
Run-Time Resource Allocation for Simultaneous Multi-Tasking in 
Multi-Core Reconfigurable Processors 

Waheed Ahmed, Muhammad Shafique, Lars Bauer, Manuel Hammerich, Jörg Henkel, and Juergen Becker 
Karlsruhe Institute of Technology, Karlsruhe, Germany 

{ahmed.waheed, muhammad.shafique, lars.bauer, henkel, becker} @ kit.edu  
State-of-the-art multi-core reconfigurable processors do not ex-
ploit the full potential of simultaneous multi-tasking with run-
time adaptive reconfigurable fabric allocation. We propose a 
novel run-time system for simultaneous multi-tasking in a multi-
core reconfigurable processor that adaptively allocates the 
mixed-grained reconfigurable fabric resource at run time among 
different tasks considering their performance constraints. Our 
scheme employs the novel concept of refined task-criticality 
(based on the functional-block-level performance constraints) 
considering the computational properties of dependent tasks and 
their inherent potential for acceleration. Our scheme dynamical-
ly compensates the deadline misses at the functional block level. 
It thereby reduces the potential task-level deadline misses under 
competing scenarios. With the help of a secure video conferenc-
ing application (with 4 dependent tasks of diverse computational 
properties), we demonstrate that our scheme reduces the deadline 
misses by (on average) 6x under given performance constraints, 
when compared to state-of-the-art reconfigurable processors [1, 
9, 12]. 

I. INTRODUCTION AND MOTIVATION 
Modern multi-core reconfigurable processors are mixed-
grained ([1], 4S [8], Morpheus [9]), i.e., they are composed 
of various (RISC-like) cores coupled with multiple fine-
grained and coarse-grained reconfigurable fabrics in order to 
expedite bit-/byte-level operations (bit shuffling, packing, 
merging, etc.) and (sub)-word-level operations (add, sub-
tract, multiply, etc.), respectively. There is a need to effi-
ciently support simultaneous multi-tasking with run-time 
mixed-grained fabric allocation in multi-core reconfigurable 
processors for exploiting the Task-Level Parallelism. Multi-
core reconfigurable processors may exploit: 

a) task-level parallelism by executing multiple tasks on 
different cores in parallel, and 

b) instruction-level parallelism by accelerating the func-
tional blocks of applications (that may contain diverse com-
putational kernels1) using Instruction Set Extensions (ISEs) 
to the cores [1,8,9,12,15]. These ISEs consist of data-paths 
that may be reconfigured on parts of a fine-grained or a 
coarse-grained reconfigurable fabric, which are shared 
among different cores. It thereby enables each kernel to 
have different ISEs with different performance vs. area tra-
deoffs, i.e., different speedups for different utilizations of 
the fabric.  

However, state-of-the-art multi-core reconfigurable pro-
cessors [1,8,9,12] do not exploit simultaneous multi-tasking 
(with both task- and instruction-level parallelism) at their 
full throttle, when considering the heterogeneous nature of 

                                                           
1 The compute-intensive loops, which are executed most often 

fine- and coarse-grained fabrics and the scenarios of run-
time varying (i) task mapping, (ii) workload conditions, etc. 
Moreover, these processors lack efficient (in terms of 
performance, for instance) fabric allocation schemes that 
operate with consideration of simultaneous multi-tasking. 
We are the first to explore the full potential of simultaneous 
multi-tasking in multi-core reconfigurable processors by 
allocating the mixed-grained reconfigurable fabrics among 
different tasks at the granularity level of functional blocks. 

When exploiting the task-level parallelism for 
simultaneous multi-tasking, the case of dependent tasks 
needs to be distinguished. Dependent tasks share a common 
deadline and priority (associated with the application). For 
example, in video conferencing application, the video and 
audio encoding and decoding tasks are considered as 
dependent tasks as they share a common deadline (30 
frames/sec) and they depend on each other as they cannot 
start their next job until both of them do not complete their 
job. Dependent tasks significantly differ in their memory 
requirements and computational properties. Some tasks 
exhibit control-dominant and/or bit/byte-level processing 
(bit shuffling, packing, merging, etc.), while some other 
tasks exhibit data-dominant and/or (sub) word-level 
processing. Therefore, different tasks might require less or 
more area of fine-grained and/or coarse-grained fabrics (to 
expedite their functional blocks) depending upon their 
inherent potential for acceleration. Furthermore, the 
requirements of these tasks may vary frequently at run time, 
e.g., due to a change in the input data, which may lead to the 
situation where one or more tasks may become critical in 
determining the overall Quality of Service (QoS) of 
dependent tasks. The task is termed as critical if it misses or 
going to miss the deadline and the margin with which the 
task misses (or going to miss) the deadline denotes the 
task’s crticality. Recently, the notion of criticality has been 
evolved for the dependent tasks to perform load balancing 
and frequency scaling [3]. However, criticality has not been 
fully explored by run-time schemes for reconfigurable fabric 
allocation, especially in case of simultaneous multi-tasking. 

