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Abstract—Optimization techniques are widely used in embedded 

systems design to improve overall area, performance and energy 

requirements. Dynamic cache reconfiguration is very effective to 

reduce energy consumption of cache subsystems which accounts 

for about half of the total energy consumption in embedded sys-

tems. Various studies have shown that code compression can 

significantly reduce memory requirements, and may improve 

performance in many scenarios. In this paper, we study the chal-

lenges and associated opportunities in integrating dynamic cache 

reconfiguration with code compression to retain the advantages 

of both approaches. Experimental results demonstrate that syn-

ergistic combination of cache reconfiguration and code compres-

sion can significantly reduce both energy consumption (65% on 

average) and memory requirements while drastically improve 

the overall performance (up to 75%) compared to dynamic cache 

reconfiguration alone. * 

1. INTRODUCTION 

Energy conservation has been a primary optimization ob-
jective in designing embedded systems as these systems are 
generally limited by battery lifetime. Several studies have 
shown that memory hierarchy accounts for as much as 50% of 
the total energy consumption in many embedded systems [1]. 
Dynamic cache reconfiguration (DCR) and code compression 
are two of the extensively studied approaches in order to 
achieve energy savings as well as area and performance gains. 

Different applications require highly diverse cache con-
figurations for optimal energy consumption in the memory 
hierarchy. Unlike desktop-based systems, embedded systems 
are designed to run a specific set of well-defined applications. 
Thus it is possible to have a cache architecture that is tuned 
for those applications to have both increased performance as 
well as lower energy consumption. Since too many cache con-
figurations are possible, the challenge is to determine the best 
cache configuration (in terms of total size, associativity, and 
line size) for a particular application. Studies have shown that 
cache tuning can achieve 53% memory-access-related energy 
savings and 30% performance improvement [2]. 

The use of high-level programming languages coupled 
with RISC instruction sets leads to a larger memory footprint 
and increased area/cost and power requirements, all of which 
are important design constraints in most embedded applica-
tions. Code compression is clearly beneficial for memory size 
reduction because it reduces the static memory size of execut-
able code. Several code compression techniques have been 
proposed for reducing instruction memory size in low cost 
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embedded applications [3]. The basic idea is to store instruc-
tions in compressed form and decompress them on-the-fly at 
execution time. More importantly, code compression could 
also be beneficial for energy by reducing memory size and the 
communication between memory and the processor core [4]. 

Design of efficient compression techniques needs to con-
sider two important aspects. First, the compressed code has to 
support the possibility of starting the decompression during 
execution at several points inside the program (i.e., branch 
targets). Second, since decompression is performed on-line, 
during program execution, decompression algorithms should 
be fast and power efficient to achieve savings in memory size 
and power, without compromising performance. We explore 
various compression techniques (including dictionary-based 
compression, bitmask-based compression and Huffman cod-
ing) that represent a trade-off between compression perfor-
mance and decompression overhead.  

It is expected that by compressing instructions the cache 
behavior of programs is no longer the same. Thus in order to 
have the optimal cache configuration, more analysis should be 
done including hit/miss behavior of the compressed programs. 
In other words, cache reconfiguration needs to be aware of 
code compression to obtain best possible area, power and per-
formance results. In this paper, we present an elaborate analy-
sis of combining two optimization techniques: dynamic cache 
reconfiguration and code compression. Our experimental re-
sults demonstrate that the combination is synergistic and 
achieves more energy savings as well as overall performance 
compared to DCR and code compression alone. 

The rest of the paper is organized as follows. Section 2 
provides an overview of related research activities. In Section 
3 we describe our compression-aware cache reconfiguration 
methodology. Section 4 presents our experimental results. 
Finally, Section 5 concludes the paper. 

