
Run-Time Resource Allocation for Simultaneous Multi-Tasking in
Multi-Core Reconfigurable Processors

Waheed Ahmed, Muhammad Shafique, Lars Bauer, Manuel Hammerich, Jörg Henkel, and Juergen Becker
Karlsruhe Institute of Technology, Karlsruhe, Germany

{ahmed.waheed, muhammad.shafique, lars.bauer, henkel, becker} @ kit.edu
State-of-the-art multi-core reconfigurable processors do not ex-
ploit the full potential of simultaneous multi-tasking with run-
time adaptive reconfigurable fabric allocation. We propose a
novel run-time system for simultaneous multi-tasking in a multi-
core reconfigurable processor that adaptively allocates the
mixed-grained reconfigurable fabric resource at run time among
different tasks considering their performance constraints. Our
scheme employs the novel concept of refined task-criticality
(based on the functional-block-level performance constraints)
considering the computational properties of dependent tasks and
their inherent potential for acceleration. Our scheme dynamical-
ly compensates the deadline misses at the functional block level.
It thereby reduces the potential task-level deadline misses under
competing scenarios. With the help of a secure video conferenc-
ing application (with 4 dependent tasks of diverse computational
properties), we demonstrate that our scheme reduces the deadline
misses by (on average) 6x under given performance constraints,
when compared to state-of-the-art reconfigurable processors [1,
9, 12].

I. INTRODUCTION AND MOTIVATION
Modern multi-core reconfigurable processors are mixed-
grained ([1], 4S [8], Morpheus [9]), i.e., they are composed
of various (RISC-like) cores coupled with multiple fine-
grained and coarse-grained reconfigurable fabrics in order to
expedite bit-/byte-level operations (bit shuffling, packing,
merging, etc.) and (sub)-word-level operations (add, sub-
tract, multiply, etc.), respectively. There is a need to effi-
ciently support simultaneous multi-tasking with run-time
mixed-grained fabric allocation in multi-core reconfigurable
processors for exploiting the Task-Level Parallelism. Multi-
core reconfigurable processors may exploit:

a) task-level parallelism by executing multiple tasks on
different cores in parallel, and

b) instruction-level parallelism by accelerating the func-
tional blocks of applications (that may contain diverse com-
putational kernels1) using Instruction Set Extensions (ISEs)
to the cores [1,8,9,12,15]. These ISEs consist of data-paths
that may be reconfigured on parts of a fine-grained or a
coarse-grained reconfigurable fabric, which are shared
among different cores. It thereby enables each kernel to
have different ISEs with different performance vs. area tra-
deoffs, i.e., different speedups for different utilizations of
the fabric.

However, state-of-the-art multi-core reconfigurable pro-
cessors [1,8,9,12] do not exploit simultaneous multi-tasking
(with both task- and instruction-level parallelism) at their
full throttle, when considering the heterogeneous nature of

1 The compute-intensive loops, which are executed most often

fine- and coarse-grained fabrics and the scenarios of run-
time varying (i) task mapping, (ii) workload conditions, etc.
Moreover, these processors lack efficient (in terms of
performance, for instance) fabric allocation schemes that
operate with consideration of simultaneous multi-tasking.
We are the first to explore the full potential of simultaneous
multi-tasking in multi-core reconfigurable processors by
allocating the mixed-grained reconfigurable fabrics among
different tasks at the granularity level of functional blocks.

When exploiting the task-level parallelism for
simultaneous multi-tasking, the case of dependent tasks
needs to be distinguished. Dependent tasks share a common
deadline and priority (associated with the application). For
example, in video conferencing application, the video and
audio encoding and decoding tasks are considered as
dependent tasks as they share a common deadline (30
frames/sec) and they depend on each other as they cannot
start their next job until both of them do not complete their
job. Dependent tasks significantly differ in their memory
requirements and computational properties. Some tasks
exhibit control-dominant and/or bit/byte-level processing
(bit shuffling, packing, merging, etc.), while some other
tasks exhibit data-dominant and/or (sub) word-level
processing. Therefore, different tasks might require less or
more area of fine-grained and/or coarse-grained fabrics (to
expedite their functional blocks) depending upon their
inherent potential for acceleration. Furthermore, the
requirements of these tasks may vary frequently at run time,
e.g., due to a change in the input data, which may lead to the
situation where one or more tasks may become critical in
determining the overall Quality of Service (QoS) of
dependent tasks. The task is termed as critical if it misses or
going to miss the deadline and the margin with which the
task misses (or going to miss) the deadline denotes the
task’s crticality. Recently, the notion of criticality has been
evolved for the dependent tasks to perform load balancing
and frequency scaling [3]. However, criticality has not been
fully explored by run-time schemes for reconfigurable fabric
allocation, especially in case of simultaneous multi-tasking.

