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Abstract—High-level synthesis from OpenCL has shown 

significant potential, but current approaches conflict with 
mainstream OpenCL design methodologies due to 1) orders-of-
magnitude longer FPGA compilation times, and 2) limited 
support for changing or adding kernels after system 
compilation. In this paper, we introduce a backend synthesis 
approach for potentially any OpenCL tool, which uses virtual 
coarse-grained reconfiguration contexts to speedup compilation 
by 4211x at a cost of 1.8x system resource overhead, while also 
enabling 144x faster reconfiguration to support different 
kernels and rapid changes to kernels.  

Keywords—OpenCL; FPGA; intermediate fabrics 

I. INTRODUCTION 
High-level synthesis (HLS) from OpenCL is an emerging 

design strategy for field-programmable gate arrays (FPGAs) 
that improves productivity while potentially enabling 
significant advantages over other devices [1][2]. Although 
previous OpenCL synthesis has shown important technical 
achievements [3][9][10], several limitations prevent more 
widespread FPGA usage. One significant limitation is that 
FPGA compilation commonly ranges from hours to even 
days [11], which limits productivity and prevents common 
design methodologies. Lengthy compilation also prevents 
OpenCL’s runtime compilation, which further contributes to 
niche FPGA usage. Previous OpenCL synthesis also has 
limited support for the addition of new kernels and changes 
to existing kernels. Unlike GPUs and multicores, previous 
FPGA approaches create a fixed number of kernel-specific 
accelerators [3][9][10], which prevents execution of new and 
modified kernels without lengthy compilation of accelerator 
hardware.  

Lengthy compilation times have been improved by recent 
work on intermediate fabrics (IFs) [2], which enabled 1000x 
faster place-and-route compared to device-vendor tools at a 
cost of 21% of FPGA resources [2][6][11]. IFs achieve fast 
compilation via virtual coarse-grained resources 
implemented atop a physical FPGA. When using an IF, 
synthesis avoids decomposing the application into hundreds 
of thousands of the FPGA’s lookup tables (LUTs), and 
instead directly maps behavior onto application-specialized 
resources (e.g., floating-point units, FFT cores).  

In this paper, we complement existing OpenCL synthesis 
by introducing a backend approach, shown in Figure 1, 
which specializes IFs for OpenCL to enable fast compilation 
and reconfiguration while improving support for adding and 
changing kernels. Whereas all previous IFs were manually 
designed, the main research challenge of integrating IFs with 
OpenCL is automatically determining an effective fabric 
architecture for an application or domain. Because it is 
clearly not possible to create an optimal fabric for all 
combinations of kernels, we present a context-design 
heuristic that analyzes kernel requirements from an 
application (or domain) and clusters them based on similarity 
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Figure 1: OpenCL synthesis using intermediate fabric 

reconfiguration contexts to enable fast compilation and improved 
support for adding/changing kernels. 
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into a set of fabrics referred to as reconfiguration contexts. 
As long as a context supports an application’s kernels, the 
application benefits from orders-of-magnitude faster 
compilation and reconfiguration between kernel executions. 
When a context does not support a kernel, our backend 
reconfigures the FPGA to load a new context provided by an 
existing bitfile or by synthesizing a new fabric onto the 
FPGA. The overall goal of the heuristic is to minimize 
individual context area by minimizing the number of 
resources required for the context to support all its assigned 
kernels. This savings in area can help the system fit under 
area constraints, and may also be used to scale up each 
context to preemptively increase its flexibility to support 
similar kernels. 

Experimental results show 4211x faster compilation than 
device-vendor tools. Fixed-point contexts had an average 
area overhead of 7.8x (5.6x for the entire system), but 
floating-point context overhead averaged only 1.4x due to 
the larger cores outweighing fabric interconnect. Area 
overhead averaged 1.8x for a system of 20 kernels, with 
negligible average clock overhead. Although this area 
overhead may be limiting for some use cases, the results are 
highly pessimistic, and area reduction of IFs remains an 
active area of complementary research. Furthermore, 
reconfiguration contexts enable 144x faster reconfiguration 
than FPGAs, which can further hide overhead when time-
multiplexing many kernels. 

