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Abstract—Reconfigurable computing (RC) devices such as
field-programmable gate arrays (FPGAs) offer significant ad-
vantages over fixed-logic, many-core CPU and GPU architec-
tures, including increased performance for many computationally
challenging applications, superior power efficiency, and recon-
figurability. Difficulties of using FPGAs, however, has limited
their acceptance in high-performance computing (HPC) and
high-performance embedded computing (HPEC) applications.
These difficulties stem from a lack of standards between FPGA
platforms and the complexities of hardware design, and lead to
higher costs and time to market over competing technologies.
Differences in FPGA platform resources such as the type and
number of FPGAs, memories and interconnects, as well as
vendor-specific procedural APIs and hardware interfaces, inhibits
application portability and code reusability. Despite efforts to
reduce FPGA application design complexity through technologies
such as high-level synthesis (HLS) tools, platform support and
portability remains limited, and is typically left as a challenge for
application developers. In this paper, we present a novel RC Mid-
dleware (RCMW), an extensible framework which enables FPGA
application portability and enhances developer productivity by
providing an application-centric development environment. De-
velopers focus specifically on the optimal resources and interfaces
required by their application, and RCMW handles the mapping
and translation of those resources onto a target platform. We
demonstrate that RCMW enables application portability over
three heterogeneous platforms from two vendors, using both
Xilinx and Altera FPGAs, with less than 10% performance and
area overhead for several application kernels, and microbench-
marks for the common case. We present the productivity benefits
of RCMW, showing that RCMW reduces required number of
hardware and software driver lines of code and total development
time with respect to native platform deployment methods for
several application kernels.

Index Terms—FPGA, portability, productivity, reconfigurable
computing

I. INTRODUCTION

Reconfigurable computing (RC) offers significant advan-

tages over conventional fixed-logic devices such as CPUs

and GPUs. The flexibility of reconfigurable devices such

as FPGAs enable developers to create application-specific

hardware architectures, maximizing performance [1], [2] and

power efficiency [3] for applications which may not map well

to conventional architectures. This efficiency has made FPGAs

promising in a variety of computing areas, from embedded

systems [4] to supercomputers [5].

This work was supported in part by the I/UCRC Program of the National
Science Foundation under Grant Nos. EEC-0642422 and IIP-1161022.

These benefits, however, come with the added complexity

of architecture design and thus an added challenge in de-

veloper productivity relative to fixed-logic devices such as

CPUs and GPUs. The difficulty of hardware design coupled

with a lack of standards between FPGA platforms, herein

referred to as platforms, complicate application development

and limit code portability and reuse. Due to a lack of standards

between platforms, FPGA application developers are required

to tailor their application to a specific vendor’s software and

hardware interfaces. Developers must decompose and map

their application to a specific platform based on available

FPGAs, memories and interconnects. This platform-specific

development cycle restricts application portability, and re-

quires significant developer time and effort to port applications

to new platforms. Furthermore, the rampant use of procedural

software APIs by platform vendors has further limited ap-

plication portability. The procedural programming paradigm

embeds platform specific parameters such as the physical

location of application resources into software code. This

embedding leads application developers to develop platform-

specific code, increasing cost and development time when

porting applications to heterogeneous platform configurations.

Technologies such as high-level synthesis (HLS) tools

which are designed to reduce the difficulties of FPGA ap-

plication development also suffer from these issues. Due to

differences between platforms, HLS tools must provide a

method to support various platforms. Tools such as Impulse-C

[6] accomplish this via per-platform support packages which

convert platform-specific to tool-specific interfaces. Tools such

as ROCCC [7] generate application cores with platform-

agnostic interfaces, and require developers to handle platform-

specific mapping and implementation. Although HLS tools

typically provide support for at least one platform out of the

box, the growing number of HLS tools and FPGA platforms

outpaces the ability of tool vendors to provide platform sup-

port, leaving the mapping of HLS tools to emerging platforms

as a challenge for application developers. Furthermore, the

diversity of available platforms forces HLS tools to make

optimization-restricting assumptions about available platform

resources. The target platform may not be able to provide

the required interfaces and bandwidth required for certain

optimization techniques [8]. These problems ultimately reduce

HLS tool performance and usability, and end up costing tool

vendors and developers valuable time which could better be
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spent on developing their tools or applications.