2. BACKGROUND AND RELATED WORK 

2.1 Dynamic Cache Reconfiguration (DCR) 

In power constrained embedded systems, nearly half of 
the overall power consumption is attributed to the cache sub-
system [1]. Applications require vastly different cache re-
quirements in terms of cache size, line size, and associativity. 
Research shows that specializing the cache to application’s 
needs can significantly reduce energy consumption [2]. Fig. 1 
illustrates how energy consumption can be reduced by using 
inter-task (application-based) cache reconfiguration in a sim-
ple system supporting three tasks. In application-based cache 
tuning, DCR happens when a task starts its execution or it 
resumes from an interrupt (either by preemption or when exe-



cution of another task completes) and the same cache for the 
application gets chosen no matter if it is starting from the be-
ginning or resuming anywhere in between. Fig. 1 (a) depicts a 
traditional system and Fig. 1 (b) depicts a system with a re-
configurable cache. For the ease of illustration let’s assume 
cache size is the only reconfigurable parameter of cache (as-
sociativity and line size are ignored). In this example, Task1 
starts its execution at time P1. Task2 and Task3 start at P2 and 
P3 respectively. In a traditional approach, the system always 
executes using a 4096-byte cache. We call this cache as base 
cache throughout the paper. Base cache is the best possible 
cache configuration optimized for all the tasks. With the op-
tion of reconfigurable cache, Task1, Task2, and Task3 execute 
using 1024-byte cache starting at P1, 8192-byte cache starting 
at P2, and 4096-byte cache starting at P3 respectively. 
Through proper selection of cache size for each task the sys-
tem can achieve significant amount of energy savings as well 
as performance gains compared to using only the base cache. 

 

Fig. 1: DCR for a system with three tasks 

The inter-task DCR problem is defined as follows. Con-
sider a set of n applications (tasks) A = {a1, a2, a3, ... , an} in-
tended to run on a configurable cache architecture capable of 
supporting m possible cache configurations C = {c1, c2, c3, ... , 
cm }. We define e(cj , ai) as the total energy consumed by run-
ning application ai on the architecture with cache configura-
tion cj. We also define co   C as the optimal cache configura-
tion for application ai, such that e(co, ai)   e(cj, ai),  cj   C. 
Through exhaustive exploration of all possible configurations 
of C = {c1, c2, c3, ... , cm}, best energy optimal cache configu-
ration for each application can be found. 

Dynamic cache reconfiguration has been extensively 
studied in several works [5] [6] [7] [8]. The reconfigurable 
cache architecture proposed by Zhang et al. [6] determines the 
best cache parameters by using Pareto-optimal points trading 
off energy consumption and performance. Their method im-
poses no overhead to the critical path, thus cache access time 
does not increase. Chen and Zou [9] introduced a novel recon-
figuration management algorithm to efficiently search the 
large design space of possible cache configurations for the 
optimal one. None of these approaches consider the effects of 
compressed code on cache reconfiguration. 

DCR can be viewed as a technique that tries to squeeze 
cache size with other cache parameters to reduce energy con-
sumption without (or with minor) performance degradation. 
Smaller caches contribute less static power but may increase 
cache misses which can lead to increased dynamic power and 
performance degradation (longer execution time thus higher 
energy consumption). Therefore, the smallest possible cache 
may not be a feasible solution in many cases. DCR techniques 
find the best cache that fits the application by exploring cache 
configurations using various schemes. In this paper, we show 
that code compression which significantly reduces the code 
size can also help the cache reconfiguration technique to 
choose relatively smaller cache sizes, smaller associativity, or 
smaller line size without performance degradation, therefore, 
reduces cache energy consumption significantly. 

The configurable caches used in our work are based on 
the architecture described in [10]. The underlying cache archi-
tecture contains four separate banks that can operate as four 
separate ways. Special configuration registers are used to in-
form the cache tuner – a custom hardware or a lightweight 
process – to concatenate ways such that the associativity can 
be altered. The special registers may also be configured to 
shut down ways to vary the cache size. Similarly, by configur-
ing the fetch unit to fetch cache lines in various lengths, we 
can adjust the line sizes. Cache reconfiguration time and ener-
gy overhead of the reconfigurable hardware is negligible [10]. 