Hence, it can be concluded that to enable simultaneous 
multi-tasking on multi-core reconfigurable processors under 
high throughput and QoS constraints (that may vary at run 
time), a run-time system is desirable that efficiently allo-
cates the mixed-grained fabric resource (at run-time) among 
different competing dependent tasks, while considering their 
respective criticalities to ensure that each task achieves its 
performance constraint (finishing its job before deadline), or 
alternatively missing the deadline by a user-defined tolera-
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ble margin (i.e., graceful degradation). We therefore consid-
er a system with soft constraints. 
Our Novel Contribution: We propose a novel Processor 
Control Unit as an integral run-time system for multi-core 
reconfigurable processors. It ensures the application’s QoS 
by dynamic deadline adaptations and mixed-grained fabric 
allocation to simultaneous multiple tasks at the functional 
block level. The proposed processor control unit achieves 
this using its two major components: 
a) Constraints-based Fabric-Allocator: It dynamically al-

locates the mixed-grained fabric to the functional blocks 
based on their criticalities, priorities, deadlines and compu-
tational properties.  

b) QoS Controller: It monitors and updates the state of 
the system and estimates the criticality of critical tasks and 
fine-tunes the deadlines at functional block level. 

II. RELATED WORK 
The authors in [5,10] have discussed the operating system 
based task’s placement and scheduling of complete tasks on 
the reconfigurable fabric, while considering the reconfigura-
tion latency in order to achieve higher performance at run-
time. In contrast, approaches discussed in [6,7] targeted re-
configurable architectures for high performance computing 
by enabling the sharing of attached FPGAs among parallel 
applications at compile-time. These approaches are beneficial 
in case that the processing behavior of tasks is not changed 
during their run-time. Authors in [11] presented an approach 
that maps different kernels of a functional block onto a 
coarse-grained reconfigurable fabric while mapping decisions 
are determined at compile-time. The above-discussed ap-
proaches either lack run-time adaptivity at functional block 
and/or allocate a certain type of fabric to the complete task, 
thus limiting the exploitation of the full potential of simulta-
neous multi-tasking in multi-core reconfigurable processors. 
Altogether, none of the presented approaches provides a run-
time system to efficiently enable simultaneous multi-tasking 
with mixed-grained reconfigurable fabric allocation at func-
tional block level, when considering dependent tasks and run-
time varying scenarios. 

III. OUR MULTI-CORE RECONFIGURABLE PROCESSOR 

Task Mapper
Task1 Task2

Pr
oc
es
so
rC
on
tro
lU
ni
t

(S
ec
tio
n
IV
)

O
ur

N
ov

el
C

on
tri

bu
tio

n

Taskn

Core1 Corem
Array of mixed-Grained RUs

Core2

M
em

or
y

Su
bS

ys
te

m
(A

bs
tra

ct
ed

fo
rs

im
pl

ific
at

io
n)

PRC PRC PRC

PRC PRC PRC Sc
ra
tc
h

Pa
d

M
em
or
y

Co
nt
ex
t

M
em
or
y

Register
Files

O
pc
od
e

De
co
di
ng

Sc
ra
tc
h
Pa
d

M
em
or
y

2 ALU
Blocks

PRC PRC PRC

PRC PRC PRC Sc
ra
tc
h

Pa
d

M
em
or
y

FG-RU FG-RU

CG-RU CG-RU

Co
nt
ex
t

M
em
or
y

Register
Files

O
pc
od
e

De
co
di
ng

Sc
ra
tc
h
Pa
d

M
em
or
y

2 ALU
Blocks

...

...

...

...
...

Fig. 1 Model of our multi-core reconfigurable processor [1] 
Fig. 1 shows the integratation of our novel Processor 
Control Unit with the multi-core reconfigurable processor, 
which consists of several RISC cores tightly-coupled with 
mixed-grained fabrics, i.e., an array of fine-grained (FG)- 
and coarse-grained (CG)- reconfigurable units (RUs). A FG-

RU is realized as an embedded FPGA, which consists of 
Partially Reconfigurable Containers (PRCs) that can be 
reconfigured to contain different hardware accelerators. 
Both FG- and CG-RUs have dedicated scratch pad memo-
ries – connected to the Memory Sub-System – to allow for 
fast data access and to store intermediate results. The Task 
Mapper maps an incoming task to a RISC core. Different 
RISC cores can execute their tasks in parrallel and use RUs 
to expedite them. 