In order to overcome the portability and productivity hur-

dles of RC application development, we present a novel

RC Middleware (RCMW). RCMW is a layered middleware

which enables application and tool portability by providing an

application-centric view of available resources. Using RCMW,

application developers can focus on the ideal resource par-

titioning for their application. Users specify at design time

the required resources and interfaces via an XML framework,

customizing the number, type, size and data types of various

resources. Using this specification, the middleware provides

a portable hardware and software interface. The developer

can then focus on developing their application, rather than

translating their application to a particular platform. This

application-specific interface is generated by the middleware

toolset, which handles mapping application resources to a

target platform as well as generating the hardware and software

stacks to realize that mapping. In this paper, we evaluate

RCMW using three platforms from two vendors: the PROC-

Star III and PROCStar IV from GiDEL and the M501 from

Pico Computing. We demonstrate application portability by

executing the same application hardware and software source

code across each platform. We support our argument for

RCMW’s productivity benefits by demonstrating that RCMW

requires less development time and lines of code for deploying

applications on each platform compared to the recommended

vendor approaches. We also show that these benefits can be

achieved with less than 10% performance and area overhead.

The remainder of this paper is organized as follows: Section II

presents related works. Section III presents the RC Middleware

framework and toolset. Section IV presents our experiments

and results. Section V discusses our proposed future work.

Section VI presents our conclusions.

II. RELATED WORK

In our previous work on VirtualRC [9], we presented a

method enabling portability using parameterized, customiz-

able IP components with support for several platforms. We

provided a procedural software API which abstracted away

vendor-specific software interfaces, but required developers to

handle resource translation manually. RCMW further develops

this concept by providing an application-centric development

environment, where RCMW handles the translation of user

application to platform resources, and provides a high-level

object-oriented software abstraction.

In [10], Coole et. al. presents intermediate fabrics (IFs),

coarse-grained virtual FPGA fabrics designed to signifi-

cantly improve application compilation time. IFs also en-

able application portability across platforms which implement

the same fabric. Similarly in [11], Reves et. al. presents

an application-specific coarse-grained FPGA architecture for

software-defined radio (SDR). Applications targeting this

coarse-grained architecture are portable across any platform

which implements that architecture. RCMW is a complemen-

tary approach which provides platform resource abstractions,

and could be leveraged by methods such as intermediate

fabrics to enable portability across heterogeneous platforms.
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Fig. 1. RC Middleware overview.

Another common approach to enabling FPGA portability

is FPGA-on-FPGA overlays, such as the ZUMA architecture

presented by Brant et. al. in [12]. This approach provides

application bitfile compatibility between devices, enabling

application portability between FPGAs without requiring bit-

file recompilation. RCMW does not aim to provide FPGA

bitfile compatibility, but rather focuses on the broader goal

of platform portability. RCMW could provide a portable

interface to platform resources, enabling overlay portability

across heterogeneous platform configurations.

Similar to high-level synthesis tools, OpenCL [13] and

Liquid Metal (Lime) [14] provide high-level programming

models for application development, but also aim to provide

portability across different types of compute devices. While

Lime focuses on efficient code portable between host and

FPGA coprocessor, OpenCL takes a broader approach to

enable code portability between a wide variety of computing

devices. Both OpenCL and Lime focus on providing a high-

level, portable models for application development. In order to

target a particular FPGA-based platform, the components of

each model must be mapped to available platform resources.

Lime accomplishes this in part using the Lime Runtime

(LMRT), but additional effort is required to support different

platforms. By targeting RCMW, both OpenCL and Lime

would gain portability across RCMW-supported platforms.

