
2011 International Conference on System Science, Engineering Design and Manufacturing Informatization

Implementation of a Reconfigurable Computing System for Space Applications

Yimao Cai, Yuanfu Zhao, and Lidong Lan

Beijing Microelectronics Technology Institute
Beijing, China

caiyimao 10 1@163.com, zhaoyf@mxtronics.com.cn, lanld@mxtronics.com.cn

Abstract-high reliability is usually the most important
requirement in space applications. There is no hardware
repair for them. Long mission times and harsh environment
are a challenge for electronic circuits, and particular error
mitigation techniques have to be implemented in order to be
able to cope with the expected error effects. Always, Triple
Modular Redundancy (TMR) is relied mostly to prevent SEUs
from causing functional errors. And in recent decades, SRAM
based FPGAs are used a lot in space for its high performance
and flexibility. However, use of FPGAs in space applications
can also be challenging. They are too susceptible to transient
faults, such as SEUs. Reconfiguration provides more
possibilities for SRAM-based FPGAs into space.
Reconfigurable technology solves the disadvantage that the
TMR modules cannot heal the error themselves. Additionally,
reconfiguration is an improvement in terms of resource
utilization and costs. In this paper, TMR and reconfigurable
computing are combined to level up the reliability of the space
applications. The paper proposed a reconfigurable computing

architecture based on a TMR system. A new kind of
reconfigurable architecture using SoP (system-on-a-package)
technology is presented. Also, a whole space application will
be presented.

Keywords- Reconfiguration; TMR; Fault Tolerance; Space
Application

I. INTRODUCTION

As the simplicity and high reliability of TMR, it is widely
used for space applications. Although the TMR can improve
the reliability of the system, due to the implementation of
additional modules, it consumes more hardware resources,
power and affects the pace of the work. In addition, the TMR
does not have the ability to repair the error itself All these
limit the use of the traditional TMR technology. Dynamic
partial reconfiguration enhances space applications with re
programmable hardware and at run-time adaptive
functionality. Dynamic partial reconfiguration permits a
limited, predefined portion of an FPGA to be reconfigured
while the remainder of the device continues to operate. This
is especially valuable where devices operate in a critical
environment, like space applications, and cannot be
disrupted while subsystems are redefined [1]. Dynamic
partial reconfiguration can used to level up system reliability
by repair the system by itself. This paper will combine the
reconfigurable technology and the TMR technology together
and the system can get higher reliability. Reconfigurable
technology solves the disadvantage that the TMR module
cannot heal the error itself.

978-1-4577-0246-4/11/$26.00 ©2011 IEEE
360

In the next section, the paper describes fault tolerance
concepts. Then we introduce the reconfigurable technology
and the system architecture including the TMR system and
the detail of the configuration platform in section four. Next
section introduces the design flow of reconfiguration.
Section six presents our process of the dynamic partial
reconfiguration technique with our reconfigurable system.
We compare the two systems in section seven. Final section
summarizes the text and gives a short outlook to the future
work.

II. FAULT TOLERANCE CONCEPTS

A Single Event Upset (SEU) is caused by charged
particles losing energy by ionizing the medium which they
pass, leaving behind a wake of electron-hole pairs. If this
happens in a flip-flop or memory cell, the particle can
deposit enough charge to cause the flip-flop or memory cell
to change state, corrupting the data being stored. SEUs are
still a major concern in SRAM-based FPGAs, even in
radiation-hardened devices[2]. In order to solve failures
generated by SEUs, a technique called scrubbing has been
developed. This technique reconfigures the matrix in order
to replace the changed configuration bits with the correct
ones. There are different strategies regarding scrubbing. It

can be continuous scrubbing [3] or only when it is needed
[4].

Triple modular redundancy is among the most fault
tolerant technique employed in FPGAs [5]-[7]. In the coarse
redundancy approach when a fault is detected in a column,
the whole column is marked as faulty and it is then replaced
by a spare CLB(configurable logic block) [8], [9]. Scrubbing
technique combined with conventional TMR techniques to
mitigate SEU effects has been proposed in [10]. In [11], X.
Iturbe, etc, have proposed a combination of the TMR and
dynamic reconfiguration to mitigate SEU effects and
permanent hardware errors. They implement three modules
in a FPGA, and we implement a TMR system with three
individual same architecture.