II. BACKGROUND: INTERMEDIATE FABRICS 
Initial IFs [2] used coarse-grained resources with 

multiplexor-based switch boxes and bi-directional tracks, 
which showed orders-of-magnitude faster place & route at a 
cost less than 40% of FPGA resources. A later study [11] 
evaluated several DSP kernels on a large IF, which showed 
1000x speedup in place & route, with the IF using 2.9-4.4x 
more area than any individual circuit. However, the fabric in 
that study could be completely reconfigured in just 72 cycles 
to hide overhead via time multiplexing. A more recent study 
[6] focused on an optimized virtual interconnect, which 
reduced area overhead by 50%. Clock overhead varied 
depending on fabric size, but on average was negligible. 
These previous studies are complementary to this paper, 
where we leverage IFs to improve OpenCL synthesis.  

III. RECONFIGURATION CONTEXTS 
In this paper, we consider IF implementations of 

reconfiguration contexts, though other architectures are 
possible. For example, at one extreme, a context tasked with 
supporting three kernels could implement three kernel-
specific accelerators, similar to existing approaches like 
Figure 3(a). Although possibly more efficient than an IF, this 
context architecture provides no support for kernels not 
known at system generation, which is a limitation of existing 
OpenCL synthesis [3][9][10]. In addition, kernel-specific 
accelerators may have limited scalability due to a lack of 
resource sharing across kernels. IFs are attractive because 
only common computational resources (e.g., add, mul, sqrt, 

rand, FFT) are fixed after generation, with their 
interconnection remaining configurable. IF-based contexts 
provide enough flexibility to support kernels similar to those 
for which the context was originally designed, as might be 
seen during iterative system development or creeping system 
requirements and workloads. 

A. Overview 
Figure 2 gives an overview of reconfiguration contexts. 

During system generation, Figure 2(a), an OpenCL frontend 
(potentially any) synthesizes kernels from the system’s 
source to a netlist of coarse-grained cores and control. Our 
backend then uses a context-design heuristic based on netlist 
clustering to group these netlists into sets with similar 
resource requirements, and then designs an IF-based context 
for each set, which device-vendor tools compile to an FPGA 
bitstream (not shown).  

At runtime, Figure 2(b), the system loads a context into 
the FPGA and then rapidly reconfigures the context to 
execute different supported kernels (e.g., kA and kB for the 
blue context in step 1). When the loaded context does not 
support a kernel, the system reconfigures the FPGA with a 
new context (e.g., red context for kernelF in step 2). When a 
new kernel executes that was unknown during system 
generation (step 3), the synthesis frontend creates a new 
circuit, which the backend clusters onto an existing context 
(e.g., green context in step 4), while performing context 
place & route (PAR) to create a context bitfile for the kernel. 
Note that such runtime compilation is possible due to the 
rapid compilation times provided by IFs (0.32s per kernel on 
average). Lengthy FPGA compilation is only required when 
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reconfiguration of contexts, 2) loading of different contexts to 

support all kernels, and 3+4) compilation of new kernels. 
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the backend initially creates contexts, or when a new kernel 
is not supported by current contexts, which gives the worst-
case compile time for a new/changed kernel. Therefore, 
designing appropriate contexts is the most critical part of this 
tool flow. 

B. Context-design heuristic 
The main challenge of context design is determining how 

many contexts should be created to support the known 
kernels, what functionality to include in each context, and 
how to assign kernels to contexts. Context design can be 
seen an optimization problem where we’d like to maximize 
the number of resources reused across kernels in a context 
while minimizing the area of individual contexts. The 
resulting savings in context area is then typically used to 
enable scaling up contexts to increase flexibility to support 
kernels other than those known at compile time (e.g., new 
kernels introduced during development or in vivo). 