III. APPROACH

Fig. 1 illustrates the layered structure of RCMW’s hardware

and software abstractions. From the bottom up, the middleware

is composed of three layers in both hardware and software:

the translation layer, the presentation layer and the application

layer. The translation layer converts platform-specific resource

interfaces to a standardized RCMW interface. Next, the pre-

sentation layer leverages this standardized interface to provide

application-specific resource interfaces requested by the de-

veloper’s application description. Finally, these interfaces are
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presented to the developer in the application layer, providing

an application-centric development environment.

The remainder of this section discusses the layered architec-

ture enabling our hardware abstraction (Section III-A), layered

software abstraction (Section III-B) and the RC Middleware

toolset (Section III-C).

A. Hardware Abstraction

Fig. 2 illustrates RCMW’s layered hardware model. This

layered model abstracts away vendor-specific platform details

and creates the application-specific hardware interfaces re-

quested by the application developer.

1) Translation Layer: The translation layer handles con-

verting vendor-specific physical interfaces for memories, inter-

FPGA communication, host communication and other physical

interfaces into an RCMW-standardized interface format. This

layer provides standardized interfaces for any physical inter-

faces which may be used to provide application resources. This

layer may also expose standardized interfaces to FPGA block

RAM, allowing user applications to take advantage of the low

latency of on-chip memory for sufficiently small application

memory resources.

2) Presentation Layer: The presentation layer handles con-

verting the standardized physical resource interfaces provided

by the translation layer into the interfaces expected by the

developer’s application. The presentation layer interfaces are

generated by leveraging an RCMW IP database, which con-

tains IP components for various interface conversions, resource

multiplexing, arbitration, and interface controllers.

In order to enable an arbitrary number of user interfaces to

map to a physical resource, the presentation layer can option-

ally include a configurable arbitration controller, shown in Fig.

3 using read interfaces. This controller handles multiplexing

any number and type of user interfaces to an interface exposed

by the translation layer. Since available memory interface

bandwidth is typically greater than the required bandwidth

for a single interface, the middleware can typically saturate

multiple user interfaces with data without loss of performance.

RCMW’s arbitration controller uses a ready-to-send (RTS),

clear-to-send (CTS) protocol to arbitrate memory accesses.

Each interface controller consists of a configurable transfer

buffer which buffers incoming read or outgoing writes. When a

configurable number of bytes remain in the buffer, the interface

controller will assert the RTS signal, indicating that it is ready

to access memory. When the arbitration logic asserts the CTS

signal, the interface takes control of the physical memory bus.

When CTS is de-asserted, the interface must give up control

of the bus. The RTS/CTS protocol enables easy addition of

new arbitration schemes. If only one memory is mapped to a

physical resource, no arbitration logic is needed; the interface

controller is mapped directly to the translation layer. RCMW

currently provides two interface types for applications: the

burst and FIFO interface. The burst interface enables user

applications to address different regions of memory sequen-

tially. The user specifies a starting address, size, and asserts

the start signal to begin a transfer. The FIFO interface enables

application software to read/write data from hardware in first-

in, first-out order from the host, without requiring explicit

addressing. The enable/valid signals on both interfaces provide

a flow control handshake which is necessary due to variations

in the underlying platform and application resources.

As shown in Fig. 3, the presentation layer can provide

any number of interfaces of either FIFO or burst type. Each

interface can be another interface to the same application

resource, or a different application resource. To enable this

functionality, each interface controller is configured by a set

of generic parameters, including: data width, base address, size

and buffer length. The data width is the application-specified

word size, which can be any power of two number of bits. The

base address corresponds to the address in physical memory

of the interface. The size of the memory specifies the top

of the interface memory space, and is used for calculating

address wrapping conditions in the FIFO and burst interfaces.

The buffer length specifies the maximum number of words the

interface can buffer before requiring physical memory access.