2.2 Code Compression in Embedded Systems 

Various code compression algorithms are suitable for 
embedded systems, i.e., provide good compression efficiency 
with minor (acceptable) or no decompression overhead. Wolfe 
and Chanin [11] were among the first to propose an embedded 
processor design that incorporates code compression. Xie et 
al. [12] introduced a compression technique capable of com-
pressing flexible instruction formats in VLIW architectures. 
Seong et al. [13] modified dictionary-based compression 
(BMC) technique using bitmasks which improved compres-
sion efficiency without introducing any additional decompres-
sion overhead. Lin and Xie [14] proposed LZW-based algo-
rithms to compress branch blocks. Recently, Rawlins et al. 
[15] used compressed programs in their approach of combined 
loop caching with DCR. Their approach has several limita-
tions. They primarily focus on loop caching which may not be 
applicable in many embedded systems due to intrusive addi-
tion of another level of cache. Furthermore, due to emphasis 
on loop caching, interactions between compression and DCR 
was not explored in detail. In this paper we provide compre-
hensive analysis of how compression and DCR synergistically 
interact with each other as well as energy-performance trade-
offs available for system designer.  

Traditional code compression and decompression flow is 
illustrated in Fig. 2 where the compression is done offline 
(prior to execution) and the compressed program is loaded 
into the memory. The decompression is done during the pro-
gram execution (online) and as shown in Fig. 7 it can be 
placed before or after cache. It is possible to place the decom-
pression unit between two levels of cache as well, if the sys-
tem has multi-level cache hierarchy. 
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In this paper we explore three compression techniques: 
dictionary-based compression (DC), bitmask-based compres-
sion (BMC) [13], and Huffman coding. DC and Huffman cod-
ing represent two extremes. DC is a simple compression tech-
nique and therefore produces moderate compression but de-
compression is very fast. On the other hand, Huffman coding 
is considered to be one of the most efficient compression 
techniques but has higher decompression overhead/latency. 
DC and Huffman are widely used but BMC is a recent en-
hancement of DC that enables more matching patterns. Fig. 3 
shows the generic encoding formats of bitmask-based com-
pression technique for various numbers of bitmasks. Com-
pressed data stores information regarding the bitmask type, 
bitmask location, and the mask pattern itself. The bitmask can 
be applied in different places in a vector and the number of 
bits required for indicating the position varies depending on 
the bitmask type. Bitmasks may be sliding or fixed. A fixed 
bitmask can be applied to fixed locations, such as byte bound-
aries. However, sliding bitmasks can be applied anywhere in 
the code vector.  

The main advantage of bitmask-based compression over 
traditional dictionary-based compression is the increased 
matching patterns. In dictionary-based compression, each vec-
tor is compressed only if it completely matches with a dic-
tionary entry. Fig. 4 illustrates an example of bitmask-based 
compression in which it can compress up to six data entries 
using bitmask-based compression, whereas using only dic-
tionary-based compression would compress only four entries. 
The example in Fig. 4 uses only one bitmask. In this case, 
vectors that match exactly a dictionary entry are compressed 
with 3 bits. The first bit represents whether it is compressed 
(using 0) or not (using 1). The second bit indicates whether it 
is compressed using bitmask (using 0) or not (using 1). The 
last bit indicates the dictionary index. Data that are com-
pressed using bitmask requires 8 bits. The first two bits, as 
before, represent if the data is compressed, and whether the 
data is compressed using bitmasks. The next three bits indi-
cate the bitmask position and followed by two bits that indi-
cate the bitmask pattern. 

