
Fast and Flexible High-Level Synthesis from
OpenCL using Reconfiguration Contexts

James Coole, Greg Stitt
University of Florida

Department of Electrical and Computer Engineering and
NSF Center For High-Performance Reconfigurable Computing

Gainesville, FL, USA
jcoole@ufl.edu, gstitt@ece.ufl.edu

Abstract—High-level synthesis from OpenCL has shown

significant potential, but current approaches conflict with
mainstream OpenCL design methodologies due to 1) orders-of-
magnitude longer FPGA compilation times, and 2) limited
support for changing or adding kernels after system
compilation. In this paper, we introduce a backend synthesis
approach for potentially any OpenCL tool, which uses virtual
coarse-grained reconfiguration contexts to speedup compilation
by 4211x at a cost of 1.8x system resource overhead, while also
enabling 144x faster reconfiguration to support different
kernels and rapid changes to kernels.

Keywords—OpenCL; FPGA; intermediate fabrics

I. INTRODUCTION
High-level synthesis (HLS) from OpenCL is an emerging

design strategy for field-programmable gate arrays (FPGAs)
that improves productivity while potentially enabling
significant advantages over other devices [1][2]. Although
previous OpenCL synthesis has shown important technical
achievements [3][9][10], several limitations prevent more
widespread FPGA usage. One significant limitation is that
FPGA compilation commonly ranges from hours to even
days [11], which limits productivity and prevents common
design methodologies. Lengthy compilation also prevents
OpenCL’s runtime compilation, which further contributes to
niche FPGA usage. Previous OpenCL synthesis also has
limited support for the addition of new kernels and changes
to existing kernels. Unlike GPUs and multicores, previous
FPGA approaches create a fixed number of kernel-specific
accelerators [3][9][10], which prevents execution of new and
modified kernels without lengthy compilation of accelerator
hardware.

Lengthy compilation times have been improved by recent
work on intermediate fabrics (IFs) [2], which enabled 1000x
faster place-and-route compared to device-vendor tools at a
cost of 21% of FPGA resources [2][6][11]. IFs achieve fast
compilation via virtual coarse-grained resources
implemented atop a physical FPGA. When using an IF,
synthesis avoids decomposing the application into hundreds
of thousands of the FPGA’s lookup tables (LUTs), and
instead directly maps behavior onto application-specialized
resources (e.g., floating-point units, FFT cores).

In this paper, we complement existing OpenCL synthesis
by introducing a backend approach, shown in Figure 1,
which specializes IFs for OpenCL to enable fast compilation
and reconfiguration while improving support for adding and
changing kernels. Whereas all previous IFs were manually
designed, the main research challenge of integrating IFs with
OpenCL is automatically determining an effective fabric
architecture for an application or domain. Because it is
clearly not possible to create an optimal fabric for all
combinations of kernels, we present a context-design
heuristic that analyzes kernel requirements from an
application (or domain) and clusters them based on similarity

FPGA

FFT

*
+/-

*

* **
+/- +/-+/-

FFT

IFFT*

Intermediate Fabric (IF) “Context”

1) 1000x faster
compilation via

abstraction

FFT

* *-

FFT

IFFT

2) Fast context reconfiguration
enables support for multiple

kernels and rapid coding changes

Reconfiguration
Contexts

3) FPGA reconfiguration
loads new contexts to

support new kernel
requirements

OpenCL HLS

Context
Place & Route

__kernel void kernelA(int *data) { … }

Synthesized Netlist

Figure 1: OpenCL synthesis using intermediate fabric

reconfiguration contexts to enable fast compilation and improved
support for adding/changing kernels.

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

into a set of fabrics referred to as reconfiguration contexts.
As long as a context supports an application’s kernels, the
application benefits from orders-of-magnitude faster
compilation and reconfiguration between kernel executions.
When a context does not support a kernel, our backend
reconfigures the FPGA to load a new context provided by an
existing bitfile or by synthesizing a new fabric onto the
FPGA. The overall goal of the heuristic is to minimize
individual context area by minimizing the number of
resources required for the context to support all its assigned
kernels. This savings in area can help the system fit under
area constraints, and may also be used to scale up each
context to preemptively increase its flexibility to support
similar kernels.