Our approach begins with the observation that groups of 
kernels often exhibit similarity in their mixture of 
operations—an observation that has motivated application-
specialized processors for many domains. Because 
interconnection remains flexible in IF-based contexts, our 
context-design heuristic considers this functional similarity 
over any structural similarity. Note that for other context 
architectures that want to exploit structural similarity 
between kernels (e.g., to reduce interconnect area), other 
approaches to kernel grouping can be used. However, even 
for these architectures, functional grouping is useful when 
the cost of functional resources is expected to be greater than 
the cost of interconnect. Our approach currently ignores 
functional timing differences, assuming that these 
differences are minimized through pipelining [2]. However, 
this information could be considered during grouping when 
pipelining isn’t sufficient, e.g., by using an additional fmax  
dimension in a clustering heuristic. 

Contexts that minimally support one member of these 
groups should support other members of the group, perhaps 
requiring different numbers of resources, or the addition of 
several of other resources. Thus, identifying these groups 
provides a prescription for designing contexts that are 
compatible with kernels similar to the kernels inside each 
group. Note that the collection of kernels used for context 
design can also be augmented with kernels not currently in 
the program, but which might be considered likely (e.g., 
based on the design’s history) to further guide the flexibility 
of the contexts designed. 

For IF-based contexts, we identify these groups using a 
clustering heuristic in an n-dimensional feature space defined 
by the functional composition of the system’s kernel netlists. 
This space includes an element for each core type used in the 
application, ignoring differences that can be resolved through 
promotion or runtime configuration (e.g., bit-width or 
comparator predicate). Because otherwise similar netlists 
may be of different sizes (e.g., different FIR filters), and 
because the context may be scaled up to improve flexibility, 
the relative composition of each kernel is used instead of 

absolute counts. For example, for an application containing 
two kernels, FIR and SAD, clustering would operate on: 
SAD=<0.3, 0.0, 0.7> and FIR=<0.5, 0.5, 0.0>, in the space 
<fadd,  fmul,  fcmp/sub>. 

We currently use k-means clustering to group netlists in 
this space, resulting in up to k sets of netlists for which 
individual contexts will be designed. The heuristic can use 
the resource requirements of cores to estimate the area 
required for each cluster, allowing k to be selected subject to 
device or system-imposed area constraints. The user may 
also select a value for k to satisfy system goals for flexibility. 
Fully automated selection of k in these scenarios is left as 
future work. 

We currently assume the application time-multiplexes 
kernels on each context, with one kernel implemented on a 
context at a time. Although this limits system parallelism to 
that achievable by the executing kernel, memory bandwidth 
frequently imposes this limit on accelerators anyway, 
especially when they are well pipelined. This assumption 
allows the resources required by any netlist in a given cluster 
to be fully shared by other netlists in the same cluster. Thus, 
the minimum number of each resource type needed for a 
context is the maximum number of that resource across all 
netlists in the corresponding cluster. The heuristic designs an 
IF for each cluster by including at least this count of each 
resource type, adding interconnect until place & route 
succeeds for all corresponding netlists. 

IV. OPENCL-IF COMPILER 
Though reconfiguration contexts could potentially be 

integrated with existing OpenCL synthesis tools (Section 
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Figure 3: a) Previous OpenCL FPGA implementation with separate 
datapaths for each kernel. b) Reconfiguration-context architecture, 

where kernels are implemented as needed via IF configuration. 

Digital Object Indentifier 10.1109/MM.2013.108             0272-1732/$26.00 2013 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.



IV.A), we developed a custom tool to simplify IF 
integration, which we describe in Section IV.B. 