In addition to memory interfaces, RCMW provides a memory-

mapped interface to the user application. The memory-mapped

interface provides register-style resources to the application.
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Fig. 2. RC Middleware layered hardware abstraction.

213



��������	��
���
���

�������

��

����

���������

���	����

�
���
���
���

�������������
����������


����
	 ����
!��������"!����#

$�����

�%$�&#

�%$�&#

�%$�' (#

�%$�' (#

�����"
��
�������

����
��
�������

���������	��
���
��� $����

)
����

+���	

,�
�

$���

,���

�		����

�������

��

����

)
����

+���	
,���

�����
����

��
�������

�����"�����-�,����
 ���������-�,����


�����"
��
�������%�

�

��

��
��


�
.�

"�
�

������		����
$���

,������	�/

0�
���������������
&1&&&&&&&&
&1&&(&&&&&
23

������		����
$���

,������	�/

0�
���������������
&1&&(&&&&&
&1&(&&&&&&
(4

'

'

�����
�����
�.�"�� �55�������
�.�"��

Fig. 3. High-level presentation layer hardware diagram.

In order to describe the physical interfaces available on a

target platform, RCMW employs an extensible XML frame-

work which describes platform interfaces and components.

This framework allows description of FPGAs and memory

components on a platform, as well as how they are connected

together. For each FPGA, the framework describes available

interfaces as well as pin assignments, and timing constraints.

In our context, an interface is a collection of pins which

aggregate to perform a more complexed function, such as

a DDR memory interface. Using this framework, users and

platform vendors can easily add support for new platforms.

3) Application Layer: The application layer presents the

application-specific hardware interfaces requested by the de-

veloper. RCMW provides the application-layer interface in

the form of a top-level entity declaring only the requested

application interfaces. The user implements their application in

the architecture body of the top-level entity using the interfaces

required by the application, without worrying about how or

where resources are mapped onto the target platform.

B. Software Abstraction

Fig 4 illustrates RCMW’s layered software model. RCMW

provides a portable object-oriented software API based on

C++11 which provides a uniform application-centric devel-

opment environment regardless of the underlying platform.

RCMW takes advantage of C++11’s improved threading

model, memory management, and features to maximize ap-

plication performance and simplify development.

1) Translation Layer: The translation layer presents stan-

dardized software interfaces to platform resources. These

standardized interfaces are exposed through an abstract Board
class in RCMW’s software API. Each platform supported by

RCMW is required to have a subclass of the Board class,

implementing the required interfaces including: blocking read-

/write, asynchronous read/write, board enumeration and bitfile
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Fig. 4. RC Middleware layered software abstraction.

initialization for each FPGA. The Board class encapsulates

a set of Memory and FPGA objects which represent the

physical components available on a specific platform. Each

FPGA object stores a reference list to Memory objects for

which the corresponding FPGA is physically connected. This

objectified representation provides a common interface to

platform resources, and captures the layout of the physical

platform. These resource interfaces are built upon either the

vendor-specific API, or an RCMW-specific driver interface.

2) Presentation Layer: The presentation layer handles map-

ping the application specification onto the Board class in-

terface provided by the translation layer. This layer is gen-

erated by the RCMW toolset as a subclass of the RCMW

Application class. Fig. 4 illustrates the application-specific

interface for a simple convolution example, with two registers

go and done and three memory interfaces input, output and

kernel. The Application class encapsulates an instance of a

resource interface object corresponding with each interface

requested in the application description XML. It provides

Register objects, which correspond to registers mapped onto

the memory-mapped interface, Memory objects, which corre-

spond to hardware burst interfaces, and FIFO objects, which

correspond to FIFO hardware interfaces. The Application class

interface consists of two main functions: bind and execute.

The bind function is generated by the RCMW toolset, and

handles mapping application-specific resources onto platform-

specific resources. The execute function is generated as a

stub for the application source. The developer implements his

application in this function, using the resource objects exposed

by the Application class instance. At runtime, RCMW handles

detecting available platforms, determining what platform to

run the application on, and handles initializing and loading

the required bitfiles. RCMW then calls bind on the selected

Board instance, and assigns the application execute routine to

an idle software thread. When the application thread returns,

RCMW automatically handles releasing hardware resources.
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Fig. 5. RC Middleware toolflow.

