
An Implementation Of Embedded Real Time
System Framework In Service Oriented Architecture

Mahmood Aghajani
Department of Software Engineering

Faculty of Computer Science and Information Systems,

Universiti Teknologi Malaysia

Johor Bahru, Malaysia

email: ajstmahmood2@live.utm.my

Dayang N. A. Jawawi
Department of Software Engineering

Faculty of Computer Science and Information Systems,

Universiti Teknologi Malaysia

Johor Bahru, Malaysia

e-mail: dayang@utm.my

Abstract—Currently, the complexity of embedded software
is increased, hence, more efficient design approaches are de-
manded. Although component based design is well-defined for
developing Embedded Real Time (ERT) systems, the design
and implementation of ERT component software is slow and
complex. Distributed ERT systems can reduce the complexity of
a component and increase its reliability and re-usability as well.
Currently, Service Oriented Architecture (SOA) is an excellent
technology for the implementation of distributed software. Some
platforms are introduced to implement the components in SOA
concept such as Service Component Architecture (SCA) and
OSGI (Open Services Gateway Initiative). SCA provides a
hierarchical component composition, distributed configurations
and an interconnection with various means to design and combine
services. However, SCA is unable to discover and reference
services dynamically. In contrast, OSGI focuses on loading the
service component. The services can be stopped, loaded and
unloaded in frameworks supported by OSGI. Hence, this paper
proposes an integration of SCA and OSGI to introduce a new
framework for the implementation of distributed ERT systems.

Index Terms—Component Based Embedded Real Time Sys-
tem, Distributed, Open Services Gateway Initiative, Service
Component Architecture.

I. INTRODUCTION

Currently, researchers focus on safety critical large scale

ERT systems because of the enormous damage they can bring

to human’s life, environment and property associated with such

events, like the Chernobyl nuclear power plant accident in

1986; the oil spills from the Exxon Valdez in 1989, the Erika

in 1999, and the Prestige in 2002 [1].

A safety critical system provides multiple connections be-

tween the tasks of ERT systems which increase the depen-

dency among them. In other words, the system becomes more

complex.

Component Based Software Development (CBSD) manages

the software complexity by using components which sup-

port the functionality needed by the system. It establishes

significant benefits in ERT systems development such as re-

usability which is provided by a library. The library component

can be used to configure ERT software. Components provide

evolutionary design which is used in complex ERT systems

that require hardware and software upgrades [2]. It provides a

very useful and promising design direction [3].

Hence, most of the existing component based ERT frame-

works aim to achieve three goals: self-contained, platform-

independent and real-time predictable, for resource constrained

ERT systems in their reused framework. These three issues

have a direct affect on the complexity of the ERT system.

However, applying component-based reuse to ERT systems

poses a significant challenge due to the resource-constrained

and real-time requirement properties of ERT systems, and the

degree of diversity in AMR systems. Furthermore, there is

no universally accepted agreement on what exactly constitutes

a component [4]. Component developer cannot represent the

integration and the operating condition of the components [5].

Recently, researchers introduced distributed software technol-

ogy as a proper solution for the above problems [6].

Currently, distributed ERT systems are developed with a

multitude of ecosystems in an ERT system. Service Oriented

Embedded Systems (SOES) framework proposes a dynamic

service composition to enable a flexible and dependable ser-

vice oriented embedded systems. It reduces the complexity

of evolving the software where services are developed dy-

namically [7]. However, there is no formal protocol for the

interaction of components among several ERT applications.

SOA is an approach for developing the independent dis-

tributed computing which can implement the different com-

ponents [8]. Currently, SOA is one of the most common

architectures for increasing the adaptation component design

in software. Reusing and adapting are provided based on

loose coupling and location transparency concept which allows

services to be autonomous and context independent [9] in

SOA. It is one of the most promising architectural styles used

on the web, or i distributed and dynamic systems. SOA creates

the building distributed software architecture paradigm [10].

These SOA features can enable a distributed and excellent

interaction among the components.

The integration of component based software and SOA can

improve the freedom of the system and the implementation

efficiency, reduce software development costs and improve the

software quality [11]. However, SOA is an abstract concept.

Hence, some software platforms are introduced to implement

SOA concepts such as SCA and OSGI. These platforms

support component composition strongly.