A. Previous work 
Previous work on OpenCL synthesis has tended towards 

architectures that instantiate separate accelerator hardware 
for each kernel in the application, as shown in Figure 3(a). 
Owaida [9] implemented these accelerators as groups of 
ALUs between separate memories implementing barrier 
interfaces. Within a group, these elements were controlled 
using code slicing, and had arbitrated access to global 
memory. Altera’s OpenCL Compiler [3] implements 
pipelined accelerators for each kernel, with local memory 
also implemented in global banks. FCUDA [10], for the 
related CUDA language, implements accelerator datapaths 
for kernel functions, using a configurable interconnect to 
memory to allow efficient routing of results and inputs 
between kernel stages. All of these approaches require 
lengthy FPGA compilation and/or reconfiguration for kernel 
changes.  

B. OpenCL-IF Overview 
Our tool, OpenCL-IF, is based on the Low-Level Virtual 

Machine (LLVM) [7] and its C frontend. OpenCL-IF first 
compiles a kernel into LLVM’s intermediate representation, 
substituting custom intrinsics for system functions (e.g., 
get_global_id). The tool uses LLVM’s standard optimization 
passes, including inlining auxiliary functions and unrolling 
loops, and also performs common hardware-specific 
optimizations [8]. The tool then creates a control data flow 
graph (CDFG), simultaneously mapping LLVM instructions 
to compatible cores provided in a user-specified library. Note 
that cores may be added to this library to enable limited 
application- and target-specific optimizations. DFGs are 
independently scheduled and bound to final resources 
provided by the context using common approaches [8]. 
Finally, the resulting kernel netlists are implemented on the 
context through place & route, yielding a context bitstream 
for each kernel. At runtime, a kernel is executed after 
configuring its context with this bitstream, which is mutually 
exclusive per context. 

Because the main contribution of this paper is integration 
of reconfiguration contexts with OpenCL, we omit a 
complete discussion of all the features of OpenCL-IF. 
However, one feature that is unique to OpenCL-IF is support 
for efficient data streaming from external memories. In 
previous approaches, kernel accelerators comprised of 
multiple pipelines compete for global memory through 
arbitration, as shown in Figure 3(a) [9]. Previous work on 
synthesis from C [5] and custom circuit design has addressed 
memory bottlenecks common in this approach using 
specialized buffers [5][12] that detect overlapping memory-
access patterns to exploit data reuse. In OpenCL-IF, we 
adapt those approaches for OpenCL based on the observation 
that many OpenCL kernels limit accesses for each buffer to 
some set of constant offsets (a window) relative to their id 
vector. In this common case, OpenCL-IF schedules work 

items to enable fully pipelined implementations using 1- or 
2-D sliding-window buffers as shown in Figure 4(b). We 
plan to evaluate the performance impact of this optimization, 
which is independent of the OpenCL backend presented 
here, as future work. 

V. EXPERIMENTS 
In this section, we evaluate reconfiguration contexts over 

a number of kernels, using the motivating example of a 
single framework for computer-vision applications that 
execute multiple image-processing kernels in different 
combinations at different times (e.g., as stages in larger 
processing pipelines). In Section V.A, we evaluate the 
context-design heuristic for this system, providing minimal 
guidance by using only the framework’s known kernels. In 
Section V.B, we evaluate compilation time, overhead, and 
reconfiguration time. 

The experiments evaluate fixed-point and single-precision 
floating-point (FLT) versions of 10 OpenCL kernels (20 
total). FIR is a finite impulse-response filter with 16 taps. 
Gaussian performs image blur. Sobel performs edge 
detection. Bilinear performs image downscaling. Threshold 
binarizes image pixels in around the local mean. Mean, Max, 
and Min give the local average, maximum, and minimum 
image intensity. Normalize improves local image dynamic 
range by scaling. SAD performs sum of absolute differences 
for image recognition. 

a)

b)

C1 C2 C3 C4 C5

k=
5

Clusters/Contests, k

Co
nt

ex
t S

ize
, #

 o
ps

Context Size Under Clustering

 
Figure 4: a) Size in # operators (ops) of minimum-sized IF contexts 

required to implement kernel clusters with different degrees of 
clustering k. b) Resource composition of contexts for k=5 based on 

similarities in clustered netlists. 
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All experiments target a Xilinx Virtex 6 XC6VCX130T-
1FF1154 and use Xilinx ISE 14.4.  