3) Application Layer: The application layer exposes an

application-customized subclass of an Application class gener-

ated by the RCMW toolset. Developers need only implement

their application driver in the execute stub function using the

resource objects exposed by their customized application class.

The RCMW API also provides application-layer utilities, such

as a thread-safe timing library, to further improve productivity.

This approach provides a portable programming paradigm.

Developers are provided with application resource interfaces

without having to worry about where or how they are mapped

onto a target platform.

C. RC Middleware Toolset

The RCMW toolset handles generating the hardware and

software presentation layers to map application resources onto

platform resources. The toolset handles mapping application to

platform resources, and exposes only the requested interfaces

as a top-level in hardware and software, greatly simplifying

development. Fig. 5 illustrates the toolflow used to generate the

hardware/software interfaces using a developer’s application

description. The toolflow is broken down into three major

steps: parsing the XML description, mapping application to

platform resources, and generating the HDL/C++ for the

hardware/software interfaces. The most complex step of the

toolflow is the mapping step, which determines where applica-

tion resources such as application memory and FIFO resources

should be mapped onto the physical platform. Depending on

the target platform configuration, available IP components,

and developer-requested application resources, the resulting

mapping may be significantly different between heterogeneous

platforms. RCMW provides an extensible XML framework

which can be used to add new components to the RCMW IP
database for use during the mapping step. This enables devel-

opers to define custom application interfaces and components.

The mapping step determines the lowest-cost mapping of

application to physical resources given a configurable cost

function. During the mapping step, RCMW iterates over all

valid application to physical mappings. For example, if there

are two physical memories, A and B, of size 512MB each,

and the developer requests two 256MB application memories,

there are four valid mappings to consider: both application

memories mapped to physical memory A, both application

memories mapped to physical memory B, application mem-

ories mapped to physical memory A and B respectively, and

application memories mapped to physical memory B and A,

respectively.

For each valid mapping, RCMW resolves required HDL

components, determining what RCMW IP instances are re-

quired to enable that mapping. For example, if two application

memories are mapped to the same physical memory, RCMW

will need to instantiate an arbitration and multiple interface

controllers. In order to guide the mapping process, each

IP in RCMW is accompanied by metadata which estimates

maximum operating frequency and device resource utiliza-

tion. Using this information, each mapping is scored using

a customizable cost function. RCMW’s default cost function

is based on the number of IP instances that are used for a

particular mapping, favoring the simplest mapping. After all

valid mappings have been scored, the mapping stage returns

the map with the lowest cost. The toolset then generates the

user hardware and software presentation layer interfaces based

on the selected mapping. For hardware, a structural HDL

component is created connecting the appropriate IP instances

from the RCMW IP library. For software, the bind function

of the user Application subclass is generated, mapping user-

application resources to physical Board resources. Finally,

the RCMW toolset generates Makefiles for hardware and

software compilation, as well as a configured project file

for vendor-specific FPGA toolchains. In order to compile

their application, a developer only needs to implement their

application in the hardware and software stubs, and run the

appropriate Makefile.

Using the RCMW toolset, developers can quickly explore

the application design space, modifying application resources

by adding registers, tweaking memory interface properties and

arbitration schemes, and try different mapping cost-functions

which will optimize their designs for different parameters such

as performance or area. If a developer receives an application

source designed using RCMW, all they need to do is run the

RCMW toolset and specify their target platform to obtain a

translated and compile-ready version of the application.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental design (Section

IV-A), and then provide an analysis of performance and area

overhead incurred using RCMW (Section IV-B). Next, we

evaluate the productivity benefits of RCMW (Section IV-C).