In this example, the compression ratio is 80%. Compres-
sion ratio (CR), widely accepted as a primary metric for 
measuring the efficiency of code compression, is defined as:  

   
                       

                     
 

Bitmask selection and dictionary selection are two major 
challenges in bitmask-based code compression. Seong et al. 
[13] have shown that the profitable bitmasks to be selected for 
code compression are 1s, 2s, 2f, 4s, and 4f (s and f stand for 
sliding and fixed bitmasks respectively). Since the decom-
pression engine must be able to start execution from any of 
jump targets, branch targets should be aligned in the com-
pressed code. In addition, the mapping of old addresses (in the 
original uncompressed code) to new addresses (in the com-
pressed code) is kept in a jump table. 

3. COMPRESSION-AWARE DCR 

It is a major challenge to optimize both performance and 
energy consumption simultaneously. In case of DCR, 
tradeoffs between performance and energy consumption 
should be considered in order to choose the most profitable 
cache configuration for each application. Fig. 5 shows an ex-
ample of performance-energy consumption tradeoff using 
Anagram benchmark. Each dot represents a cache configura-
tion showing its corresponding energy consumption and total 
execution time of the task. By plotting all cache configura-
tions in performance-energy consumption graph (based on 
time and energy consumption from simulation results) we can 
determine Pareto optimal points representing feasible alterna-
tives. For instance, increasing cache line or associativity can 
improve performance and may increase energy consumption 
as well. High performance alternatives will sacrifice some 
amounts of energy while selecting energy saving options 
would have lower performance. The remainder of this section 
describes how to combine the advantages of both compression 
and dynamic reconfiguration.  

 

 

 
Fig. 4: An example of bitmask-based code compression 
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00000000 → 0 1   0 
10000010 → 1    10000010 
00000010 → 0 0 110 10 0 

01000010 → 0 1   1 

01001110 → 1    01001110 

01011010 → 0 0 011 11 1 

00001100 → 1    00001100 

01000010 → 0 0   1 

11000000 → 1    11000000 

00000000 → 0 1   0 
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Fig. 2: Traditional code compression methodology 
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3.1 Motivation 

A reconfigurable cache can be viewed as an elastic cache 
with flexible parameters such as cache size, line size, and as-
sociativity. The dynamic reconfiguration technique exploits 
the elasticity of such caches by selecting a profitable cache 
configuration which is capable of maintaining the critical por-
tion of the application to reduce energy consumption. Choos-
ing smaller caches that fail to store the critical portion of the 
program may lead to increased cache misses thus longer exe-
cution time and eventually escalation in energy consumption. 
However, it is possible that the cache reconfiguration method 
may find a cache configuration that increases the execution 
time of the application in spite of reduced energy consump-
tion. This may not be an issue for systems without real-time 
constraints but timing constraints in real-time applications 
limit use of such cache reconfiguration techniques. Integrating 
code compression with cache reconfiguration resolves this 
problem by effectively shrinking the program size in order to 
fit the critical portion of the application into a smaller cache. 

Fig. 6 illustrates different caches for a real-time embed-
ded system with a set of applications. Associativity is ignored 
for the ease of illustration. The horizontal and vertical axis 
show different possibilities of cache size and line size, respec-

tively. Cache1 is the optimized base cache chosen for the 
system which is used for all applications and will have the 
minimal energy consumption while ensuring that no deadlines 
will be missed. Cache2 is the cache selected by dynamic re-
configuration technique (with no compression) to reduce the 
energy consumption of this application. But to ensure real-
time (deadline) constraints, low energy cache alternatives may 
get rejected because of longer execution times (critical portion 
of applications may not fit, for example). Incorporating com-
pression into DCR would lead to selection of Cache3. Apply-
ing compression will help dynamic reconfiguration to perfect-
ly fit the critical portion of the application into smaller cache 
thus gaining even more energy savings without increasing the 
execution time.  