IV. PROCESSOR CONTROL UNIT  
The Processor Control Unit (as an integral run-time system 
in our multi-core reconfigurable processor) reacts to differ-
ent scenarios, while considering the system constraints, the 
current load on the system, and the utilized resources. It 
therefore enables the possibility to bring the system to per-
form with required QoS under run-time varying scenarios. 
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Fig. 2 : Overview of our Processor Control Unit 
Fig. 2 shows the architectural overview of our proposed 
Processor Control Unit showing its two main components, 
i.e, the Constraints-based Fabric Allocator and the QoS 
Controller. Each task requests the fabric area for its upcom-
ing predicted functional blocks by issuing a Demand In-
struction to the processor control unit. The Processor Con-
trol Unit queues these Demand Instructions if it is already 
processing a previous Demand Instructions, otherwise it 
starts the Constraints-based Fabric Allocator to allocate the 
Reconfigurable Units (RUs) to the demanding tasks.  

The goal of Processor Control Unit at run time is to meet 
the deadlines of each task. It employs the Constraints-based 
Fabric Allocator and the QoS Controller to achieve this goal. 
The QoS Controller is triggered by Demand Instructions and 
Synchronization Instructions that are issued at QoS check 
points. It determines the criticalities for all executing tasks, 
which is used as an input to Constraints-based Fabric Alloca-
tor.  

QoS Controller: The main objective of the QoS Control-
ler at the prediction of functional blocks is to fine-tune the 
deadlines assigned to each functional block. Initially the 
deadlines are proportionally distributed at functional block 
level based on their expected execution time. At run-time 
the QoS Controller uses the real time values monitored by 
the monitoring unit and calculates the actual time taken by 
the previous functional blocks of the given task during the 
same QoS period. Based on the actual time tk taken by pre-
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ceding functional blocks (i.e. 0,…,i-1) and deadlines (fb_dl) 
assigned to the subsequent functional blocks (i.e. i,…, n), 
the QoS Controller estimates the total time that task would 
require to complete its job and then adjusts the deadlines of 
remaining functional blocks proportionally as explained in 
Eq. 1. 

1

0
_ _ Task_Deadline *

_

_
_

k

i i k k
i

n
i n k i
k k i

fb dl fb dl
fb dl

fb dl
t fb dl     (1) 

The objective of the QoS controller at the completion of QoS 
period is to estimate the achieved QoS of each task and assign 
criticality. The criticalities are proportionally estimated based 
on the time left for each active task to complete its job.  

Constraints-based Fabric Allocator: It allocates the RUs 
to the predicted functional blocks in such a way that each 
functional block can fulfill its deadline by choosing a per-
formance efficient set of ISEs. The number of CG-RUs and 
the total number of PRCs are known to the Constraints-
based Fabric Allocator. The task of the Constraints-based 
Fabric Allocator is to find the set of ISEs for all parallel 
executing tasks with goal that each functional block 
achieves its deadline while considering the constraints that 
the fabric used by all tasks at any instance is not more than 
the total fabric area. The output from this stage is the list of 
data-paths which need to be reconfigured on the allocated 
RUs. To find the best solution, we need to evaluate all com-
binations of ISEs for all tasks. Considering the run-time 
nature of our Constraints-based Fabric Allocator we incor-
porate a heuristic based algorithm. 

Our approach first sorts the tasks with respect to their criti-
calities and favors the local optimal task ts by giving more re-
sources to it with the goal of minimizing the difference be-
tween the deadline dx,y and actual time tx,y taken by functional 
block y of task x as described in Eq. 2 (note that the functional 
blocks fb and y are limited to future subsequent blocks). 

, , , , ,find min :   : s s fb s fb x y x y x yt fb t d t d  (2) 

The QoS Controller updated the task criticalities as explained 
before, which are feed back to Constraints-based Fabric Allo-
cator to fine-tune the found solution. 

V. EXPERIMENTAL RESULTS AND EVALUATION 
We used Leon-II processor (based on SPARC V8 architec-
ture) as RISC cores. The CG-RUs are operating at 400 
MHz, while the FG-RUs are operating at 100 MHz. The 
reconfiguration bandwidth of the FG-RU is 67584 KB/s (for 
Xilinx Virtex-II FPGAs). The 32-bit load/store unit is avail-
able to each CG-RU, while each FG-RU is provided with 
two 128-bit load/store units. A point-to-point communica-
tion between the RUs takes two cycles. The complete sys-
tem is simulated on our multi-core cycle-accurate instruc-
tion-set-simulator. Its inputs (i.e., the data-paths latencies 
and reconfiguration cycles for FG- and CG-RUs) are ob-
tained after place-and-route using Xilinx-FPGA-tools [3] 
and ASIC-synthesis-flow for TSMC using the same tech-
nology node (i.e., 90nm), respectively.  