Finally, we demonstrate the portability of applications and

kernels (Section IV-D).
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Fig. 6. Host and FPGA read and write performance overhead to external
memory for Pico M501, PROCStar III (PS3) and PROCStar IV (PS4).

A. Experimental Setup

In our experiments, we evaluate RCMW using three plat-

forms from two vendors: the GiDEL PROCStar III and PROC-

Star IV, and the Pico Computing M501. Each vendor provides

significantly different hardware configurations, software APIs

and use different FPGA vendors. The PROCStar III uses a

PCIe 1.0 8-lane interface to four Stratix III E260 FPGAs,

with one 256 MB external SDRAM and two 2GB DDR-II

SODIMMS per FPGA. The PROCStar IV provides a similar

configuration, with four Stratix IV E530 FPGAs, with one

512MB external SDRAM and two 4GB DDR-II SODIMMS

per FPGA . The Pico M501 uses a PCIe 2.0 8-lane interface to

a Virtex-6 LX240T with one bank of 512MB DDR3 memory.

In our experiments, we compiled all Altera bitfiles using

Quartus II v11.1 service pack 1. We used GiDEL driver

version 8.9.3.0 for the PROCStar board tests. Bitfiles for the

Pico M501 were generated using Xilinx ISE 14.1. We used

Pico driver version 5.2.0.0.

RCMW’s software API was compiled using GCC v4.7.2

with C++11 support. All software was compiled using com-

piler optimizations -O3.

B. Performance and Overhead Analysis

In this section, we analyze the overhead introduced RCMW

hardware and software stacks. We analyze the performance

overhead incurred while performing read and write transfers

to the external memory from the host and from the FPGA as a

percentage overhead of the bandwidth achieved using the na-

tive platform interfaces. We analyze the area overhead incurred

by comparing the relative logic utilization of RCMW to the

logic utilization of vendor IP and application components for

several kernels. In order to measure the overhead introduced by

RCMW’s software stack, we perform host to FPGA memory
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Fig. 7. Area overhead analysis of the RC Middleware compared to logic
utilization of vendor IP and application components.

transfers for varying payload sizes using a single RCMW

read and write interface from the host. We measure the time

required to complete each transfer and calculate the overhead

as a percentage increase over the baseline platform DMA

transfer time. Next, in order to measure the overhead intro-

duced by RCMW when transferring data between application

hardware and external memory resources, we compared the

average bandwidth achieved when transferring various data

sizes for a single read and write interface with the average

bandwidth achieved without RCMW. To measure the FPGA

to external memory bandwidth, we count the total number of

clock cycles required to perform a transfer of a given size,

and use that to determine bandwidth. We calculate overhead

as a percentage increase over the baseline. Finally, we measure

RCMW’s area overhead for applications and kernels, and

compare the logic utilization with the logic utilization of

vendor IP and application components. The area percentages

were obtained using the post-fit component device utilization

summary provided in Altera Quartus II and Xilinx ISE.

Figure 6 illustrates the read and write performance overhead

introduced by the RCMW software and hardware stacks for

various transfer sizes. The top and bottom rows show host

and memory interface overhead, respectively, and the left

and right columns show read and write overhead for each

interface, respectively. The greatest overhead is found in

the host to external memory transfer overhead, peaking at

approximately 80% and 70% overhead for reads and writes

with the PROCStar III, respectively. This high overhead is due

to additional features provided by the RCMW API, including

thread-safety. Since the M501 provided thread-safety for some

API calls by default, the peak overhead is less, approximately

20% for both reads and writes. These high overheads are

restricted to small transfer sizes, resulting in an increase of a

few microseconds to complete these transfers. For increasing
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transfer sizes, the overhead quickly approaches zero, as the

transfer time of data to the board becomes more significant.

This behavior is also demonstrated in the FPGA to memory

read and write performance. The peak overhead for FPGA

to memory transfers was approximately 60% overhead for

write operations on the M501. This overhead is introduced

due to additional levels of buffering in RCMW’s hardware

stack, which also requires the data to be flushed to memory to

ensure consistency before marking a transfer as completed. For

these small transfers, a latency of 60% equates to tens of clock

cycles, which is relatively insignificant. For large transfers, this

latency becomes less significant as data transfer time increases.