A. Context Design and Clustering 
To evaluate the context-design heuristic, we used the 

heuristic to generate reconfiguration contexts, based on only 
the 20 known kernels, using different degrees of clustering k 
(e.g., k=2 uses two clusters to support all kernels). Figure 
4(a) shows the fabric size (in operators) of resulting contexts, 
minimally sized to support their assigned kernels. As 
expected, fewer clusters results in larger contexts, as the 
different resources used by each kernel limits resource 
sharing. More clusters result in smaller contexts, as fewer 
resources are required to support each set of kernels, 
however this effect is ultimately bounded by the largest 
netlist in each cluster (here, around k=6).  

In Figure 4(b), we present a more detailed analysis for 
k=5, with the resulting kernel clustering shown in Table 1. 
As shown, the resource amounts and types in each context 
strongly reflect the netlists in each corresponding cluster. For 
example, cluster C2 implements Max, Min, Threshold, and 
SAD kernels, which are all dominated by the use of 
subtractors. The subtractors are used as comparators in all 
these netlists, and also as differences in SAD. Different 
operators, or pairs, dominate the other contexts. 

Figure 4 shows that, for this application, using five 
clusters provides a significant 60% decrease in largest 

context size compared to using a single cluster to support all 
kernels. The tradeoffs represented by different k values can 
be used for different purposes depending on designer intent. 
The 60% size savings provides significant flexibility to allow 
implementation of all kernels under area constraints, enabled 
by implementing each context minimally. However, when 
flexibility is crucial, the amount of clustering could be 
increased to provide a better match of the underlying kernels, 
with the resulting clusters increased in size up to device 
capacity or an area constraint to provide better support for 
unknown netlists. Future work includes a detailed analysis of 
these tradeoffs. 

B. Compile Times, Overhead, and Reconfiguration 
In Table 1, we compare kernels using reconfiguration 

contexts in the OpenCL-IF compiler with kernels compiled 
directly to the FPGA using VHDL generated from OpenCL 
(i.e., previous approaches). To ensure a fair comparison, the 
VHDL implementations are pipelined the same (except for 
IF routing) and use the same core implementations as the 
context netlists. For direct FPGA compilations, we used 
standard effort for faster compilation at the expense of some 
circuit quality. Execution times were compared on a quad-
core 2.66 GHz Intel Xeon W3520 workstation with 12GB 
RAM, running CentOS 6.4 x86 64.  

The OpenCL-IF Time column gives the time required to 
synthesize each kernel using the OpenCL-IF compiler, 

Table 1: A comparison of compilation time, area, and clock frequency for OpenCL-IF reconfiguration contexts and direct FPGA 
implementations for a computer-vision application with k=5. Floating-point kernels are shown with an FLT suffix. 

Kernel

Reconfigurattion Contexts DDirect FPGA Immplementations Overhead

OpenCL-IF 
Time

PAR Time Total Time Clock Area XST Time PAR Time Total Time Clock Compilation 
Speedup

Clock Area

FIR 16 tap
Gaussian 4x4
Sobel 3x3
Kernel average
Cluster 1 total

Bilinear
Mean 4x4
Threshold 4x4
Kernel average
Cluster 2 total

Max 4x4
Min 4x4
Normalize 3x3
SAD 3x3
Kernel average
Cluster 3 total

FIR 16 tap FLT
Gaussian 4x4 FLT
Sobel 3x3 FLT
Kernel average
Cluster 4 total
Bilinear FLT
Mean 4x4 FLT
Threshold 4x4 FLT
Max 4x4 FLT
Min 4x4 FLT
Normalize 3x3 FLT
SAD 3x3 FLT
Kernel average
Cluster 5 total
Kernel average
System total