Experimental results show 4211x faster compilation than
device-vendor tools. Fixed-point contexts had an average
area overhead of 7.8x (5.6x for the entire system), but
floating-point context overhead averaged only 1.4x due to
the larger cores outweighing fabric interconnect. Area
overhead averaged 1.8x for a system of 20 kernels, with
negligible average clock overhead. Although this area
overhead may be limiting for some use cases, the results are
highly pessimistic, and area reduction of IFs remains an
active area of complementary research. Furthermore,
reconfiguration contexts enable 144x faster reconfiguration
than FPGAs, which can further hide overhead when time-
multiplexing many kernels.

II. BACKGROUND: INTERMEDIATE FABRICS
Initial IFs [2] used coarse-grained resources with

multiplexor-based switch boxes and bi-directional tracks,
which showed orders-of-magnitude faster place & route at a
cost less than 40% of FPGA resources. A later study [11]
evaluated several DSP kernels on a large IF, which showed
1000x speedup in place & route, with the IF using 2.9-4.4x
more area than any individual circuit. However, the fabric in
that study could be completely reconfigured in just 72 cycles
to hide overhead via time multiplexing. A more recent study
[6] focused on an optimized virtual interconnect, which
reduced area overhead by 50%. Clock overhead varied
depending on fabric size, but on average was negligible.
These previous studies are complementary to this paper,
where we leverage IFs to improve OpenCL synthesis.

III. RECONFIGURATION CONTEXTS
In this paper, we consider IF implementations of

reconfiguration contexts, though other architectures are
possible. For example, at one extreme, a context tasked with
supporting three kernels could implement three kernel-
specific accelerators, similar to existing approaches like
Figure 3(a). Although possibly more efficient than an IF, this
context architecture provides no support for kernels not
known at system generation, which is a limitation of existing
OpenCL synthesis [3][9][10]. In addition, kernel-specific
accelerators may have limited scalability due to a lack of
resource sharing across kernels. IFs are attractive because
only common computational resources (e.g., add, mul, sqrt,

rand, FFT) are fixed after generation, with their
interconnection remaining configurable. IF-based contexts
provide enough flexibility to support kernels similar to those
for which the context was originally designed, as might be
seen during iterative system development or creeping system
requirements and workloads.

A. Overview
Figure 2 gives an overview of reconfiguration contexts.

During system generation, Figure 2(a), an OpenCL frontend
(potentially any) synthesizes kernels from the system’s
source to a netlist of coarse-grained cores and control. Our
backend then uses a context-design heuristic based on netlist
clustering to group these netlists into sets with similar
resource requirements, and then designs an IF-based context
for each set, which device-vendor tools compile to an FPGA
bitstream (not shown).

At runtime, Figure 2(b), the system loads a context into
the FPGA and then rapidly reconfigures the context to
execute different supported kernels (e.g., kA and kB for the
blue context in step 1). When the loaded context does not
support a kernel, the system reconfigures the FPGA with a
new context (e.g., red context for kernelF in step 2). When a
new kernel executes that was unknown during system
generation (step 3), the synthesis frontend creates a new
circuit, which the backend clusters onto an existing context
(e.g., green context in step 4), while performing context
place & route (PAR) to create a context bitfile for the kernel.
Note that such runtime compilation is possible due to the
rapid compilation times provided by IFs (0.32s per kernel on
average). Lengthy FPGA compilation is only required when

Known Kernels

__kernel void kernelA(int *data) { ... }
...
__kernel void kernelF(int *data) { ... }

OpenCL HLS

Context-Design Based
on Netlist Clustering

Core
Library

kA kC kernelF

Recon guration Contexts

__kernel void newKern(int *data) { ... }

Unknown Kernel

kE kB kE ?••• •••

1

3

4

2

Context (IF) PAR

a)

b)
Figure 2: An overview of (a) system generation using OpenCL
HLS with a reconfiguration-context backend, and (b) runtime 1)
reconfiguration of contexts, 2) loading of different contexts to

support all kernels, and 3+4) compilation of new kernels.

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

the backend initially creates contexts, or when a new kernel
is not supported by current contexts, which gives the worst-
case compile time for a new/changed kernel. Therefore,
designing appropriate contexts is the most critical part of this
tool flow.