2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discover

978-0-7695-4810-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CyberC.2012.63

334

SCA can support a hierarchical component composition,

distributed configurations and interconnection with various

means. Thus, it is a proper platform to implement distributed

ERT component composition.

On the other hand, Component Oriented Programming

(COP) provides a useful graphical representation for compo-

nent composition of Autonomous Mobile Robot (AMR) [12].

Consequently, the integration of the SCA and COP provides

a distributed component base framework in AMR.

However, SCA is unable to modify the components dy-

namically. In contrast, OSGI can load and unload components

dynamically. For that, a combination of the SCA and OSGI can

support the distributed component technology dynamically.

This paper provides a distributed ERT framework in SOA,

integrating SCA and OSGI in the COP framework. Moreover,

an AMR case study will present the features of this integration.

II. BACKGROUND

A. ERT FRAMEWORK BASED ON SOA ARCHITECTURE

A component based ERT framework is provided by using

SCA, therefore, a component architecture design in SOA is

considered for developing ERT component based framework

according to [11]. Generally, the system architecture design of

development program in SOA has a five layer structure; pre-

sentation layer (system-system, human-system interactions),

web service layer (deals with various requests from users

and forwards them to the business component layer); business

component layer (it provides a variety of components for

the system); XML processing layer (Responsible to save the

heterogeneous data); data access layer (the final destination

in which business object data is stored). Components are a

loosely coupled collection in the business component layer,

which is the core of the system. In addition, this layer includes

business logic, calculations and validation of business objects

[11].

Furthermore, an ERT system includes some criteria such as

time and prediction of the temporal behaviour of unforeseen

services. It is necessary to deal with these challenges to

reduce the complexity of advanced ERT systems and support

heterogeneous environments. Hence, a proper ERT framework

must support dynamic service adaptation in a predictable

manner [7].

B. COP

UML has a limitation in supporting hardware concepts such

as concurrency, timeliness and properties of a functional ERT

system. Moreover, a number of limitations are identified in

modelling ERT environments by using UML such as temporal

concerns, run-time constrained composition, constraints and

type extension [7]. Hence, many ERT frameworks have been

introduced to support ERT system constraints such as COP

component based framework which provides a new component

composition for supporting the above ERT features. COP

Component composition is represented in [13]. It provides a

graphical representation for the definition of the components

and their composition.

There are three entities in COP model; components, ports

and connectors. The computation and data are semantically

well defined in components. A port is responsible to send

and receive data among the related components. Connectors

provide a relation between the ports. Details of the COP com-

ponent composition are represented in [13]. Although COP

component composition provides an static structure model for

supporting the ERT framework in AMR, it is unable to support

distributed ERT system.

Moreover, COP component consists of one or more struc-

tures and behaviours. It is also generalized with three different

types of components, which are passive, active and event

components. The component itself, besides having a subcom-

ponent, is capable of refining. Passive and event components

are associated with the system’s behaviour.

C. SCA

The current motivation on distributed systems is the pro-

duction of component configuration models that are aligned

with business process models automatically. Currently, com-

ponent compositions are supported by several systems such as

SCA and Fractal. However, SCA can compose heterogeneous

platforms that communicate with different protocols [14].

System architects apply the modularized and composed

business functions in component assemblies which are pro-

vided by SCA. The final system deployment architecture is

provided by SCA in an extended network of connected enter-

prises [10]. SCA is a combination of SOA and component-

based software engineering (CBSE) which puts forward a set

of specifications for building distributed applications [15].

SCA can support technology independence, hierarchical

component composition, distributed configurations and in-

terconnection with various means. Several platforms have

been introduced which implement the SCA specification,

such as Tuscany (tuscany.apache.org), and Newton (new-

ton.codecauldron.org) [15]. SCA provides a component model

for the implementation of the services in SOA. It supports

components as interfaces (called services), require interfaces

(called references) and expose properties. Reference and ser-

vices are connected through wires.

SCA architecture has four main features: (1) Independence

from programming languages, (2) Independence from interface

definition languages, (3) Independence from communication

protocols, (4) Independence from non-functional properties

[15]. These features can be implemented with a broad range

of solutions for SCA applications (e.g., SCA components

programmed with EJB or OSGi).

SCA supports the re-usability of components which is

described in [14]. The type descriptions of individual compo-

nents are prepared by the developers, then proper individual

components will be chosen by the final application.

These components can be built in a different platform,

yet, in a single application, which represents a high level of

distribution. Any type of application can be supported by SCA.