For evaluation, we use a secure video conferencing ap-
plication which consists of H.264 video encoder/decoder 
and AES encrypt/decrypt tasks. The H.264 decoder and 
AES decrypt belong to one dependent set of tasks, while the 
H.264 encoder and AES encrypt belong to another set of 
dependent tasks. Due to their diverse processing behavior, 
these tasks vary in their fabric demands and corresponding 
performance improvement. For a fair comparison, we have 
provided the same set of hardware accelerators and ISEs as 
well as the same amount of memory bandwidth and same 
input data for each comparison. 
A. Comparison with State-of-the-Art 
We compare our scheme with state-of-the-art multi-core recon-
figurable processors (like 4S [8], Morpheus [9]) and different 
task and functional block level allocation policies [13]. Fig. 3 
shows a detailed comparison with state-of-the-art for the 
total execution time and the deadline misses. The horizontal 
axis shows the fabric area which is in pairs of number of 
PRCs and number of CG-RUs. The bars show the total ex-
ecution time of an application and the lines show the dead-

0

50

100

150

200

250

300

Task-level RAMPSoC [2] Task-level HpifF [12] FB-level Morpheus [9]+4S [8] FB-level Criticality-based

0

5

10

15

20

25

30

35

40
Task-level RAMPSoC [2] DL-Misses Task-level HpifF [12] DL-Misses

FB-level Morpheus [9]+4S [8] DL-Misses FB-level Criticality-based DL-Misses

6,3
Reconfigurable  fabric area(number of PRCs,number of CG-RUs)

7,0 7,1 7,2 7,3 8,0 8,1 8,2 8,3 9,0 9,1 9,2 9,3 10,0 10,1 10,2 10,3 11,0 11,1 11,2 11,3 12,0 12,1 12,2 12,3

To
ta

l e
xe

cu
tio

n 
cy

cl
es

(in
 M

ill
io

ns
) 

To
ta

l D
ea

dl
in

e(
D

L)
 M

is
se

s 

 
Fig. 3: A Comparison of performance and deadline misses with various state-of-the-art allocation policies 
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line misses for the given area and allocation policy used. We 
discuss these comparisons as follows: 
Compared to Task-Level RAMPSoC [2]: The comparison 
with RAMPSoC [2] is analogous to the comparison with the 
Equal distribution policy as all the cores have the same 
amount of fabric. Our proposed allocation scheme reduces 
(on avg.) 6.1x deadline misses and achieve up to 1.6x per-
formance improvement. The major advantage in perfor-
mance improvement is achieved when available fabric is 
limited, i.e., between (6,3) and (11,3). The reason is that due 
to equal fabric allocation to all tasks, the tasks requiring 
more fabric than others, suffers from deadline misses. In this 
scenario, the H.264 encoder and decoder miss most of their 
deadlines as they do not get the required fabric. 
Functional block-level policy for Morpheus [9] and 4S [8] 
like architectures (FB-level Morpheus+4S): The architec-
tures like Morpheus [9] and 4S [8] have proposed fabric 
allocation at compile-time for performance optimization. 
We have modeled their approach for resource allocation at 
run-time. Due to loosely coupled architecture, only the CG- 
or FG- ISE of each functional block could be used. Com-
pared to their approach, our scheme provides up to 1.9x 
performance improvement and reduces the average deadline 
misses by 5.3x times. The advantages shown in the results is 
basically due to the fact that we consider the task criticality 
and adjust accordingly during run-time at functional block 
level, while Morpheus+4S like approach tries to achieve 
high performance without considering the criticality of each 
task. 
Compared to Task-level Highest performance improve-
ment factor First (HpifF [12]) policy: This comparison is 
analogous to comparing with techniques of [12] as they allo-
cate the resources for overall performance optimization. Com-
pared to [12], our scheme reduces (on avg.) 6.9x deadline 
misses and achieve up to 1.4x time performance improvements 
(avg. 1.3x). In HpifF based scheme, the task with the most po-
tential of improvement factor (pif) is given more fabric. The pif 
is estimated cycles saved compared to non-accelerated execu-
tion of functional blocks. The problem with such an allocation 
scheme is that the task with the highest pif monopolizes the 
available resources and will always get the demanded re-
sources. This is shown in this scenario as the H.264 encoder is 
using almost 80% of the fabric area in these cases; causing 
AES encrypt and decrypt tasks to completely miss their dead-
lines. On the contrary, our scheme reduces deadline misses by 
6.9x times, as our processor control unit uses the actual moni-
tored criticalities of tasks to allocate the fabric.  
B. Overhead and Implementation Details 
The Processor Control Unit uses one of the available CG-
RUs to execute its algorithms. Constraints-based Fabric 
Allocator is the most compute intensive part. Its processing 
depends on number of tasks, number of Demand Instruc-
tions, number of kernels, size of fabric (no. of CG-RUs and 
PRCs), and number of data-paths that must be replaced for 
given already reconfigured data-paths. On average, in our 
experiments, the Constraints-based Fabric Allocator re-