B. Context-design heuristic
The main challenge of context design is determining how

many contexts should be created to support the known
kernels, what functionality to include in each context, and
how to assign kernels to contexts. Context design can be
seen an optimization problem where we’d like to maximize
the number of resources reused across kernels in a context
while minimizing the area of individual contexts. The
resulting savings in context area is then typically used to
enable scaling up contexts to increase flexibility to support
kernels other than those known at compile time (e.g., new
kernels introduced during development or in vivo).

Our approach begins with the observation that groups of
kernels often exhibit similarity in their mixture of
operations—an observation that has motivated application-
specialized processors for many domains. Because
interconnection remains flexible in IF-based contexts, our
context-design heuristic considers this functional similarity
over any structural similarity. Note that for other context
architectures that want to exploit structural similarity
between kernels (e.g., to reduce interconnect area), other
approaches to kernel grouping can be used. However, even
for these architectures, functional grouping is useful when
the cost of functional resources is expected to be greater than
the cost of interconnect. Our approach currently ignores
functional timing differences, assuming that these
differences are minimized through pipelining [2]. However,
this information could be considered during grouping when
pipelining isn’t sufficient, e.g., by using an additional fmax
dimension in a clustering heuristic.

Contexts that minimally support one member of these
groups should support other members of the group, perhaps
requiring different numbers of resources, or the addition of
several of other resources. Thus, identifying these groups
provides a prescription for designing contexts that are
compatible with kernels similar to the kernels inside each
group. Note that the collection of kernels used for context
design can also be augmented with kernels not currently in
the program, but which might be considered likely (e.g.,
based on the design’s history) to further guide the flexibility
of the contexts designed.

For IF-based contexts, we identify these groups using a
clustering heuristic in an n-dimensional feature space defined
by the functional composition of the system’s kernel netlists.
This space includes an element for each core type used in the
application, ignoring differences that can be resolved through
promotion or runtime configuration (e.g., bit-width or
comparator predicate). Because otherwise similar netlists
may be of different sizes (e.g., different FIR filters), and
because the context may be scaled up to improve flexibility,
the relative composition of each kernel is used instead of

absolute counts. For example, for an application containing
two kernels, FIR and SAD, clustering would operate on:
SAD=<0.3, 0.0, 0.7> and FIR=<0.5, 0.5, 0.0>, in the space
<fadd, fmul, fcmp/sub>.

We currently use k-means clustering to group netlists in
this space, resulting in up to k sets of netlists for which
individual contexts will be designed. The heuristic can use
the resource requirements of cores to estimate the area
required for each cluster, allowing k to be selected subject to
device or system-imposed area constraints. The user may
also select a value for k to satisfy system goals for flexibility.
Fully automated selection of k in these scenarios is left as
future work.

We currently assume the application time-multiplexes
kernels on each context, with one kernel implemented on a
context at a time. Although this limits system parallelism to
that achievable by the executing kernel, memory bandwidth
frequently imposes this limit on accelerators anyway,
especially when they are well pipelined. This assumption
allows the resources required by any netlist in a given cluster
to be fully shared by other netlists in the same cluster. Thus,
the minimum number of each resource type needed for a
context is the maximum number of that resource across all
netlists in the corresponding cluster. The heuristic designs an
IF for each cluster by including at least this count of each
resource type, adding interconnect until place & route
succeeds for all corresponding netlists.

IV. OPENCL-IF COMPILER
Though reconfiguration contexts could potentially be

integrated with existing OpenCL synthesis tools (Section

Memory

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline
Kernel 1
Pipelines

a) Memory

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline
Kernel 2
Pipelines

Memory

1D Buffer 2D Buffer

Controller

Memory

Kernel implemented by
con guring fabric routing

b)

op:
+

op:
cmp/-

op:
÷

op:
×

Switch

Fabric
Context

Figure 3: a) Previous OpenCL FPGA implementation with separate
datapaths for each kernel. b) Reconfiguration-context architecture,

where kernels are implemented as needed via IF configuration.

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

IV.A), we developed a custom tool to simplify IF
integration, which we describe in Section IV.B.

A. Previous work
Previous work on OpenCL synthesis has tended towards

architectures that instantiate separate accelerator hardware
for each kernel in the application, as shown in Figure 3(a).
Owaida [9] implemented these accelerators as groups of
ALUs between separate memories implementing barrier
interfaces. Within a group, these elements were controlled
using code slicing, and had arbitrated access to global
memory. Altera’s OpenCL Compiler [3] implements
pipelined accelerators for each kernel, with local memory
also implemented in global banks. FCUDA [10], for the
related CUDA language, implements accelerator datapaths
for kernel functions, using a configurable interconnect to
memory to allow efficient routing of results and inputs
between kernel stages. All of these approaches require
lengthy FPGA compilation and/or reconfiguration for kernel
changes.