III. DYNAMIC PARTIAL RECONFIGURATION CONCEPTS

Dynamic partial reconfiguration (DPR) is a modification
of configuration data within a FPGA, while the rest of it is
still operational. Partial reconfiguration denotes to modifY a
limited portion of an FPGA. The use of the dynamic partial
reconfiguration is a very active research area. The
"Hardware Plugins" concept makes sense with the new huge
a partially reconfigurable capable FPGAs [12], [13]. In this
approach the system is strongly unitized. It is distinguished

between one entire static part and one or more Partial
Reconfigurable Modules (PRMs). The PRMs are bounded in
Partial Reconfigurable Areas (PRAs) within an FPGA. PRAs
can be reconfigured and comprise at least two PRMs with
different functionality. The static area is the area within an
FPGA except the PRAs and remains unchanged. The partial
reconfiguration process of PRAs comprises all logic
resources and routing interconnects. If the PRM routing
changes, either the communication to the static area or
between PRAs could be interrupted. Therefore, persistent
routing communication wires between static and PRAs are
necessary [2]. Xilinx provides these pre-placed and pre
routed resources with bus macros. DPR is achieved using
module-based and difference-based approach. This paper is
based on module-based approach.

IV. SYSTEM ARCHITECTURE

A. System Architecture
The architecture of the TMR system is depicted in Fig.l.

It represents the implementation of a generic system that
mainly includes: three TMR modules and the TMR voter.
The control and data signals from each module are voted
against each other by a TMR voter. The function of a voter is
to decide the real output of a redundant system. It uses the
classic majority voting scheme. Thus, taking into account
that the presented platform is focused on triple redundancy
systems, if the number of ' 1 's in the repeated inputs is equal
to or bigger than 2 the output is '1', otherwise the output is
' 0'.

A communications network is required to support high
speed system data flows. We use RS232 to change data
between modules.

T�R sysLem

oulput.i
mldulel

_________ ..J

Figure I. The architecture of the TMR system

The three modules have the same structure including a
processor, FPGA, memories and communication portion.
The base processor is 32-bit RISC processor based on the
SP ARC V8 architecture. The main features of the processor
core used in our system are a five-stage pipeline, 16KB data
cache and 32KB instruction cache, five 24-bit timers, support
1553B bus, 4 AID converters, watch dog timer, interrupt
controller, 32 parallel VO interface, and 11 interrupt lines
organized in two priority interrupt levels. The processor

361

implements both the controller and the scheduler of the given
system implementation. Memories are used to store all the
partial reconfiguration bitstream data information and store
the software programme. There are three memories, 8M
Flash, 1M SRAM and 16M SDRAM. Control logic and
peripheral IP cores are put into the Xilinx FPGA. Hardware
units mapped into the FPGA can be interfaced to the system
bus through a peripheral bus. We use general-purpose VO of
the processor to configure the FPGA. Download of the
FPGA bitstream is performed at the beginning form the
FLASH. To accelerate communication between the
configurable hardware and software tasks running on the
processor, four interrupt channels can be driven by logic
mapped into the FPGA. To allow validation of the FPGA
configuration, the bitstream may be read back by the
processor. Architecture of one TMR module is as shown in
Fig.2.

UART

Figure 2. Architecture of one TMR module

V. THE CONFIGURATION UNITS

A. Diving
Now we begin the process of partial dynamic reconfigur

ation in FPGA. As three modules are the same, we only take
one module for example. The whole system is divided into
two modules: the fixed module and the reconfigurable
module. Fixed module including the peripheral bus and some
IP cores will not be reconfigured at run-time. The
reconfiguration modules which are placed in the
reconfigurable area are used for different algorithms
hardware accelerator or IP cores for communication. FPGA
resource partitioning and module placement is as shown in
Fig.3.

SPARe V8

Processor

13

Figure 3. FPGA resource partitioning and module placement

c

In Fig.3, area A, C is fixed area that cannot be
reconfigured; area B is a reconfigurable area where we can
place reconfig-urable modules. All connections across
different areas connect each other through the presences of
the Bus Macro, through which the reconfigurable modules
connect to the static part of the design and other modules.
BM2RM across the region A and B is the interface between
the reconfigurable module and the bus.BM2ICAP across the
whole region is the connecting of A and B.

B. Module Designing
The design methodology is based on modular design

concept. This feature allows designs to split into portions that
are independently synthesized, coded, placed, routed, and
mapped. There are three main modules in whole system:

System module: System module, area A as shown in Fig.
3, is the core of the whole system, including connect bus
detection module, data exchange module, synchronization
module and required peripherals to run the system. For the
address bus and data bus are bi-directional and the bus macro
can only communicate one-way, the interface between
peripheral bus and bus macro is needed for modules that
need to write back or read back. PB2RM and BM21CAP are
this kind of interface as shown in Fig. 3.