Figure 7 illustrates the logic utilization of RCMW, Appli-

cation and Vendor IP components. The bottom layer in the

stacked bar graph represents the vendor IP utilization, the

middle layer represents the application logic utilization and

the top layer represents RCMW overhead. Each triplet of bars

represent the area utilization breakdown for each platform, for

different applications. The height of each bar represents the

total logic utilization required by each application, with the

shaded regions indicating what percentage of that utilization

comes from each component. From this graph, we can see that

RCMW accounts for a very small fraction of the total design

area, typically less than 1% of the total device resources. The

total area percentage required by RCMW depends on the users

requested interface configuration. It is important to note that

in instances where multiple application resources are mapped

to a physical memory, a portion of the overhead introduced

by RCMW would be necessary even for a non-RCMW based

implementation, such as the memory arbitration controller.

C. Productivity Analysis

In this section, we analyze the productivity benefits provided

by RCMW. For lack of a better method, we measure productiv-

ity in terms of software lines of code (SLoC), hardware lines of

code (HLoC) and total development time. These factors have

been commonly used as measures for software development

productivity. It is worth mentioning that lines of code is a

rather obscure measure, and developer coding style has a

significant impact. In these experiments, a developer familiar

with all three platforms and RCMW translated several cores

from OpenCores to each platform, including: SHA256, JPEG

Encoder, FIR filter, AES128, and 3DES kernels. Each core

was developed using the vendor recommended design flow

and RCMW’s design flow. In measuring lines of code, all code

written by the developer was counted, excluding comments.

GiDEL and Pico Computing provide different approaches

for developers to deploy their application. GiDEL provides

a powerful graphical interface called PROCWizard, which

enables developers to customize IP cores and select between

different interfaces to their platforms resources, specify regis-

ters and select between different clock domains. Once a devel-

oper finishes specifying different IP parameters, PROCWizard

generates a configured hardware template and PROC API

software interface to their platform. Pico Computing provides

a different, lower-level approach, giving developers config-

urable access to a Xilinx AXI interconnect to interface with

platform memory. Pico provides a streaming abstraction in

both hardware and software, which enables efficient streaming

of data from host to FPGA, as well as a PicoBus for simple

IO operations such as application register transfers.

Our experiments indicated that on average RCMW required

65% less SLoC, 41% less HLoC, and 53% less develop-

ment time than GiDEL-based implementations, and 66% less

SLoC, 59% less HLoC, and 69% less development time

than Pico-based implementations. Although this improvement

is averaged for five applications and a single developer, it

supports the argument that RCMW provides a productivity

improvement. This outcome is expected, since RCMW handles

many tasks typically left to the developer. The major factors

leading to these differences include: level of software/hardware

interface complexity, clock-domain crossing (hardware), buffer

memory management (software) and API restrictions.

In our experiments, Pico required a relatively high number

of HLoC due to the low-level interfaces exposed to develop-

ers; requiring users to handle the AXI interconnect protocol

and any clock-domain crossing (CDC) for their application.

GiDEL required less lines of hardware code, having a large

chunk of coding automatically generated by their PROCWiz-

ard tool. GiDEL also handles CDC for memory interfaces,

further reducing HLoC, but they do not handle CDC for

registers. RCMW required the least HLoC, generating the

interfaces specified by the user, and handling all required

CDC. Similar results were found for total SLoC, with Pico

requiring the most lines of code followed again by GiDEL,

and then RCMW. Both vendor APIs require developers to

manage buffers and imposed restrictions on data transfers

such as data alignment and size restrictions. These factors

increase the amount of coding developers are responsible

for in their software. In order to reduce developer coding

overhead, RCMW provides a variety of different features, such

as templated read/write functions which can handle variable

data types. Additionally, RCMW handles buffer management

and garbage collection internally.