B. OpenCL-IF Overview
Our tool, OpenCL-IF, is based on the Low-Level Virtual

Machine (LLVM) [7] and its C frontend. OpenCL-IF first
compiles a kernel into LLVM’s intermediate representation,
substituting custom intrinsics for system functions (e.g.,
get_global_id). The tool uses LLVM’s standard optimization
passes, including inlining auxiliary functions and unrolling
loops, and also performs common hardware-specific
optimizations [8]. The tool then creates a control data flow
graph (CDFG), simultaneously mapping LLVM instructions
to compatible cores provided in a user-specified library. Note
that cores may be added to this library to enable limited
application- and target-specific optimizations. DFGs are
independently scheduled and bound to final resources
provided by the context using common approaches [8].
Finally, the resulting kernel netlists are implemented on the
context through place & route, yielding a context bitstream
for each kernel. At runtime, a kernel is executed after
configuring its context with this bitstream, which is mutually
exclusive per context.

Because the main contribution of this paper is integration
of reconfiguration contexts with OpenCL, we omit a
complete discussion of all the features of OpenCL-IF.
However, one feature that is unique to OpenCL-IF is support
for efficient data streaming from external memories. In
previous approaches, kernel accelerators comprised of
multiple pipelines compete for global memory through
arbitration, as shown in Figure 3(a) [9]. Previous work on
synthesis from C [5] and custom circuit design has addressed
memory bottlenecks common in this approach using
specialized buffers [5][12] that detect overlapping memory-
access patterns to exploit data reuse. In OpenCL-IF, we
adapt those approaches for OpenCL based on the observation
that many OpenCL kernels limit accesses for each buffer to
some set of constant offsets (a window) relative to their id
vector. In this common case, OpenCL-IF schedules work

items to enable fully pipelined implementations using 1- or
2-D sliding-window buffers as shown in Figure 4(b). We
plan to evaluate the performance impact of this optimization,
which is independent of the OpenCL backend presented
here, as future work.

V. EXPERIMENTS
In this section, we evaluate reconfiguration contexts over

a number of kernels, using the motivating example of a
single framework for computer-vision applications that
execute multiple image-processing kernels in different
combinations at different times (e.g., as stages in larger
processing pipelines). In Section V.A, we evaluate the
context-design heuristic for this system, providing minimal
guidance by using only the framework’s known kernels. In
Section V.B, we evaluate compilation time, overhead, and
reconfiguration time.

The experiments evaluate fixed-point and single-precision
floating-point (FLT) versions of 10 OpenCL kernels (20
total). FIR is a finite impulse-response filter with 16 taps.
Gaussian performs image blur. Sobel performs edge
detection. Bilinear performs image downscaling. Threshold
binarizes image pixels in around the local mean. Mean, Max,
and Min give the local average, maximum, and minimum
image intensity. Normalize improves local image dynamic
range by scaling. SAD performs sum of absolute differences
for image recognition.

a)

b)

C1 C2 C3 C4 C5

k=
5

Clusters/Contests, k

Co
nt

ex
t S

ize
, #

 o
ps

Context Size Under Clustering

Figure 4: a) Size in # operators (ops) of minimum-sized IF contexts

required to implement kernel clusters with different degrees of
clustering k. b) Resource composition of contexts for k=5 based on

similarities in clustered netlists.

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

All experiments target a Xilinx Virtex 6 XC6VCX130T-
1FF1154 and use Xilinx ISE 14.4.

A. Context Design and Clustering
To evaluate the context-design heuristic, we used the

heuristic to generate reconfiguration contexts, based on only
the 20 known kernels, using different degrees of clustering k
(e.g., k=2 uses two clusters to support all kernels). Figure
4(a) shows the fabric size (in operators) of resulting contexts,
minimally sized to support their assigned kernels. As
expected, fewer clusters results in larger contexts, as the
different resources used by each kernel limits resource
sharing. More clusters result in smaller contexts, as fewer
resources are required to support each set of kernels,
however this effect is ultimately bounded by the largest
netlist in each cluster (here, around k=6).