335

D. OSGI

OSGi is a proper framework for supporting a large number

of service oriented applications such as embedded systems,

soft real-time, consumer electronics, mobile and etc. Re-

usability, replaceability and adaptation are high in OSGI

[16]. The standard of creating applications using collaborative

components was set by OSGI technology [17].

The functions of an OSGI service platform can modify the

component composition on a variety of devices dynamically

without restarting. Moreover, components of a component

composition can be discovered by another collaboration based

on OSGI technology. OSGI has been used in many ERT

systems such as the winning Eclipse integrated development,

automation and telecommunication and etc. Dependencies

between components are defined by bundles in the OSGI

nomenclature [18].

A Hybrid ERT framework was designed based on OSGI by

[19]. This framework has two dimension; firstly it is focuses on

supporting the real time requirement. At the same time, OSGI

bundles wraps the real time components. It provides life cycle

and component constrains management. Internal SOA can be

used in other applications dynamically by bundles. It provides

version control and life cycle management for realizing the

non functional real time component.

XML parser service was provided to define and support

the bundles which are responsible for defining the real time

interfaces and constraints in XML. It enables a user to engage

a powerful search for real time applications. Hence, compo-

nents and their facilities can be shared by their existence in

repositories.

III. EVALUATION

Table I represents a comparison between three technologies

(COP, OSGI and SCA).

TABLE I
NON-LINEAR MODEL RESULTS

SCA OSGI COP

Reuse and integration + + -
Distributed apps + ++ -

Heterogeneous apps + + -
Runtime environment change - + -

ERT timing - - +

COP framework represents the ERT requirement of the

presented framework such as Component type (active, passive,

event), Period and Priority. In fact, COP meta model is respon-

sible to provide ERT constrains such as period and priority.

Although COP supports some ERT resource constraints such

as service priority and period, but it is unable to provide

distributed component composition based on SOA concepts.

The disabilities of COP framework in supporting distribution

are tabulated in Table I.

In contrast, SCA is unable to support ERT resource con-

straints in SCA model. Hence, we use the COP component

features in SCA component compositions by adding the Period

and priority for each component. It is represented in the

component layer of Fig. 1.

Although SCA provides a proper architecture which sup-

ports component reuseability according to Table I, the services

can not be discovered and referenced dynamically by SCA.

It uses the component composition to design and combine

services. Since SCA can request other services through the

references, it is still static [20]. While OSGI supports dy-

namic loading of service component through a set of service

platform frameworks. Thus, we recommend the OSGI for the

implementation of ERT web services.

IV. INTEGRATION OF THE SCA AND OSGI IN COP

There are two main issues in the implementation of the

COP with SCA; integration of the user view of a COP

component composition to a SCA based implementation, and

the assembly management of the COP at execution time.

This paper discusses about first issue. It contains mapping

components, implementation of Inport/Outport as a set of

services/references. Priority and period are provided by COP

component composition. This mapping is shown in Fig. 1.

The component layer encapsulates a module based on dif-

ferent technologies, by using the SCA specifications that can

provide service interface to other components. However, SCA

is unable to communicate with other system directly, while

OSGI is responsible for providing a proper communication

platform. Hence, a web service layer is implemented by OSGI

architecture to provide distributed services for Presentation

Layer. In this paper, the OSGI host is recommended to manage

the services which are created by SCA of COP framework. The

SCA-OSGI-COP framework is shown in Fig. 1.

The OSGI layer manages the registration of the bundles that

contain a couple of components. It can be used to design new

applications.

When the Presentation layer requests the component, the

related bundle is firstly chosen based on the COP component

composition that needs a new component. Also, the features

of new component parameter can be identified in component

composition to help in finding the right component. If the

component does not exist, the OSGI returns a ”does not exist”

message.

In [21], an architecture which can register the services and

manage the distributed services was designed. Basic service,

registry service and proxy service are three services which are

introduced to increase the distribution in SOA.

V. META-MODEL OF COP-SCA

The quality of software development can be improved

by defining a set of preconditions and postconditions that

are associated with each operation during the development

process. This definition is achieved by a proper design. So,

we model the components and the interaction among them to

identify the proper services for our component composition.

