, and T. Riesgo, “A modular
architecture for nodes in wireless sensor networks,” J. Univ. Comput.
Sci. (JUCS), vol. 12, no. 3, pp. 328–339, Mar. 2006.

[15] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan
Area Networks Specific Requirements Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications
for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE
Standard 802.15.4-2003, 2003, pp. 1–670.

[16] D. Lymberopoulos, N. B. Priyantha, and F. Zhao, “mPlatform: A recon-
figurable architecture and efficient data sharing mechanism for mod-
ular sensor nodes,” in Proc. 5th IEEE/ACM Int. Conf. Inform. Process.
Sensor Networks, IPSN’07, Apr. 2007, pp. 128–137.

[17] B. O’Flynn, S. Bellis, K. Delaney, J. Barton, S. C. O’Mathuna, A. M.
Barroso, J. Benson, U. Roedig, and C. Sreenan, “The development of a
novel minaturized modular platform for wireless sensor networks,” in
Proc. 4th Int. Symp. Inform. Process. Sensor Networks, IPSN’05, Apr.
2005, pp. 370–375.

[18] IEEE Standard Test Access Port and Boundary-Scan Architecture,
IEEE Standard 1149.1-2001, 2001, pp. i–200.

[19] DS1WM Synthesizable 1-Wire Bus Master Datasheet, Maxim Inte-
grated Products.

[20] J. Portilla, J. L. Buron, A. de Castro, and T. Riesgo, “A hardware library
for sensors/actuators interfaces in sensor networks,” in Proc. IEEE Int.
Conf. Electron., Circuits and Systems 2006 (ICECS’06), Niza, France,
Dec. 2006, pp. 1244–1247.

[21] C. Steiger, H. Walder, and M. Platzner, “Operating systems for recon-
figurable embedded platforms: Online scheduling of real-time tasks,”
IEEE Trans. Comput., vol. 53, no. 11, pp. 1393–1407, Nov. 2004.

[22] V. Nolet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal, “Run-
time management of a MPSoC containing FPGA fabric tiles,” IEEE
Trans. VLSI Syst., vol. 16, no. 1, pp. 24–33, Jan. 2008.

[23] K. Paulsson, M. Hubner, G. Auer, M. Dreschmann, L. Chen, and J.
Becker, “Implementation of a virtual internal configuration access port
(JCAP) for enabling partial self-reconfiguration on Xilinx Spartan-III
FPGAs,” in Proc. 17th IEEE Int. Conf. Field Programmable Logic,
FPL’07, Aug. 2007, pp. 351–356.

[24] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Mod-
ular dynamic,” Proc. IEE Comput. Digit. Tech., vol. 153, no. 3, pp.
157–164, May 2006.

[25] Blank for Blind Review.
[26] D. Lim and M. Peattie, Xilinx, “XAPP 290 (v1.0): Two flows for partial

reconfigurtion: Module based or small bit manipulation,” XAPP 290,
2004.

[27] E. L. Horta and J. W. Lockwood, “Automated method to generate
bitstream intellectual property cores for Virtex FPGAs,” Proc. 14th
Field-Programmable Logic and Applications, FPL04, pp. 975–979,
Aug. 2004.

[28] Y. E. Krasteva, J. Portilla, J. M. Carnicer, E. de la Torre, and T. Riesgo,
“Wireless sensor networks node with remote HW/SW reconfiguration
capabilities,” in Proc. IEEE Annu. Conf. IEEE Ind. Electron. Soc.
(IECON’08), Orlando, FL, Nov. 2008, pp. 2483–2488.

[29] B. Bridgford and J. Cammon, Xilinx, “SVF and XSVF file formats for
Xilinx devices,” XAPP 503, 2007.

Yana Esteves Krasteva was born in Lima, Perú, in
1979. She received the M.Sc. degree from the Tech-
nical University of Sofia, Sofia, Bulgaria, in 2002 and
the Ph.D. degree in electronic engineering from the
Universidad Politécnica de Madrid (UPM), Madrid,
Spain, in 2009.

Since 2010, she has been a Researcher in the
Parallel Architectures Group (GAP), Universidad
Politécnica de Valencia (UPV). She has worked in
several research projects with European and national
funding, as well in projects for the industry. Her

research interests are focused on supercomputing and reconfigurable systems,
networks on chip and wireless-sensor network.

1810 IEEE SENSORS JOURNAL, VOL. 11, NO. 9, SEPTEMBER 2011

Jorge Portilla was born in Madrid, Spain, in 1978.
He received the M.Sc. degree in physics from
the Universidad Complutense de Madrid (UCM),
Madrid, Spain, in 2003 and the Ph.D. degree in elec-
tronic engineering from the Universidad Politécnica
de Madrid (UPM), Madrid, Spain, in 2010.

He is an Assistant Professor since 2006 at the
Universidad Politécnica de Madrid, and doing his
research at the Industrial Electronics Centre (CEI).
His research interests are focused mainly in wire-
less sensor networks, reconfigurable systems, and

embedded systems design.

Eduardo de la Torre was born in Madrid, Spain, in
1964 and received the M.Sc. degree in industrial en-
gineering in 1989 and the Ph.D. degree in industrial
electronics in 2000 from the Universidad Politécnica
de Madrid, Madrid, Spain.

He is an Associate Professor at Universidad
Politécnica de Madrid, and doing his research at
the Industrial Electronics Centre. He has worked
in integrated circuit design for ASICs and FPGAs,
mostly for control applications, as well as embedded
systems design. He has also worked in tools for

test and debug of these systems. Recently, his main research interests are
reconfigurable systems and networks on chip.

Teresa Riesgo was born in Madrid, Spain, in 1965.
She received the M.Sc. and Ph.D. degrees in elec-
trical engineering from Universidad Politécnica de
Madrid (UPM), Madrid, Spain, in 1989 and 1996,
respectively.

Since 2003, she is a Full Professor of Electronics
at UPM. She is currently the Director of the Center
of Industrial Electronics of Universidad Politécnica
de Madrid (CEI-UPM). She has published a large
number of papers in these fields and has participated
and acted as main researcher in several European

Union-funded projects. Her research interests are focused on embedded system
design, wireless-sensor networks, configurable systems, and power estimation
in digital systems.