In Figure 4(b), we present a more detailed analysis for
k=5, with the resulting kernel clustering shown in Table 1.
As shown, the resource amounts and types in each context
strongly reflect the netlists in each corresponding cluster. For
example, cluster C2 implements Max, Min, Threshold, and
SAD kernels, which are all dominated by the use of
subtractors. The subtractors are used as comparators in all
these netlists, and also as differences in SAD. Different
operators, or pairs, dominate the other contexts.

Figure 4 shows that, for this application, using five
clusters provides a significant 60% decrease in largest

context size compared to using a single cluster to support all
kernels. The tradeoffs represented by different k values can
be used for different purposes depending on designer intent.
The 60% size savings provides significant flexibility to allow
implementation of all kernels under area constraints, enabled
by implementing each context minimally. However, when
flexibility is crucial, the amount of clustering could be
increased to provide a better match of the underlying kernels,
with the resulting clusters increased in size up to device
capacity or an area constraint to provide better support for
unknown netlists. Future work includes a detailed analysis of
these tradeoffs.

B. Compile Times, Overhead, and Reconfiguration
In Table 1, we compare kernels using reconfiguration

contexts in the OpenCL-IF compiler with kernels compiled
directly to the FPGA using VHDL generated from OpenCL
(i.e., previous approaches). To ensure a fair comparison, the
VHDL implementations are pipelined the same (except for
IF routing) and use the same core implementations as the
context netlists. For direct FPGA compilations, we used
standard effort for faster compilation at the expense of some
circuit quality. Execution times were compared on a quad-
core 2.66 GHz Intel Xeon W3520 workstation with 12GB
RAM, running CentOS 6.4 x86 64.

The OpenCL-IF Time column gives the time required to
synthesize each kernel using the OpenCL-IF compiler,

Table 1: A comparison of compilation time, area, and clock frequency for OpenCL-IF reconfiguration contexts and direct FPGA
implementations for a computer-vision application with k=5. Floating-point kernels are shown with an FLT suffix.

Kernel

Reconfigurattion Contexts DDirect FPGA Immplementations Overhead

OpenCL-IF
Time

PAR Time Total Time Clock Area XST Time PAR Time Total Time Clock Compilation
Speedup

Clock Area

FIR 16 tap
Gaussian 4x4
Sobel 3x3
Kernel average
Cluster 1 total

Bilinear
Mean 4x4
Threshold 4x4
Kernel average
Cluster 2 total

Max 4x4
Min 4x4
Normalize 3x3
SAD 3x3
Kernel average
Cluster 3 total

FIR 16 tap FLT
Gaussian 4x4 FLT
Sobel 3x3 FLT
Kernel average
Cluster 4 total
Bilinear FLT
Mean 4x4 FLT
Threshold 4x4 FLT
Max 4x4 FLT
Min 4x4 FLT
Normalize 3x3 FLT
SAD 3x3 FLT
Kernel average
Cluster 5 total
Kernel average
System total

0.114s 0.416s 0.530s 10.8s 85s 96s 275MHz 181x 18.3%
0.125s 0.481s 0.606s 10.8s 85s 96s 275MHz 159x 18.3%
0.130s 0.481s 0.611s 225MHz 13.4% 10.8s 85s 96s 275MHz 157x 18.3% 14.9x
0.123s 0.459s 0.582s

225MHz 13.4%
10.8s 85s 96s 275MHz 166x 18.3%

9

0.369s 1.377s 1.746s 32.4s 255s 288s 165x

0.080s 0.087s 0.167s 9.4s 520s 530s 275MHz 3,170x 6.9%
0.109s 0.189s 0.298s 9.4s 1362s 1371s 320MHz 4,600x 20.0%
0.117s 0.256s 0.373s 256MHz 10.8% 9.5s 1449s 1458s 280MHz 3,908x 8.7% 3.9x
0.102s 0.177s 0.279s

256MHz 10.8%
9.4s 1110s 1120s 292MHz 3,893x 11.9%

3.9x

0.306s 0.532s 0.838s 28.2s 3331s 3359s 4,007x

0.178s 0.108s 0.287s 11.3s 88s 99s 229MHz 347x 1.5%
0.160s 0.115s 0.275s 10.8s 83s 94s 225MHz 344x -0.0%
0.178s 0.127s 0.305s 11.4s 1268s 1279s 228MHz 4,195x 1.1%
0.145s 0.033s 0.178s 225MHz 16.2% 10.6s 81s 92s 263MHz 516x 14.5% 4.6x
0.165s 0.096s 0.261s 11.1s 380s 391s 236MHz 1,350x 4.3%
0.661s 0.383s 1.044s 44.3s 1520s 1565s 1,499x