Hence, it can be concluded that to enable simultaneous
multi-tasking on multi-core reconfigurable processors under
high throughput and QoS constraints (that may vary at run
time), a run-time system is desirable that efficiently allo-
cates the mixed-grained fabric resource (at run-time) among
different competing dependent tasks, while considering their
respective criticalities to ensure that each task achieves its
performance constraint (finishing its job before deadline), or
alternatively missing the deadline by a user-defined tolera-

IEEE International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4301-7/11 $26.00 © 2011 IEEE

DOI 10.1109/FCCM.2011.46

29

ble margin (i.e., graceful degradation). We therefore consid-
er a system with soft constraints.
Our Novel Contribution: We propose a novel Processor
Control Unit as an integral run-time system for multi-core
reconfigurable processors. It ensures the application’s QoS
by dynamic deadline adaptations and mixed-grained fabric
allocation to simultaneous multiple tasks at the functional
block level. The proposed processor control unit achieves
this using its two major components:
a) Constraints-based Fabric-Allocator: It dynamically al-

locates the mixed-grained fabric to the functional blocks
based on their criticalities, priorities, deadlines and compu-
tational properties.

b) QoS Controller: It monitors and updates the state of
the system and estimates the criticality of critical tasks and
fine-tunes the deadlines at functional block level.

II. RELATED WORK
The authors in [5,10] have discussed the operating system
based task’s placement and scheduling of complete tasks on
the reconfigurable fabric, while considering the reconfigura-
tion latency in order to achieve higher performance at run-
time. In contrast, approaches discussed in [6,7] targeted re-
configurable architectures for high performance computing
by enabling the sharing of attached FPGAs among parallel
applications at compile-time. These approaches are beneficial
in case that the processing behavior of tasks is not changed
during their run-time. Authors in [11] presented an approach
that maps different kernels of a functional block onto a
coarse-grained reconfigurable fabric while mapping decisions
are determined at compile-time. The above-discussed ap-
proaches either lack run-time adaptivity at functional block
and/or allocate a certain type of fabric to the complete task,
thus limiting the exploitation of the full potential of simulta-
neous multi-tasking in multi-core reconfigurable processors.
Altogether, none of the presented approaches provides a run-
time system to efficiently enable simultaneous multi-tasking
with mixed-grained reconfigurable fabric allocation at func-
tional block level, when considering dependent tasks and run-
time varying scenarios.

III. OUR MULTI-CORE RECONFIGURABLE PROCESSOR

Task Mapper
Task1 Task2

Pr
oc
es
so
rC
on
tro
lU
ni
t

(S
ec
tio
n
IV
)

O
ur

N
ov

el
C

on
tri

bu
tio

n

Taskn

Core1 Corem
Array of mixed-Grained RUs

Core2

M
em

or
y

Su
bS

ys
te

m
(A

bs
tra

ct
ed

fo
rs

im
pl

ific
at

io
n)

PRC PRC PRC

PRC PRC PRC Sc
ra
tc
h

Pa
d

M
em
or
y

Co
nt
ex
t

M
em
or
y

Register
Files

O
pc
od
e

De
co
di
ng

Sc
ra
tc
h
Pa
d

M
em
or
y

2 ALU
Blocks

PRC PRC PRC

PRC PRC PRC Sc
ra
tc
h

Pa
d

M
em
or
y

FG-RU FG-RU

CG-RU CG-RU

Co
nt
ex
t

M
em
or
y

Register
Files

O
pc
od
e

De
co
di
ng

Sc
ra
tc
h
Pa
d

M
em
or
y

2 ALU
Blocks

...

...

...

...
...

Fig. 1 Model of our multi-core reconfigurable processor [1]
Fig. 1 shows the integratation of our novel Processor
Control Unit with the multi-core reconfigurable processor,
which consists of several RISC cores tightly-coupled with
mixed-grained fabrics, i.e., an array of fine-grained (FG)-
and coarse-grained (CG)- reconfigurable units (RUs). A FG-

RU is realized as an embedded FPGA, which consists of
Partially Reconfigurable Containers (PRCs) that can be
reconfigured to contain different hardware accelerators.
Both FG- and CG-RUs have dedicated scratch pad memo-
ries – connected to the Memory Sub-System – to allow for
fast data access and to store intermediate results. The Task
Mapper maps an incoming task to a RISC core. Different
RISC cores can execute their tasks in parrallel and use RUs
to expedite them.