3.2 Compression-Aware DCR 

AlgorithmAlgorithm 1 outlines the major steps in our 
cache configuration selection in the presence of compressed 
applications. The algorithm collects simulation results for all 
possible cache configurations (cache sizes of 1KB, 2KB, 
4KB, and 8KB; associativity of 1, 2, 4-way; cache line sizes 
of 16, 32, 64). It finds the best energy optimal cache configu-
ration for each application through exhaustive exploration of 
all possible cache configurations of C = {c1, c2, c3, ... , cm }. 
Number of simulation cycles for each run is collected based 
on the simulation results. The energy model of [6] is used to 
calculate the energy consumption using the cache hit and miss 
statistics. The algorithm finally constructs the Pareto optimal 
alternatives and returns it in a list. The most energy efficient 
cache configuration among all Pareto optimal alternatives 
which satisfies timing requirements of the application is cho-
sen next. Suppose there are two cache configurations, C1 with 
execution time of 2 million cycles and energy consumption of 
5 mJ and C2 with execution time of 1.8 million cycles and 
energy consumption of 6 mJ, available in the Pareto optimal 
list of alternatives. If the task has to be done in 1.9 million 
cycles, the faster alternative (C2) gets chosen. If the timing 
requirement of the task is not constrained by 2 million cycles, 
the more energy efficient cache alternative (C1) gets selected. 

The algorithm is similar to traditional DCR but uses 
compressed code. Therefore the simulation/profiling infra-
structure needs to have decompression unit to provide the 

 

Fig. 5: An example of performance-energy consumption 

tradeoff using Anagram benchmark (Pareto optimal alterna-

tives are connected using dashed lines)         

 

Fig. 6: Different caches used in different scenarios 

Cache1: conventional system without reconfiguration, 

Cache2:  only dynamic reconfiguration (no compression), 

Cache3:  both dynamic reconfiguration and compression 
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Algorithm 1: Finding Pareto optimal cache configurations 

Input: Compressed code 

Output: List of Pareto optimal cache alternatives 

Begin 

    li = an empty list to store cache alternatives 

    for s = cache sizes of 1KB, 2KB, 4KB, and 8KB do 

        for a = associativity of 1,2,4-way do 

            for l = cache lines of 16,32,64 do 

                do cycle accurate simulation for cache Cs,a,l ; 

                ts,a,l = simulation cycles; 

                es,a,l = energy consumption of the cache subsystem; 

                add the triple (Cs,a,l, ts,a,l, es,a,l) to li; 

            end for 

        end for 

    end for 

    return Pareto optimal points in li; 

end 



ability of decoding compressed instructions. For example, in 
our case, we implemented and placed the required decompres-
sion routines/functions for respective compression algorithms 
in Simplescalar simulator [16]. 

Since we consider systems with only one level of recon-
figurable cache architecture, number of cache reconfigurations 
is small. So we can exhaustively explore all possible configu-
rations in a reasonable time. Since the reconfiguration of as-
sociativity is achieved by way concatenation as described in 
Section 3.1, 1KB L1 cache can only be direct-mapped as other 
three banks are shut down. For the same reason, 2KB cache 
can only be configured to direct-mapped or 2-way associativi-
ty. Therefore, there are 18 (=3+6+9) configuration candidates 
for L1. 

3.3 Placement of Decompression Hardware 

Fig. 7 shows two different placement of the decompres-
sion unit. In pre-cache placement the memory contains com-
pressed code and instructions are stored in cache in original 
form. Whereas, in the post-cache placement the decompres-
sion unit is placed between cache and processor thus both 
memory and cache contain compressed instructions. 

Our studies show that having the pre-cache placement has 
very little effect on energy and performance of cache. In this 
case uncompressed instructions are stored in the cache and 
when cache miss occurs, the cache controller asks the decom-
pression unit to provide a block of instructions. In majority of 
the cases the decompression hardware requires one clock cy-
cle in pipelined mode (as shown in Fig. 7), so one clock cycle 
will be added to the latency of entire block fetch. In rare cas-
es, e.g., when the first instruction of the block is not com-
pressed, it will introduce two cycle penalty since it will take 
two cycles to fetch and decompress the instruction [17]. As 
demonstrated in Fig. 8, the energy consumption of cache in 
the pre-cache placement is almost the same as the case when 
there is no compression involved. So the best choice is to use 
post-cache placement to achieve maximum performance as 
well as minimum energy consumption. 