0.119s 0.260s 0.379s 9.5s 4255s 4264s 120MHz 11,263x -63.3%
0.111s 0.297s 0.408s 9.5s 3994s 4004s 120MHz 9,823x -63.3%
0.116s 0.156s 0.272s 196MHz 40.4% 9.3s 6122s 6131s 156MHz 22,515x -25.4% 1.6x
0.115s 0.237s 0.353s 9.4s 4790s 4800s 132MHz 14,534x -50.7%
0.346s 0.712s 1.059s 28.3s 14371s 14400s 13,603x
0.077s 0.090s 0.167s 9.9s 284s 294s 185MHz 1,762x -6.1%
0.115s 0.183s 0.298s 9.3s 5843s 5853s 149MHz 19,616x -31.7%
0.114s 0.106s 0.220s 9.4s 203s 212s 228MHz 965x 14.1%
0.168s 0.080s 0.248s 10.2s 199s 209s 190MHz 846x -3.0%
0.150s 0.083s 0.233s 196MHz 48.0% 10.7s 214s 225s 201MHz 966x 2.7% 1.3x
0.162s 0.096s 0.259s 10.4s 237s 248s 200MHz 959x 2.4%
0.173s 0.115s 0.288s 9.9s 284s 294s 240MHz 1,023x 18.7%
0.137s 0.108s 0.245s 10.0s 1038s 1048s 199MHz 3,734x -0%
0.959s 0.753s 1.712s 69.7s 7265s 7335s 4,285x
0.132s 0.188s 0.320s 25.8% 10.2s 1337s 1347s 222MHz 4,366x -2%
2.642s 3.758s 6.399s 128.8% 203.0s 26742s 26947s 4,211x 1.8x

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

including all stages through netlist export. The second group
of columns (Reconfiguration Contexts) gives the time
required to place & route (PAR Time) each kernel netlist on
its assigned context, the resulting total compilation time, in
addition to the clock frequency and the FPGA LUT
utilization (Area) of the context. The third group of columns
(Direct FPGA Implementations) gives the time required to
implement each circuit directly using ISE, broken into logic
synthesis (XST Time) and place & route (PAR Time), and the
frequency of each circuit. The last three columns give the
compilation speedup from reconfiguration contexts, along
with the resulting clock and area overhead. Note that a
performance comparison with hand-optimized VHDL (or
different OpenCL tools) is highly dependent on the OpenCL
frontend, which is outside the scope of our reconfiguration
context analysis.

Table 1 shows that, after context generation,
reconfiguration contexts enable compilation of the entire
system of kernels in 6.3s, 4211x faster than the ~7.5 hours
required by ISE to compile directly to the FPGA. Table 1
also shows that the floating-point kernels experience a
greater compilation speedup (6970x vs. 1760x), as more
fine-grained device resources are hidden by their contexts.
Because individual operators in these contexts are larger, the
area used by the fabric’s routing resources is also a smaller
fraction of total area, decreasing area overhead (avg. 1.4x vs.
7.8x). Each kernel required an average of 0.32s to compile
on a reconfiguration context, which also provides an estimate
of the average compilation time of new, context-compatible
kernels. Clock overhead was negligible on average, with
additional pipelining in the fabric’s interconnect benefiting
some circuits (e.g., Cluster 4). Note that the speedup reported
for each kernel is pessimistic, because each direct FPGA
circuit was synthesized individually, whereas a real system
would include as many circuits as would fit on the FPGA
(e.g., [3]), increasing FPGA PAR times dramatically.