Implementing a distributed ERT framework for discovering

more services motivates to create a new meta model based

336

���������	
� ������� ����

��
��
��
�

�	���	����� ����

��
�� ��
��

���� ����� �����

!
��

����	��
�����

�
"
����

�����
#$������

%& '

Fig. 1. ERT Framework in SOA

�����

�������

	
����

�������

������

����

�����
��

����������

���������

�����
� ����

�������
�

��������� ���������

�����
��

�����������

����

�����������

��������

�����
����

��	
���

���������

�������
�

���������

�������
� �������
�

�����
�

	
�������

Fig. 2. Meta Model of COP-SCA-OSGI

on an SOA platform like OSGI and SCA. We use the meta-

model, which is shown in Fig. 2, by adding the elements after

analysing the COP component composition, SCA and OSGI.

Currently, there are some meta-models for the implemen-

tation of the SCA, OSGI and COP. Although SCA meta

model has previously been introduced in [22], the latest proper

SCA meta-model is introduced by [23]. In addition, [24]

introduced a proper OSGI meta model because it provides

four meta model definitions for the OSGI meta model which

contains: Application, Implementation Oriented, Execution

Platform, and Allocation meta-models. However, we focus on

the Implementation Oriented Meta-model of OSGI because

it provides 1) service provider and 2) bundle distribution

concepts of OSGI. The COP Meta-model was only introduced

in [25].

These three meta-model approaches are there to support the

structure and the behaviour of the software framework. These

three meta-models support component based framework, hence

many elements are common among them such as components,

ports, wires and etc. Moreover, they have some common fea-

tures in supporting the behaviour, but they are not mentioned

to stay within the boundaries of our scope.

ERT elements of our meta-model are adopted from the ones

designed in [25], that contain: Events, Passive, Active, Priority

and Period elements. Fig. 2 shows these ERT elements.

The meta-model of COP is shown in Fig. 2, done by [25].

The key elements of a component composition in SCA meta-

model are designed by [23]. Syntax, process and assembly

manners of service component such as Wire, which are defined

in SCA meta-model, are considered in this study because of

the many advantages described earlier.

An SCA component composition connects to another ap-

plication by Contract, Interface and Protocol as in [23]. But

in this research, these elements are replaced by OSGI bundle

based on [24]. Our meta-model uses the four elements in [24]

that contain: OSGI bundle, Platform, system and OSGI bundle

activator.

The concept of interface is very important in component

base framework because it is the only communication port

between the components. It is divided into two types: (1)

service type (represents the component which provides the

service for other components), (2) Reference type (represents

the components that require some services). Hence, OSGI can

discover the appropriate services based on the reference type,

or it can respond to the proper service by comparing the

service request and the existing service type. A set of interfaces

can be considered in a Platform. Also, a set of applicable

interfaces is stored as an OSGI bundle to be used in other

applications. The interface of component service is defined in

the OSGI meta model.

VI. CASE STUDY- AMR

To show the benefits of integrating SCA and OSGI in COP

framework of ERT systems, the deployment of the AMR

337

�������
�	

�������

����������� �����
�	

�����������
�	
 ����������

Fig. 3. Component Composition of AMR by using Component Layer of the SCA-COP

����� ���	
��
� �

�����������

Fig. 4. An example of OSGI bundle

software analysis patterns is illustrated by using an AMR case

study named IMR71848 robot.

The main requirement from ERT frameworks is to enable

the AMR to navigate by controlling the speeds of the motors

while avoiding obstacles existing around it. This subset of

requirements involved the most critical components in the

AMR system, which are: Sensors and Encoders to read the

current speed of the robot based on Proportional-Integral (PI)

control algorithm and behaviour based Control components.

Fig. 5 shows the behaviour layer architecture of this study.

A. Component Layer

The components present in the component layer by using

the SCA concept are shown in Fig. 3. They consist of three

active components and three passive components. In this

figure, components with period and priority fields are active

components, while those without the mentioned fields are

passive components. IRProximity and Switches components

receive hardware status, then they forward the received data

to the Avoid and Stop/GO components to provide a suitable

decision to control the AMR’s navigation process. Then the

Subsumption component decides which service must be exe-

cuted based on component priority and period. Finally, Motor

control component controls the AMR.

Component composition of the component Layer is consid-

ered in a platform if all components are designed by a single

designer. While if Components are provided by web services,

they may be provided by several OSGI bundles. In the AMR

case study, components are provided by [12]. Hence, the COP

component composition is considered as a platform and it is

connected to an OSGI bundle.