Incorporating compression, cache miss penalty caused by 
memory fetch latency is reduced because of improved band-
width (since compressed code is smaller). In addition, off-chip 
access energy (the buses to main memory and memory access) 
is also reduced since the decompression engine reads com-
pressed code from memory resulting in lower traffic to main 
memory. However, post-cache placement can introduce sig-
nificant performance overhead to the system. Seong et al. [13] 
presented a bitmask-based compression technique that adds no 
penalty to the system performance using pipelined one-cycle 
decompression engine with negligible power requirement. 
Using this decompression engine makes it practical to place 

the decompression unit after cache (post-cache placement) 
and benefit from the compressed code stored in the cache.  

In the context of embedded systems one of the main goals 
is maximizing energy savings while ensuring the system will 
meet applications requirements. Usually, choosing a cache 
configuration for energy savings may result in performance 
degradation. However, the synergistic combination of cache 
reconfiguration and code compression enables energy savings 
without loss of performance. Our proposed methodology pro-
vides an efficient and optimal strategy for cache tuning based 
on static profiling using compressed programs. 

4. EXPERIMENTS 

4.1 Experimental Setup 

In order to quantify compression-aware cache configura-
tion tradeoffs, we examined cjpeg, djpeg, epic, adpcm (raw-
caudio and rawdaudio), g.721 (encode, decode) benchmarks 
from the MediaBench [18] and dijkstra, patricia, crc32, 
bitcnts from MiBench [19] compiled for the Alpha target ar-
chitecture. All applications were executed with the default 
input sets provided with the benchmarks suites.  

Three different code compression techniques including 
bitmask-based, dictionary-based and Huffman code compres-
sion were used. To achieve the best attainable compression 
ratios, in bitmask-based compression, for each application we 
examined dictionaries of 1 KB, 2KB, 4KB, and 8 KB. Similar 
to Seong et al. [13] we tried three mask sets including one 2-
bit sliding, 1-bit sliding and 2-bit fixed, and 1-bit sliding and 
2-bit fixed masks. Similarly for dictionary-based and Huffman 
compression we used 0.5 KB, 1KB, 2KB, 4KB, and 8 KB 
dictionary sizes with 8 bits, 16 bits and 32 bits word sizes. We 
found out that dictionary size of 2 KB and word size of 16 bits 
are the best choices for this set of benchmarks. The reason is 
that using 8 bits words increases the number of compression 
decision bits and using 32 bits word size decreases the words 
frequencies significantly. Hence, as simulation results 
showed, 16 bits word size is the best choice. 

Code compression is performed offline. In order to ex-
tract the code (instruction) part from executable binaries, we 
used ECOFF (Extended Common Object File Format) header 
files provided in SimpleScalar toolset [16]. We placed the 

 
Fig. 7: Different placement of decompression unit 

 

Fig. 8: The impact of pre-cache placement of decompres-

sion engine on cache energy – djpeg benchmark 

 

0

0.5

1

1.5

2

2.5

3

En
e

rg
y 

C
o

n
su

m
p

ti
o

n
 (m

il
li

 J)

BMC pre-cache placement Uncompressed

Processor Instruction 
Cache 

Decompression Unit  

a) pre-cache placement 

Processor Instruction 
Cache 

Decompression Unit  

b) post-cache placement 

Main 

Memory 

 

Main 

Memory 

 



compressed code back into binary files so that they can be 
loaded into the simulator. 