For each context, we also define its area overhead as the
area required by the context’s fabric compared to the area of
all the corresponding kernels implemented directly on the
FPGA. This system as a whole required 1.8x additional area
compared to implementing all kernels directly. However, this
extra area is not necessarily all overhead due to the
significant added flexibility. For example, a new SAD kernel
using a 4x2 template would synthesize on Context 3 without
requiring modifications to the system’s hardware. Under our
definition, the addition of this kernel would reduce that
context’s overhead from 4.6x to ~3.9x. For an application
with numerous kernels, reconfiguration contexts may even
save area compared to direct FPGA implementations. Thus,
this definition of overhead is pessimistic for any system with
changing workloads. Furthermore, despite this overhead, the
largest context used only 48% of the FPGA, which increases
the applicability to many use cases. Though outside the
scope of this paper, reconfiguration contexts can also enable
runtime synthesis of optimized hardware based on variables
known only at runtime (e.g., mask coefficients), which also
isn’t accounted for in this measure of overhead.

Table 2 compares the configuration bitstream lengths and
times for each context against the bitstream length and best-
case reconfiguration time for the FPGA. The table shows
that the uncompressed bitstream size of a kernel using this
system’s contexts is on average 772 bytes, requiring less than
16 KB for the 20 known kernels. Contexts in this system can
be reconfigured with a new kernel in 29.4 s on average
(144x faster than FPGA reconfiguration), enabling efficient
time-multiplexing of multiple kernels.

VI. CONCLUSIONS
In this paper, we introduced a backend approach to

complement existing OpenCL synthesis, which uses virtual,
coarse-grained reconfiguration contexts to enable 4211x
faster FPGA compilation compared to device-vendor tools,
at a cost of 1.8x area overhead. Furthermore, these contexts
can be reconfigured in less than 29 s to support multiple
kernels, while using slower FPGA reconfiguration to load
new contexts to support significantly different kernels. To
create effective contexts, we introduced a clustering heuristic
that groups kernels based on functional similarity and then
creates intermediate fabrics to support the requirements of
each group. Future work includes evaluating other
architectures for reconfiguration contexts, including more
specialized (and less flexible) interconnects, strategies for
managing multiple contexts through partial reconfiguration,
and optimizations enabled by runtime kernel synthesis.

ACKNOWLEDGMENT
This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022. The authors gratefully
acknowledge vendor equipment and/or tools provided by
Xilinx.

REFERENCES
[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z.

Zhang. High-level synthesis for fpgas: From prototyping to
deployment.

, 30(4):473–491, 2011.
[2] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for

circuit portability and fast placement and routing. , pages
13 –22, 2010.

[3] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh. From opencl to
high-performance hardware on fpgas. , pages 531–534, 2012.

[4] G. Falcao, M. Owaida, D. Novo, M. Purnaprajna, N. Bellas, C.
Antonopoulos, G. Karakonstantis, A. Burg, and P. Ienne. Shortening

Table 2: A comparison of configuration bitstream sizes and times
between reconfiguration contexts and the FPGA.

Context Context Config
Data Size

Context Config
Time

FPGA Config
Data Size

FPGA Config
Time (Best)

Speedup

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Average
System total

578 B 20.6 s 166x
429 B 13.4 s 255x
683 B 24.2 s 5.21 MB 3415.6 s 141x
964 B 39.4 s 87x

1208 B 49.3 s 69x
772 B 29.4 s 144x

15580 B

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

design time through multiplatform simulations with a portable opencl
golden-model: The ldpc decoder case. pages 224–231, 2012.

[5] Z. Guo, B. Buyukkurt, and W. Najjar. Input data reuse in compiling
window operations onto reconfigurable hardware. LCTES, pages
249–256, 2004.

[6] A. Landy and G. Stitt. A low-overhead interconnect architecture for
virtual reconfigurable fabrics. , pages 111–120, 2012.

[7]

[8] G. D. Micheli. .

McGraw-Hill Higher Education, 1st edition, 1994.
[9] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos. Synthesis

of platform architectures from opencl programs. , pages 186–
193, 2011.

[10] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and
W.-M. Hwu. FCUDA: Enabling efficient compilation of CUDA
kernels onto FPGAs. , pages 35–42, 2009.

[11] G. Stitt and J. Coole. Intermediate fabrics: Virtual architectures for
near-instant FPGA compilation. ,
3(3):81–84, 2011.

[12] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular
hardware accelerators in c with roccc 2.0. FCCM, pages 127–134,
2010.

James Coole is a PhD student at The University of
Florida. His research interests include computer
architecture and design automation.

Greg Stitt is an Associate Professor in the ECE
Department at The University of Florida and is a recipient
of the NSF CAREER Award.

Digital Object Indentifier 10.1109/MM.2013.108 0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