0.114s 0.416s 0.530s 10.8s 85s 96s 275MHz 181x 18.3%
0.125s 0.481s 0.606s 10.8s 85s 96s 275MHz 159x 18.3%
0.130s 0.481s 0.611s 225MHz 13.4% 10.8s 85s 96s 275MHz 157x 18.3% 14.9x
0.123s 0.459s 0.582s

225MHz 13.4%
10.8s 85s 96s 275MHz 166x 18.3%

9

0.369s 1.377s 1.746s 32.4s 255s 288s 165x

0.080s 0.087s 0.167s 9.4s 520s 530s 275MHz 3,170x 6.9%
0.109s 0.189s 0.298s 9.4s 1362s 1371s 320MHz 4,600x 20.0%
0.117s 0.256s 0.373s 256MHz 10.8% 9.5s 1449s 1458s 280MHz 3,908x 8.7% 3.9x
0.102s 0.177s 0.279s

256MHz 10.8%
9.4s 1110s 1120s 292MHz 3,893x 11.9%

3.9x

0.306s 0.532s 0.838s 28.2s 3331s 3359s 4,007x

0.178s 0.108s 0.287s 11.3s 88s 99s 229MHz 347x 1.5%
0.160s 0.115s 0.275s 10.8s 83s 94s 225MHz 344x -0.0%
0.178s 0.127s 0.305s 11.4s 1268s 1279s 228MHz 4,195x 1.1%
0.145s 0.033s 0.178s 225MHz 16.2% 10.6s 81s 92s 263MHz 516x 14.5% 4.6x
0.165s 0.096s 0.261s 11.1s 380s 391s 236MHz 1,350x 4.3%
0.661s 0.383s 1.044s 44.3s 1520s 1565s 1,499x

0.119s 0.260s 0.379s 9.5s 4255s 4264s 120MHz 11,263x -63.3%
0.111s 0.297s 0.408s 9.5s 3994s 4004s 120MHz 9,823x -63.3%
0.116s 0.156s 0.272s 196MHz 40.4% 9.3s 6122s 6131s 156MHz 22,515x -25.4% 1.6x
0.115s 0.237s 0.353s 9.4s 4790s 4800s 132MHz 14,534x -50.7%
0.346s 0.712s 1.059s 28.3s 14371s 14400s 13,603x
0.077s 0.090s 0.167s 9.9s 284s 294s 185MHz 1,762x -6.1%
0.115s 0.183s 0.298s 9.3s 5843s 5853s 149MHz 19,616x -31.7%
0.114s 0.106s 0.220s 9.4s 203s 212s 228MHz 965x 14.1%
0.168s 0.080s 0.248s 10.2s 199s 209s 190MHz 846x -3.0%
0.150s 0.083s 0.233s 196MHz 48.0% 10.7s 214s 225s 201MHz 966x 2.7% 1.3x
0.162s 0.096s 0.259s 10.4s 237s 248s 200MHz 959x 2.4%
0.173s 0.115s 0.288s 9.9s 284s 294s 240MHz 1,023x 18.7%
0.137s 0.108s 0.245s 10.0s 1038s 1048s 199MHz 3,734x -0%
0.959s 0.753s 1.712s 69.7s 7265s 7335s 4,285x
0.132s 0.188s 0.320s 25.8% 10.2s 1337s 1347s 222MHz 4,366x -2%
2.642s 3.758s 6.399s 128.8% 203.0s 26742s 26947s 4,211x 1.8x  
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including all stages through netlist export. The second group 
of columns (Reconfiguration Contexts) gives the time 
required to place & route (PAR Time) each kernel netlist on 
its assigned context, the resulting total compilation time, in 
addition to the clock frequency and the FPGA LUT 
utilization (Area) of the context. The third group of columns 
(Direct FPGA Implementations) gives the time required to 
implement each circuit directly using ISE, broken into logic 
synthesis (XST Time) and place & route (PAR Time), and the 
frequency of each circuit. The last three columns give the 
compilation speedup from reconfiguration contexts, along 
with the resulting clock and area overhead. Note that a 
performance comparison with hand-optimized VHDL (or 
different OpenCL tools) is highly dependent on the OpenCL 
frontend, which is outside the scope of our reconfiguration 
context analysis. 