We utilized the configurable cache architecture developed 
by Zhang et al [6] with a four-bank cache of base size 4 KB, 
which offers sizes of 1 KB, 2 KB, and 4 KB, line sizes rang-
ing from 16 bytes to 64 bytes, and associativity of 1-way, 2-
way, and 4-way. For comparison purposes, we used the base 
cache configuration set to be a 4 KB, 4-way set associative 
cache with a 32-byte line size, a reasonably common configu-
ration that meets the average needs of the studied benchmarks. 

To obtain cache hit and miss statistics, we modified the 
SimpleScalar toolset [16] to decode and simulate compressed 
applications. We implemented and placed the required de-
compression routines/functions for respective compression 
algorithms in Simplescalar simulator. We considered the la-
tency of decompression unit carefully. Decompression unit 
can decompress the next instruction in one cycle (in pipelined 
mode) if it finds the entire needed bits in its buffer. Otherwise, 
it takes one cycle (or more cycles, if cache miss occurs) to 
fetch the needed bits into its buffer and on more cycle to de-
compress the next instruction. Correctness of the compression 
and decompression algorithms was verified by comparing the 
outputs of compressed applications with uncompressed ver-
sions. The performance overhead of decompression includes 
decompression unit buffer flush overhead due to jumps, and 
variable latency of memory reads in each block fetch (because 
of variable length compressed code). These overhead are neg-
ligible according to the experimental results.  

We applied the same energy model used in [6], which 
calculates both dynamic and static energy consumption, 
memory latency, CPU stall energy, and main memory fetch 
energy. The energy model was modified to include decom-
pression energy. We updated the dynamic energy consump-
tion for each cache configuration using CACTI 4.2 [20]. Uti-
lizing Perl scripts, the design space of 18 cache configurations 
is exhaustively explored during static analysis to determine 
the performance, and energy-optimal cache configurations for 
each benchmark. 

4.2 Energy Savings 

Energy consumption for several benchmarks from the 
MediaBench and MiBench in different approaches are ana-
lyzed: a fixed base cache configuration, bitmask-based com-
pression without utilizing DCR (BMC only), DCR without 
compression (DCR only), dictionary-based compression with 
DCR (DC+DCR), Huffman coding with DCR (Huff-
man+DCR), and bitmask-based compression with DCR 
(BMC+DCR). The most energy efficient cache configuration 

found by exploration in each technique is considered for com-
parison. Fig. 9 presents energy savings for the instruction 
cache subsystem. Energy consumption is normalized to the 
fixed base cache configuration such that value of 100% repre-
sents our baseline. Energy savings in the instruction cache 
subsystem ranges from 10% to 76% with an average of 52% 
for utilizing only DCR. As we expected, due to higher de-
compression overhead, Huffman (when combined with DCR) 
achieves lower energy savings compared to BMC virtually for 
all benchmarks. Energy savings in DC+DCR approach are 
even lower than Huffman+DCR as a result of moderate com-
pression ratio by DC. Incorporating BMC in DCR increases 
energy savings up to 48% – on top of 10% to 76% energy 
savings obtained by DCR only – without any performance 
degradation. Our methodology achieves on average 65% en-
ergy savings of the cache subsystem.  

Fig. 10 illustrates an example of performance-energy 
consumption tradeoffs for both uncompressed and compressed 
(using BMC) cases for rawcaudio (adpcm-enc) benchmark. It 
can be observed that for every possible configuration for the 
uncompressed program there is an alternative which has a 
better performance and lower energy requirement if the pro-
gram is compressed. This observation shows that compres-
sion-aware DCR leads to better design choices.  