B. Web Service Layer

OSGI can provide the AMR’s case study with proper

components by the following process:

OSGI which is enabled by the web service layer discovers

some related AMR components based on the AMR’s require-

ments. Components introduced by OSGI are connected to

the component composition. In addition, a popular applicable

component composition can be considered as a new bundle.

For example, if several robots are using the same components

such as switches and StopGo, a new independent OSGI

bundle should be considered to provide these components

for other robot applications. Fig. 4 shows an example of the

independent OSGI bundle which can be requested from other

ERT applications.

C. XML Layer

Components and their relation can be stored in the XML

layer. For example, Avoid component is represented as fol-

lows:

<Component>
<Identification>001</Identification>
<Name>Avoid</Name>
<Period>60</Period> <priority>9</priority>
< Ports>
< ReferenceType Id=IP00 Minvalue=0 MaxValue=10>
< ReferenceType > < SevriceType Id=OP00 Minvalue=0

MaxValue=0 Value=1>
< SevriceType > < /Ports>
</Component>

In addition, interfaces of the component which are

represented by the OSGI bundle are stored in the XML

layer. A bundle should contain at least a Referencetype or

serviceType, and as follows:

< bundle RequestNumber=12>
<Identification>101</Identification >
< Ports >
< ReferenceType value=001 > < SevriceType value=002 >
< /Ports >

338

Avoid

Switch go Cruse

������������	�����	

S

S Motor

Sensor reading

��������� �������	

IRProximity

Sensor

���	

Fig. 5. An example of OSGI bundle

</bundle >

VII. CONCLUSION

In this paper, the current COP framework has been extended

to a distributed ERT framework by integrating SCA and

OSGI platforms into the COP framework. It is proposed to

manage the complexity of integration and composition in an

ERT system. To support the distributed COP framework, two

platforms were combined in the COP framework based on

SOA features. The first is SCA, which designs and combines

services by using the component composition. Then OSGI,

which manages the loading and unloading of the services

dynamically.

Furthermore, the modified COP framework provides

reusable components which can be useful in designing new

software components. It is provided by the OSGI bundles.

The key concept of our approach is providing the global

platform with an ability to share a couple of components via

web services. This indicates that the use of SOA technologies

enable component engineering products to be created directly

from other projects.

In addition, features of the distributed COP framework are

presented in an AMR case study based on the architecture

layers proposed for the SOA. For example, integrated SCA-

COP component composition presented in the component

layer.

As for the future work, some techniques can be investigated

to evaluate the provided services based on the ERT constraints

that exist in the COP framework. Moreover, a tool will be

implemented to support the presentation and data layers of

the extended COP framework. Thus, the interaction of the user

and the COP framework will be provided by a COP tool.

VIII. ACKNOWLEDGEMENTS

Special thanks to the Universiti Teknologi Malaysia(UTM)

grant under GUP vot 00H60 for financing and funding support

and also to our Embedded Real-Time Software Engineering

Laboratory (EReTSEL) members for their continuous support.

REFERENCES

[1] E. Coskun and M. Grabowski, “Software complexity and its impacts
in embedded intelligent real-time systems,” Journal of Systems and
Software, vol. 78, pp. 128–145, 2005.

[2] D. Nyström, J. Hansson, and C. Norström, “Aspects and Components in
Real-Time System Development : Towards Reconfigurable and Reusable
Software,” Development, no. February, pp. 1–16, 2004.

[3] E. De Freitas, M. Wehrmeister, and C. Pereira, “Using aspects and
component concepts to improve reuse of software for embedded systems
product lines,” Components, 2008.

[4] G. Buchgeher and R. Weinreich, “Tool Support for Component-Based
Software Architectures,” 2009 16th Asia-Pacific Software Engineering
Conference, pp. 127–134, Dec. 2009.

[5] D. Lee and A. S. Chul, “A hierarchical fault tolerant architecture for
component-based service robots,” Industrial Informatics (INDIN),, pp.
487–492, 2010.

[6] J. Hill, H. Sutherland, P. Stodinger, T. Silveria, D. C. Schmidt,
J. Slaby, and N. Visnevski, “OASIS: A Service-Oriented Architecture
for Dynamic Instrumentation of Enterprise Distributed Real-Time and
Embedded Systems,” 2010 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
pp. 10–17, 2010.