IV. PROCESSOR CONTROL UNIT
The Processor Control Unit (as an integral run-time system
in our multi-core reconfigurable processor) reacts to differ-
ent scenarios, while considering the system constraints, the
current load on the system, and the utilized resources. It
therefore enables the possibility to bring the system to per-
form with required QoS under run-time varying scenarios.

QoS Controller
Monitors Task’s status and adjust

the deadlines

Constraints-based Fabric Allocator
Allocate RUs among functional blocks of

multiple tasks by choosing set of ISEs for each
application kernel to ensure their deadlines

Reconfiguration Controller
(manages reconfigurations of FG-

and CG-RUs)

Reconfigurations

Processor Control Unit

C
om

pi
le

-ti
m

e
pr

ep
ar

ed
IS

Es

FG-and CG-RU Array

D
em

an
d

In
st

ru
ct

io
ns

Q
ue

C
or
e m

C
or
e 1

Synchronization
Instructions

C
or
e 2

Tasks status
data structures

Monitoring
Unit

...

Fig. 2 : Overview of our Processor Control Unit
Fig. 2 shows the architectural overview of our proposed
Processor Control Unit showing its two main components,
i.e, the Constraints-based Fabric Allocator and the QoS
Controller. Each task requests the fabric area for its upcom-
ing predicted functional blocks by issuing a Demand In-
struction to the processor control unit. The Processor Con-
trol Unit queues these Demand Instructions if it is already
processing a previous Demand Instructions, otherwise it
starts the Constraints-based Fabric Allocator to allocate the
Reconfigurable Units (RUs) to the demanding tasks.

The goal of Processor Control Unit at run time is to meet
the deadlines of each task. It employs the Constraints-based
Fabric Allocator and the QoS Controller to achieve this goal.
The QoS Controller is triggered by Demand Instructions and
Synchronization Instructions that are issued at QoS check
points. It determines the criticalities for all executing tasks,
which is used as an input to Constraints-based Fabric Alloca-
tor.

QoS Controller: The main objective of the QoS Control-
ler at the prediction of functional blocks is to fine-tune the
deadlines assigned to each functional block. Initially the
deadlines are proportionally distributed at functional block
level based on their expected execution time. At run-time
the QoS Controller uses the real time values monitored by
the monitoring unit and calculates the actual time taken by
the previous functional blocks of the given task during the
same QoS period. Based on the actual time tk taken by pre-

30

ceding functional blocks (i.e. 0,…,i-1) and deadlines (fb_dl)
assigned to the subsequent functional blocks (i.e. i,…, n),
the QoS Controller estimates the total time that task would
require to complete its job and then adjusts the deadlines of
remaining functional blocks proportionally as explained in
Eq. 1.

1

0
_ _ Task_Deadline *

_

_
_

k

i i k k
i

n
i n k i
k k i

fb dl fb dl
fb dl

fb dl
t fb dl (1)

The objective of the QoS controller at the completion of QoS
period is to estimate the achieved QoS of each task and assign
criticality. The criticalities are proportionally estimated based
on the time left for each active task to complete its job.

Constraints-based Fabric Allocator: It allocates the RUs
to the predicted functional blocks in such a way that each
functional block can fulfill its deadline by choosing a per-
formance efficient set of ISEs. The number of CG-RUs and
the total number of PRCs are known to the Constraints-
based Fabric Allocator. The task of the Constraints-based
Fabric Allocator is to find the set of ISEs for all parallel
executing tasks with goal that each functional block
achieves its deadline while considering the constraints that
the fabric used by all tasks at any instance is not more than
the total fabric area. The output from this stage is the list of
data-paths which need to be reconfigured on the allocated
RUs. To find the best solution, we need to evaluate all com-
binations of ISEs for all tasks. Considering the run-time
nature of our Constraints-based Fabric Allocator we incor-
porate a heuristic based algorithm.

Our approach first sorts the tasks with respect to their criti-
calities and favors the local optimal task ts by giving more re-
sources to it with the goal of minimizing the difference be-
tween the deadline dx,y and actual time tx,y taken by functional
block y of task x as described in Eq. 2 (note that the functional
blocks fb and y are limited to future subsequent blocks).

, , , , ,find min : : s s fb s fb x y x y x yt fb t d t d (2)

The QoS Controller updated the task criticalities as explained
before, which are feed back to Constraints-based Fabric Allo-
cator to fine-tune the found solution.