Table 1 shows that, after context generation, 
reconfiguration contexts enable compilation of the entire 
system of kernels in 6.3s, 4211x faster than the ~7.5 hours 
required by ISE to compile directly to the FPGA. Table 1 
also shows that the floating-point kernels experience a 
greater compilation speedup (6970x vs. 1760x), as more 
fine-grained device resources are hidden by their contexts. 
Because individual operators in these contexts are larger, the 
area used by the fabric’s routing resources is also a smaller 
fraction of total area, decreasing area overhead (avg. 1.4x vs. 
7.8x). Each kernel required an average of 0.32s to compile 
on a reconfiguration context, which also provides an estimate 
of the average compilation time of new, context-compatible 
kernels. Clock overhead was negligible on average, with 
additional pipelining in the fabric’s interconnect benefiting 
some circuits (e.g., Cluster 4). Note that the speedup reported 
for each kernel is pessimistic, because each direct FPGA 
circuit was synthesized individually, whereas a real system 
would include as many circuits as would fit on the FPGA 
(e.g., [3]), increasing FPGA PAR times dramatically. 

For each context, we also define its area overhead as the 
area required by the context’s fabric compared to the area of 
all the corresponding kernels implemented directly on the 
FPGA. This system as a whole required 1.8x additional area 
compared to implementing all kernels directly. However, this 
extra area is not necessarily all overhead due to the 
significant added flexibility. For example, a new SAD kernel 
using a 4x2 template would synthesize on Context 3 without 
requiring modifications to the system’s hardware. Under our 
definition, the addition of this kernel would reduce that 
context’s overhead from 4.6x to ~3.9x. For an application 
with numerous kernels, reconfiguration contexts may even 
save area compared to direct FPGA implementations. Thus, 
this definition of overhead is pessimistic for any system with 
changing workloads. Furthermore, despite this overhead, the 
largest context used only 48% of the FPGA, which increases 
the applicability to many use cases. Though outside the 
scope of this paper, reconfiguration contexts can also enable 
runtime synthesis of optimized hardware based on variables 
known only at runtime (e.g., mask coefficients), which also 
isn’t accounted for in this measure of overhead. 

Table 2 compares the configuration bitstream lengths and 
times for each context against the bitstream length and best-
case reconfiguration time for the FPGA. The table shows 
that the uncompressed bitstream size of a kernel using this 
system’s contexts is on average 772 bytes, requiring less than 
16 KB for the 20 known kernels. Contexts in this system can 
be reconfigured with a new kernel in 29.4 s on average 
(144x faster than FPGA reconfiguration), enabling efficient 
time-multiplexing of multiple kernels. 

VI. CONCLUSIONS 
In this paper, we introduced a backend approach to 

complement existing OpenCL synthesis, which uses virtual, 
coarse-grained reconfiguration contexts to enable 4211x 
faster FPGA compilation compared to device-vendor tools, 
at a cost of 1.8x area overhead. Furthermore, these contexts 
can be reconfigured in less than 29 s to support multiple 
kernels, while using slower FPGA reconfiguration to load 
new contexts to support significantly different kernels. To 
create effective contexts, we introduced a clustering heuristic 
that groups kernels based on functional similarity and then 
creates intermediate fabrics to support the requirements of 
each group. Future work includes evaluating other 
architectures for reconfiguration contexts, including more 
specialized (and less flexible) interconnects, strategies for 
managing multiple contexts through partial reconfiguration, 
and optimizations enabled by runtime kernel synthesis. 
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