[7] S. Brennan, S. Fritsch, Y. Liu, A. Sterritt, J. Fox, E. Linehan, C. Driver,
R. Meier, V. Cahill, W. Harrison, and Others, “A framework for flex-
ible and dependable service-oriented embedded systems,” Architecting
dependable systems VII, pp. 123–145, 2010.

[8] J. Wiklander, J. Eliasson, A. Kruglyak, P. Lindgren, and J. Nordlander,
“Enabling Component-Based Design for Embedded Real-Time Soft-
ware,” Journal of Computers, vol. 4, no. 12, pp. 1309–1321, Dec. 2009.

[9] N. Ali, R. Nellipaiappan, R. Chandran, and M. A. Babar, “Model driven
support for the Service Oriented Architecture modeling language,” Pro-
ceedings of the 2nd International Workshop on Principles of Engineering
Service-Oriented Systems - PESOS ’10, p. 8, 2010.

[10] K. Dahman, F. Charoy, and C. Godart, “Generation of Component Based
Architecture from Business Processes: Model Driven Engineering for
SOA,” 2010 Eighth IEEE European Conference on Web Services, pp.
155–162, Dec. 2010.

[11] D. Yue, “Based on SOA architecture and component software reuse
architecture research,” 2010 2nd IEEE International Conference on
Information Management and Engineering, pp. 517–520, 2010.

[12] D. N. A. Jawawi, R. Mamat, and S. Deris, “A Component-Oriented Pro-
gramming for Embedded Mobile Robot Software,” Advanced Robotic,
vol. 4, no. 3, pp. 371–380, 2007.

[13] D. Norhayati, A. Jawawi, and R. Mamat, “A Component-Oriented
Programming Framework for Developing Embedded Mobile Robot
Software using PECOS Model,” in The Second Malaysian Software
Engineering Conference (MySEC’06), 2006.

[14] P. Hnetynka, L. Murphy, and J. Murphy, “Comparing the Service
Component Architecture and Fractal Component Model,” The Computer
Journal, May 2010.

[15] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and
J.-B. Stefani, “Reconfigurable SCA Applications with the FraSCAti
Platform,” 2009 IEEE International Conference on Services Computing,
pp. 268–275, 2009.

[16] J. L. A. H, J. C. D. n. L, U. Cauca, and C. Popayán, “Evolvability
Characterization in the Context of SOA,” Quality, pp. 242–253, 2010.

[17] C. Hang, “Research and application of distributed OSGi for cloud
computing,” Design, 2010.

[18] J. M. Marquez, J. Jimenez, and I. Agudo, “Secure Real-Time Integration
of Services in a OSGi Distributed Environment,” 2008 Fourth Interna-
tional Conference on Networked Computing and Advanced Information
Management, pp. 631–635, Sep. 2008.

[19] N. Gui, V. De Florio, H. Sun, and C. Blondia, “A hybrid real-time
component model for reconfigurable embedded systems,” Proceedings
of the 2008 ACM symposium on Applied computing - SAC ’08, p. 1590,
2008.

[20] W. Li, Y. Zhang, and J. Jin, “Research of the Service Design Approach
Based on SCA\ OSGi,” in Services Science, Management and Engi-
neering, 2009. SSME’09. IITA International Conference on. IEEE,
2009, pp. 392–395.

[21] Y. Wang, M. Song, and J. Song, “An extended distributed OSGI
architecture for implementation of SOA,” Architecture, 2010.

[22] C. Parra, X. Blanc, A. Cleve, and L. Duchien, “Unifying design and
runtime software adaptation using aspect models,” Science of Computer
Programming, vol. 76, no. 12, pp. 1247–1260, Dec. 2011.

[23] D. Du, J. Liu, and H. Cao, “A Rigorous Model of Contract-Based
Service Component Architecture,” 2008 International Conference on
Computer Science and Software Engineering, pp. 409–412, 2008.

339

[24] J. Cano, N. M. Madrid, and R. Seepold, “OSGi services design process
using model driven architecture,” 2009 IEEE/ACS International Confer-
ence on Computer Systems and Applications, no. Itea 04006, pp. 791–
794, 2009.

[25] S. Sabil and D. N. A. Jawawi, “Integration of PECOS into MARMOT for
Embedded Real Time Software Component-Based Development,” 2009
Fourth International Conference on Software Engineering Advances, pp.
265–270, Sep. 2009.

340