V. EXPERIMENTAL RESULTS AND EVALUATION
We used Leon-II processor (based on SPARC V8 architec-
ture) as RISC cores. The CG-RUs are operating at 400
MHz, while the FG-RUs are operating at 100 MHz. The
reconfiguration bandwidth of the FG-RU is 67584 KB/s (for
Xilinx Virtex-II FPGAs). The 32-bit load/store unit is avail-
able to each CG-RU, while each FG-RU is provided with
two 128-bit load/store units. A point-to-point communica-
tion between the RUs takes two cycles. The complete sys-
tem is simulated on our multi-core cycle-accurate instruc-
tion-set-simulator. Its inputs (i.e., the data-paths latencies
and reconfiguration cycles for FG- and CG-RUs) are ob-
tained after place-and-route using Xilinx-FPGA-tools [3]
and ASIC-synthesis-flow for TSMC using the same tech-
nology node (i.e., 90nm), respectively.

For evaluation, we use a secure video conferencing ap-
plication which consists of H.264 video encoder/decoder
and AES encrypt/decrypt tasks. The H.264 decoder and
AES decrypt belong to one dependent set of tasks, while the
H.264 encoder and AES encrypt belong to another set of
dependent tasks. Due to their diverse processing behavior,
these tasks vary in their fabric demands and corresponding
performance improvement. For a fair comparison, we have
provided the same set of hardware accelerators and ISEs as
well as the same amount of memory bandwidth and same
input data for each comparison.
A. Comparison with State-of-the-Art
We compare our scheme with state-of-the-art multi-core recon-
figurable processors (like 4S [8], Morpheus [9]) and different
task and functional block level allocation policies [13]. Fig. 3
shows a detailed comparison with state-of-the-art for the
total execution time and the deadline misses. The horizontal
axis shows the fabric area which is in pairs of number of
PRCs and number of CG-RUs. The bars show the total ex-
ecution time of an application and the lines show the dead-

0

50

100

150

200

250

300

Task-level RAMPSoC [2] Task-level HpifF [12] FB-level Morpheus [9]+4S [8] FB-level Criticality-based

0

5

10

15

20

25

30

35

40
Task-level RAMPSoC [2] DL-Misses Task-level HpifF [12] DL-Misses

FB-level Morpheus [9]+4S [8] DL-Misses FB-level Criticality-based DL-Misses

6,3
Reconfigurable fabric area(number of PRCs,number of CG-RUs)

7,0 7,1 7,2 7,3 8,0 8,1 8,2 8,3 9,0 9,1 9,2 9,3 10,0 10,1 10,2 10,3 11,0 11,1 11,2 11,3 12,0 12,1 12,2 12,3

To
ta

l e
xe

cu
tio

n
cy

cl
es

(in
 M

ill
io

ns
)

To
ta

l D
ea

dl
in

e(
D

L)
 M

is
se

s

Fig. 3: A Comparison of performance and deadline misses with various state-of-the-art allocation policies

31

line misses for the given area and allocation policy used. We
discuss these comparisons as follows:
Compared to Task-Level RAMPSoC [2]: The comparison
with RAMPSoC [2] is analogous to the comparison with the
Equal distribution policy as all the cores have the same
amount of fabric. Our proposed allocation scheme reduces
(on avg.) 6.1x deadline misses and achieve up to 1.6x per-
formance improvement. The major advantage in perfor-
mance improvement is achieved when available fabric is
limited, i.e., between (6,3) and (11,3). The reason is that due
to equal fabric allocation to all tasks, the tasks requiring
more fabric than others, suffers from deadline misses. In this
scenario, the H.264 encoder and decoder miss most of their
deadlines as they do not get the required fabric.
Functional block-level policy for Morpheus [9] and 4S [8]
like architectures (FB-level Morpheus+4S): The architec-
tures like Morpheus [9] and 4S [8] have proposed fabric
allocation at compile-time for performance optimization.
We have modeled their approach for resource allocation at
run-time. Due to loosely coupled architecture, only the CG-
or FG- ISE of each functional block could be used. Com-
pared to their approach, our scheme provides up to 1.9x
performance improvement and reduces the average deadline
misses by 5.3x times. The advantages shown in the results is
basically due to the fact that we consider the task criticality
and adjust accordingly during run-time at functional block
level, while Morpheus+4S like approach tries to achieve
high performance without considering the criticality of each
task.
Compared to Task-level Highest performance improve-
ment factor First (HpifF [12]) policy: This comparison is
analogous to comparing with techniques of [12] as they allo-
cate the resources for overall performance optimization. Com-
pared to [12], our scheme reduces (on avg.) 6.9x deadline
misses and achieve up to 1.4x time performance improvements
(avg. 1.3x). In HpifF based scheme, the task with the most po-
tential of improvement factor (pif) is given more fabric. The pif
is estimated cycles saved compared to non-accelerated execu-
tion of functional blocks. The problem with such an allocation
scheme is that the task with the highest pif monopolizes the
available resources and will always get the demanded re-
sources. This is shown in this scenario as the H.264 encoder is
using almost 80% of the fabric area in these cases; causing
AES encrypt and decrypt tasks to completely miss their dead-
lines. On the contrary, our scheme reduces deadline misses by
6.9x times, as our processor control unit uses the actual moni-
tored criticalities of tasks to allocate the fabric.
B. Overhead and Implementation Details
The Processor Control Unit uses one of the available CG-
RUs to execute its algorithms. Constraints-based Fabric
Allocator is the most compute intensive part. Its processing
depends on number of tasks, number of Demand Instruc-
tions, number of kernels, size of fabric (no. of CG-RUs and
PRCs), and number of data-paths that must be replaced for
given already reconfigured data-paths. On average, in our
experiments, the Constraints-based Fabric Allocator re-