quires less than 1200 cycles for each task and on average it 
took 4500 cycles to decide the fabric share for 4 tasks that 
had put their Demand Instructions. The overhead is negligi-
ble as it is 1.8% of an average execution time of a functional 
block. 

VI. CONCLUSIONS 
Our novel Processor Control Unit enables efficient simulta-
neous multi-tasking in multi-core reconfigurable processors 
with functional block level allocation of the mixed-grained 
reconfigurable fabric, while maintaining the application’s 
QoS requirement under run-time varying scenarios. Our 
Constraints-based Fabric-Allocator adaptively allocates the 
fabric to different tasks considering their refined criticali-
ties, such that the margins for deadline misses are reduced. 
The QoS controller increases or decreases the criticality of 
each task based on the current state of the system and fur-
ther guides the Constraints-based Fabric-allocator to refine 
its next allocation decisions. Compared to state-of-the-art, 
our scheme reduces the deadline misses by (on average) 6x, 
while improving the overall performance by 1.3x.  

ACKNOWLEDGMENT 
We thank German Research Foundation (DFG) for funding 
the work within the KAHRISMA project. 

REFERENCES 
[1] R. Koenig et al., “KAHRISMA: A Novel Hypermorphic  

Reconfigurable-Instruction-Set Multi-grained-Array Architecture”, 
DATE, pp.819-824, 2010. 

[2] D. Göhringer et al., “Runtime adaptive multi-processor system-on-
chip: RAMPSoC”, IPDPS, pp. 1-7, 2008. 

[3] http://www.xilinx.com/products/v4q/lx.htm 
[4] A. Bhattacharjee et al., “Thread Criticality Predictors for Dynamic 

Performance Power, and Resource Management in Chip 
Multiprocessors”, ISCA, pp. 290-301, 2009. 

[5] O. Diessel et al., “Dynamic scheduling of tasks on partially 
reconfigurable FPGAs”, IEEE Proceedings – Computers and Digital 
Techniques, pp. 181-188, 2000. 

[6] E. El-Araby et al., “Virtualizing and sharing reconfigurable resources 
in High-Performance Reconfigurable Computing systems”, 
HPRCTA, pp. 1-8, 2008. 

[7] A. Gavrilovska et al., “High-Performance Hypervisor Architectures: 
Virtualization in HPC Systems”, HPCVirt, 2007. 

[8] G. Smit et al., “Overview of the 4S project”, In International 
Symposium on System-on-Chip, pp. 70–73, 2005. 

[9] F. Thoma et al., “Morpheus: Heterogeneous reconfigurable 
computing”, in FPL, pp. 409–414, 2007. 

[10] E. Lübbers and M. Platzner, “ReconOS: An RTOS supporting hard- 
and software threads”, in FPL, pp.441-446, 2007. 

[11] K. Wu et al., “MT-ADRES: Multithreading on Coarse-Grained 
Reconfigurable Architecture”, in International Journal of Electronics, 
Volume 95, Issue 7, pp. 761-776, 2008. 

[12] W. Ahmed et al., “mRTS: Run-Time System for Reconfigurable 
Processors with Multi-Grained Instruction-Set Extensions”, DATE, 
pp.1554-1559, 2011. 

[13] C. Haung and F. Vahid, “Dynamic Coprocessor Management for 
FPGA-Enhanced Compute Platforms”, CASES, pp.71-78, 2008. 

[14] V. Gupta et al., “Self-adaptive admission control policies for 
resource-sharing systems”, SIGMETRICS, pp. 311–322, 2009. 

[15] L. Bauer et al., “Run-time System for an Extensible Embedded 
Processor with Dynamic Instruction Set”, DATE, pp.752-757, 2008. 

32