ICAP module: ICAP module can finish self
reconfiguration of the FPGA. According to device
requirements, this module can be only placed in the lower
right comer of FPGA, so a separated area C is created.
Communication between ICAP and the system module
follows the peripheral bus communication protocol. ICAP
module is used to read/write a configuration from/to the
BRAM to/from a specific reconfigurable module. When a
new reconfigurable module has been mapped and it starts its
computation, the ICAP informs the processor that the
reconfiguration action ended with success. After that the
controller enables all the communications interrupted by the
reconfiguration.

Reconfigurable modules (RM): These are reconfigurable
modules in the system. The implantation files of these
modules should be checked in FPGA complier to ensure that
each module is limited in designated area. The bus macro is
also under the constraint file into the specified location and
the length of the bus macro is always occupied the same in
the files generated by each module. We realize a CAN
receiver in RM module.

At last, we create all the bitstreams needed to implement
the system description onto an FPGA through the dynamic
embedded reconfiguration and verifY the function of the
system. This flow facilitates the modular design concept and
the process is easy to follow.

VI. DETAIL OF RECONFIGURATION

The following paragraphs will describe our approach to
implement self-repairing. A summary of the Self-repairing
sequence is as follow:

362

A. Error detection and localization
Error Detection and Localization is a crucial part of

system. It is supervisory layer that detects faults and raises
dedicated countermeasures. Error localization is done by
halting faulty unit and turning down all the related out
buffers. Next step is to start reconfiguration processes
followed by synchronization process.

Transient fault detects will be accumulated to detect
permanent faults. Other than notifYing the application,
nothing else will be done to correct transient faults. We can
rely on higher layers to deal with the effects of transient
faults. Permanent faults will be dealt with by reprogramming
the FPGA with an alternate pre-compiled spatial variant of
the same application [14].

B. Recorifiguration
After an error has been detected and its location is known,

the repair process can be started. Let us first assume that a
soft error has occurred. In this case it is sufficient to
reconfigure the FPGA. We use partial reconfiguration
reconfigures the defective part of the circuit and therefore
can be performed very fast. For hard errors, i.e. hardware
defects, simply reloading the bit-stream will not be sufficient
- a new place&route process has to be started. The circuit has
to be moved away from the defective area and mapped to
previously unused resources in the FPGA [15]. In contrast to
synchronous logic, where the critical path might become too
long with a different routing, delay insensitive circuits can
seamlessly adapt to this new situation. An overview on
reconfiguration techniques can be found in [16].

C. Recovery
After reconfiguration, the newly placed device is

completely reset and has to be synchronized with rest of
redundant devices. There are at least four synchronization
strategies which are feasible for implementation in
reconfigurable avionics test platform. The details are
introduced in [17].

After the recovery, the error module is absolutely
synchronized as other modules. With dynamic FPGA
reconfiguration incorporated in system, single faults can be
continuously repaired, rendering system reliability almost
constant in time.

VII. TEST AND RESULTS

The TMR system is implemented, the synchronization
error is in 30ns and the transfer rate to other module can
reach 8Mbps. Each TMR module consists of several
elements include a processor, memories and FPGA. We use
SoP technology to package them together. The
implementation of one module is shown in Fig. 4. The size
of the system is 31mmX 31mm and it is small enough for
embedded system and space application.

E
E

..,

Figure 4. Implementation of the system
The following table (Table 1) reports the results of the

tests performed with the original TMR system and with the
approach based on the reconfigurable architecture. We can
know that the new system has a higher performance of
150MIPS(Million Instructions Per Second). The power
consumption reduces 86.7% and the weight reduces 90%. It
is a great improvement for the space application. The chip
used in the system is much less than before, so our system
reliability is much higher.

TABLE I COMPARISON OF Two SYSTEMS
Original TMR Reconjigurable TMR system system

Computing ARM7 SPARC V8
performance 60MIPS ISOMIPS SOFLOPS

Weight 7.6kg 750g

Power consumption 27W 3.6W

Peripheral device 76 chips 13 chips

VIII. CONCLUSION AND FURTHER WORK

In this contribution, we propose the design and
implementation of a reliable and flexible approach for space
application successfully. The proposed system is a valuable
step in the process of integrating dynamic reconfiguration in
TMR system. In this context, another contribution has been
presented in this paper: a system with fault tolerance and
self-repairing capabilities that takes advantage from the
dynamic reconfiguration capability of the FPGA devices. We
have successfully demonstrated the applicability of the
dynamic reconfiguration to a real process control task. In
addition, through system integration technology, we make
the system low consumption of power, volume and mass,
and adequate reliability.

As we show in the experiment, this architecture cut
weight and power consumption a lot compared to other TMR
systems. Future work in this field includes: sufficient fast
dynamic reconfiguration and the examination of hardware
and software concepts in whole system. Also, we have to
achieve more experimental results.