quires less than 1200 cycles for each task and on average it
took 4500 cycles to decide the fabric share for 4 tasks that
had put their Demand Instructions. The overhead is negligi-
ble as it is 1.8% of an average execution time of a functional
block.

VI. CONCLUSIONS
Our novel Processor Control Unit enables efficient simulta-
neous multi-tasking in multi-core reconfigurable processors
with functional block level allocation of the mixed-grained
reconfigurable fabric, while maintaining the application’s
QoS requirement under run-time varying scenarios. Our
Constraints-based Fabric-Allocator adaptively allocates the
fabric to different tasks considering their refined criticali-
ties, such that the margins for deadline misses are reduced.
The QoS controller increases or decreases the criticality of
each task based on the current state of the system and fur-
ther guides the Constraints-based Fabric-allocator to refine
its next allocation decisions. Compared to state-of-the-art,
our scheme reduces the deadline misses by (on average) 6x,
while improving the overall performance by 1.3x.

ACKNOWLEDGMENT
We thank German Research Foundation (DFG) for funding
the work within the KAHRISMA project.

REFERENCES
[1] R. Koenig et al., “KAHRISMA: A Novel Hypermorphic

Reconfigurable-Instruction-Set Multi-grained-Array Architecture”,
DATE, pp.819-824, 2010.

[2] D. Göhringer et al., “Runtime adaptive multi-processor system-on-
chip: RAMPSoC”, IPDPS, pp. 1-7, 2008.

[3] http://www.xilinx.com/products/v4q/lx.htm
[4] A. Bhattacharjee et al., “Thread Criticality Predictors for Dynamic

Performance Power, and Resource Management in Chip
Multiprocessors”, ISCA, pp. 290-301, 2009.

[5] O. Diessel et al., “Dynamic scheduling of tasks on partially
reconfigurable FPGAs”, IEEE Proceedings – Computers and Digital
Techniques, pp. 181-188, 2000.

[6] E. El-Araby et al., “Virtualizing and sharing reconfigurable resources
in High-Performance Reconfigurable Computing systems”,
HPRCTA, pp. 1-8, 2008.

[7] A. Gavrilovska et al., “High-Performance Hypervisor Architectures:
Virtualization in HPC Systems”, HPCVirt, 2007.

[8] G. Smit et al., “Overview of the 4S project”, In International
Symposium on System-on-Chip, pp. 70–73, 2005.

[9] F. Thoma et al., “Morpheus: Heterogeneous reconfigurable
computing”, in FPL, pp. 409–414, 2007.

[10] E. Lübbers and M. Platzner, “ReconOS: An RTOS supporting hard-
and software threads”, in FPL, pp.441-446, 2007.

[11] K. Wu et al., “MT-ADRES: Multithreading on Coarse-Grained
Reconfigurable Architecture”, in International Journal of Electronics,
Volume 95, Issue 7, pp. 761-776, 2008.

[12] W. Ahmed et al., “mRTS: Run-Time System for Reconfigurable
Processors with Multi-Grained Instruction-Set Extensions”, DATE,
pp.1554-1559, 2011.

[13] C. Haung and F. Vahid, “Dynamic Coprocessor Management for
FPGA-Enhanced Compute Platforms”, CASES, pp.71-78, 2008.

[14] V. Gupta et al., “Self-adaptive admission control policies for
resource-sharing systems”, SIGMETRICS, pp. 311–322, 2009.

[15] L. Bauer et al., “Run-time System for an Extensible Embedded
Processor with Dynamic Instruction Set”, DATE, pp.752-757, 2008.

32