D. Portability Analysis

Table I presents the execution time and logic utilization

for various applications and kernels executing across all three

platforms. Each application was executed using the same

user application source with RCMW. This table demonstrates

the same application source, both hardware and software,

executing across heterogeneous platforms. Porting applications

across each platform was accomplished with almost no effort,

requiring only that the RCMW toolset be executed once for

each platform, with each application. We note that no single

platform performs the best for every tested application due

to having different strengths and weaknesses. For instance,

the M501 uses a newer PCIe generation, enabling higher

peak bandwidths for host to FPGA transfers, making trans-

fer heavy applications like Smith-Waterman, which streams

a large database from host to FPGA, perform better. For

applications that require more memory interfaces, such as

Image Segmentation, the two additional banks the PROCStar

III and PROCStar IV provides an advantage over the M501.
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TABLE I
DEMONSTRATION OF RC MIDDLEWARE ENABLING APPLICATION PORTABILITY ACROSS THREE PLATFORMS.

M501 PROCStar III PROCStar IV
Kernel/Application Time Utilization Time Utilization Time Utilization

1D Fixed Convolution FXD 43.3 ms 26% 39.3 ms 14% 38.9 ms 7%
2D Convolution FXD 16.0 ms 57% 13.2 ms 44% 16.3 ms 25%

Image Segmentation 1.73 s 64% 1.41 s 53% 1.39 s 26%
Needle-Distance 161 ms 48% 194 ms 38% 203 ms 21%

OpenCores AES128 32.6 ms 32% 25.3 ms 22% 24.3 ms 11%
OpenCores FIR 21.5 ms 28% 24.5 ms 15% 24.0 ms 8%

OpenCores JPEGEncoder 23.9 ms 29% 15.3 ms 15% 19.6 ms 8%
OpenCores SHA256 73.3 ms 26% 64.1 ms 12% 63.3 ms 5%

Smith-Waterman 96.0 ms 23% 116 ms 11% 119 ms 6%
Sum of Absolute Differences 18.7 ms 86% 14.7 ms 75% 19.1 ms 38%

V. FUTURE WORK

RCMW provides an extensible framework for enabling

application portability and improves productivity. However,

there are still additional features and application-specific opti-

mizations which could improve performance and functionality.

Additionally, to better understand the productivity benefits of

RCMW, a larger case-study using a variety of application

developers is needed.

In the future we will investigate application-specific mem-

ory optimizations. Additionally, we will investigate new API

features such as common collectives operations for distribut-

ing data, including: broadcast, scatter and gather. Although

RCMW enables application portability across FPGAs, one

remaining portability-limiting factor remains with FPGA-

specific IP cores. FPGA vendors such as Xilinx and Altera

provide vast libraries of IP cores which users can leverage

in developing their applications. These IP cores, however, are

not portable between FPGAs. In the future we will investigate

methods for enabling IP portability.

VI. CONCLUSIONS

Despite performance and power efficiency advantages over

conventional many-core CPU and GPU architectures, FPGAs

have continued to suffer from a productivity hurdle. To over-

come this hurdle, we introduced the RC Middleware (RCMW).

RCMW provides an extensible framework and toolset, which

provides an application-centric hardware and software de-

velopment environment. This application-centric environment

can be customized through an XML framework, enabling

developers to focus on their ideal application partitioning

rather than targeting a specific platform configuration.

We evaluated RCMW on three platforms from two vendors,

showing that RCMW enables application portability with

less than 1% overhead for large transfers sizes. We also

showed that RCMW accomplished this with relatively low

area overhead, requiring less than 1% of total device logic

resources for several applications across all three platforms.

We demonstrated that RCMW enables portability by showing

that the same application source was able to execute without

change across heterogeneous platforms. Finally, we presented

evidence that RCMW improves developer productivity, by

showing that RCMW requires less lines of code and total

development time for deploying several kernels than vendor-

specific approaches.
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