Another observation we have made is that without DCR, 
applying compression on an application (which executes using 
base cache configuration that already fits the critical portion 
of the application) will not gain noticeable energy savings. 
However, compression-aware DCR effectively uses the ad-

 

Fig. 9: Energy consumption of the selected "minimal-energy cache" normalized to the base cache 

 

 

Fig. 10: Performance-Energy consumption tradeoff for 
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vantage of reduced program size achieved by compression to 
choose smaller cache size, associativity, or line size and yet fit 
critical portion of programs. Therefore, compression aware-
DCR can achieve more energy savings compared to DCR 
alone. Fig. 11 illustrates comparison of energy profile for dif-
ferent caches for compressed (using BMC) and uncompressed 
cjpeg benchmark. Using a 4KB cache with associativity of 4 
and 64-bit line size, energy consumption of cjpeg benchmark 
is nearly the same for compressed and uncompressed pro-
grams.  

In the post-cache placement, compression has a signifi-
cant effect when combined with small cache sizes. In this case 
compressed instructions are stored in the cache. Since the 
compressed code size is 30 to 45 percent less than uncom-
pressed code it can fit in smaller cache sizes. However, when 
size of the selected cache increases, the critical portion of pro-
gram (regardless of whether compressed or not) will fit into 
cache entirely. Therefore by utilizing large cache sizes energy 
consumption of the compressed code is very close to uncom-
pressed one. It should be noted that the main objective of ex-
ploration is to find the most energy efficient cache configura-
tions so we are not interested in large cache sizes since they 
require more energy. 

4.3 Performance Improvements 

Fig. 12 shows performance of applications for different 
schemes normalized to the base cache. Applying DCR alone 
for the purpose of energy saving, results in 11% performance 
loss on average. We observe that code compression can im-

prove performance in many scenarios while achieving signifi-
cant reduction in energy consumption. For instance, in the 
case of the application patricia, applying only DCR would 
result in 12% performance degradation with 34% energy sav-
ings. However, incorporating BMC boosts performance by 
33% while gaining extra 17% energy savings on top of DCR 
achieving 51% energy savings compared to the base cache. 
Results show that synergistic integration of BMC with DCR 
achieves as much as 75% performance improvement for 
g721_enc (21% improvement on average) compared to DCR 
alone. Thus it is possible to have a cache architecture that is 
tuned for applications to have both increased performance as 
well as lower energy consumption. 

Fig. 13 shows performance trend of all cache configura-
tions for both uncompressed and compressed codes for cjpeg 
benchmark. It is interesting to note that compression also im-
proves performance. The compressed program can fit in 
smaller cache because of 30 to 45% reduction in code size. 
This decreases cache misses significantly for small caches. 
Reduced number of misses can lead to reduced stalls and im-
proved performance. As it can be observed in Fig. 13, without 
compression, reducing the cache size may lead to major per-
formance degradation so DCR is forced to discard many cache 
alternatives due to timing constraints. For instance, having 
timing constraint of 25 million cycles for cjpeg benchmark 
will force to discard all cache configurations of size 2048KB 
or lower. However, compression improves the performance 
significantly when small cache sizes are used. Thus combina-
tion of cache reconfiguration and code compression enables 
energy savings while improving overall performance. 

 

Fig. 11: The impact of cache/line size on energy profile of 

cache using cjpeg benchmark 

 

 

Fig. 12: Performance of the selected "minimal-energy cache" normalized to the base cache 

 

Fig. 13: performance trend of different cache configura-

tions using cjpeg benchmark 
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5. CONCLUSION 

Optimization techniques are widely used in embedded 
systems to improve overall area, energy and performance re-
quirements. Dynamic cache reconfiguration (DCR) is very 
effective to reduce energy consumption of cache subsystem. 
Code compression can significantly reduce memory require-
ments, and may improve performance in many scenarios. In 
this paper, we presented a synergistic integration of  DCR and 
code compression for embedded systems. Our methodology 
employs an ideal combination of code compression and dy-
namic tuning of cache parameters with minor or no impact on 
timing constraints. Our experimental results demonstrated 
65% reduction on average in overall energy consumption of 
the cache subsystem as well as up to 75% performance im-
provement (compared to DCR only) in embedded systems. 
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