ACKNOWLEDGMENT

The presented work is part of the project Design of the
Reconfigurable Chip, funded by Beijing Microelectronics
Technology Institute (BMTI). The authors would like to

363

thank Jianyong Wang and the owners of BMTI for their
support.

REFERENCES

[I] Bjorn Osterloh, Harald Michalik, Sandi Alexander Habinc, Bjorn
Fiethe, "Dynamic Partial Reconfiguration in Space Applications," in
2009 NASAIESA Conference on Adaptive Hardware and Systems,
pp.336-343.

[2] Bjorn Osterloh, Harald Michalik, Bjorn Fiethe, Frank Bubenhagen,
"Architecture Verification of the SoCWire NoC Approach for Safe
Dynamic Partial Reconfiguration in Space Applications," in 2010
NASAIESA Conference on Adaptive Hardware and Systems,
201O.pp.l-8.

[3] C. Charmichael, "Correcting single-event-upsets throught Virtex
partial reconfiguration." XAPP216, 2000, Xilinx Inc.

[4] K. Chapman and L. Jones, "SEU strategies for Virtex-5 devices,"
XAPP864, 2009, Xilinx Inc.

[S] E. Stott, P. Sedcole, and P. Cheung, "Fault tolerant methods for
reliability in FPGAs," in Proc. Field Programmable Logic and
Applications, 2008. FPL 2008. International Conference on, 2008, pp.
4IS-420.

[6] S. D'Angelo, C. Metra, S. Pastore, A. Pogutz, and G. Sechi, "Fault
tolerant voting mechanism and recovery scheme for TMR FPGA
based systems," in Proc. IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 1998, pp. 233-240.

[7] R. DeMara and K. Zhang, "Autonomous FPGA fault handling
through competitive runtime reconfiguration," in Proc. Evolvable
Hardware, 2005. NASAlDoD Conference on, 200S, pp. 109-116.

[8] A. Antola, V. Piuri, and M. Sami, "On-line diagnosis and
reconfiguration of FPGA systems," in Proc. of the The First IEEE
International Workshop on Electronic Design, Test and Applications
(DELTA'02). IEEE Computer Society Washington, DC, USA, 2002,
pp. 291-296.

[9] A. Doumar, S. Kaneko, and H. Ito, "Defect and fault tolerance
FPGAs by shifting the configuration data," in Proc. of the 14th
International Symposium on Defect and Fault-Tolerance in VLSI
Systems. IEEE Computer Society Washington, DC, USA, 1999, pp.
377-38S.

[10] [c. Bolchini, A. Miele, and M. D. Santambrogio, "TMR and Partial
Dynamic Reconfiguration to mitigate SEU faults in FPGAs," in 22nd
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, 2007, pp. 87-95.

[II] X Iturbe, M. Azkarate, L Martinez, 1. Perez, and A. Astarloa, "A
Novel SEU, MBU and SHE Handling Strategy for XILINX VIRTEX-
4 FPGAs," in 19th International Conference on Field Programmable
Logic and Applications (FPL09), Sep. 2009, pp. S69--S73.

[12] E. L. Horta,1. W. Lockwood, D. E. Taylor, and D. Parlour, "Dynamic
Hardware Plugins in an FPGA with Partial Run-time
Reconfiguration," in Proceedings of the Design Automation
Conference (DAC'02), New Orleans, LA, Jun. 2002, pp. 343-348.

[13] K. Danne, C. Bobda, and H. Kalte, "Run-Time Exchange of
Mechatronic Controllers Using Partial Hardware Reconfiguration,"
Lecture Notes in Computer Science, voL 2778, pp. 272-281, 2003.

[14] Clayton Okino, Clement Lee, Andrew Gray, Payman Arabshahi,
"Space-Based Autonomous Reconfigurable Protocol Chip," in
Aerospace Conference,200S, pp. 1494-1499.

[IS] Thomas Panhofer, Martin Delvai. "SELF-HEALING CIRCUITS
FOR SPACE-APPLICATIONS," in Field Programmable Logic and
Applications 2007, FPL 2007, pp.SOS-S06.

[16] 1. A. Cheatham, 1. M. Emmert, and S. Baumgart, "A survey of fault
tolerant methodologies for tpgas," ACM Trans. Des. Autom. Electron.
Syst., voL II, no. 2, pp. SOI-533, 2006.

[17] Rafal Graczyk, Marcin Stolarski, Patrick Cormery, "Exploratory
Study about the Use of New Reconfigurable FPGAs in Space," in
2011 NASAIESA Conference on Adaptive Hardware and Systems
(AHS-2011), pp.220-226.

