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ABSTRACT 
Machine learning and data mining are gaining increasing 
attentions of the computing society. FPGA provides a highly 
parallel, low power, and flexible hardware platform for this 
domain, while the difficulty of programming FPGA greatly limits 
its prevalence. MapReduce is a parallel programming framework 
that could easily utilize inherent parallelism in algorithms. In this 
paper, we describe FPMR, a MapReduce framework on FPGA, 
which provides programming abstraction, hardware architecture, 
and basic building blocks to developers. 

An on-chip processor scheduler is implemented to maximize the 
utilization of computation resources and achieve better load 
balancing. An efficient data access scheme is carefully designed 
to maximize data reuse and throughput. Meanwhile, the FPMR 
framework hides the task control, synchronization, and 
communication away from designers so that more attention can be 
paid to the application itself. A case study of RankBoost 
acceleration based on FPMR demonstrates that FPMR efficiently 
helps with the development productivity; and the speedup is 31.8x 
versus CPU-based implementation. This performance is 
comparable to a fully manually designed version, which achieves 
33.5x speedup. Two other applications: SVM, PageRank are also 
discussed to show the generalization of the framework. 

Categories and Subject Descriptors 
B.5.1 [Register-Transfer-Level Implementation]: Design –
Control design, Data-path design, Styles 

C.3 [Special-Purpose and Application-Based Systems]: 
Microprocessor/microcomputer applications;  

General Terms 
Performance, Design 

Keywords 
MapReduce, FPGA framework, RankBoost 

1. INTRODUCTION 
Efficient computing of machine learning and data mining has 
gained much more attention of the computing society in recent 
years, while it becomes more and more challenging with the ever 
growing data size and much higher performance requirements. As 
the physical constraints are preventing frequency scaling of CPUs 
and the power consumption is becoming a critical problem, 
parallel computing becomes the dominant paradigm for large 
scale computing applications. FPGA has been widely explored in 
various high performance computing applications in recent years 
[1]. Compared with other parallel computing platforms, such as 
multi-cores, clusters and GPGPUs, the main advantages of FPGA 
are i) FPGA is reconfigurable and easy to change functionalities 
without changing the platform; ii) logic elements in FPGA work 
in a naturally fine-grained parallel way with high flexibility; and 
iii) FPGA is one of the best hardware devices that can follow the 
Moore's Law persistently [2]. 

However, the popularity of FPGA-based computing is limited by 
the low programming productivity compared with other platforms, 
such as GPGPU and multi-core. Practically, the most time-
consuming and essential part is usually the hardware architecture 
exploration and the register transfer level implementation. 
Although some synthesis tools (e.g. AutoPilot[3], CatapultC[4] 
and ImpulseC[5]) can generate optimized RTL code from 
descriptions in high-level programming languages (such as C, 
C++, or SystemC) and user constraints, developers still need to 
design sophisticated hardware structures to efficiently map 
random programs to circuits to achieve an acceptable performance. 
A. DeHon et al. concluded some design patterns for FPGA-based 
computing [6], while the abstraction level of proposed guidelines 
are not utilizing the characteristics of specific application domains. 

MapReduce is a parallel programming model proposed by Google 
[7] for the ease of massive data processing and has been 
successfully applied to many applications [7, 8, 9, 10]. This model 
provides two primitives, map and reduce. As shown in Figure 1, 
the input data to a computing task is split into many <key,value> 
pairs and a map function processes these pairs to generate a set of 
intermediate <key,value> pairs. The intermediate pairs with the 
same intermediate key are grouped together and passed to reduce 
function. The communication model within MapReduce is 
transparent to users so as to alleviate the development efforts. 
Users only need to design the map and reduce function. Then the 
MapReduce runtime framework takes care of the parallel 
execution by issuing multiple map and reduce tasks to 
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computation nodes. MapReduce greatly reduces the complexity of 
designing parallel computing programs, and provides efficiency 
for data-intensive applications [7]. In [9], many standard machine 
learning algorithms has been adapted to the MapReduce 
framework on multicore machines, illustrating its benefits to the 
machine learning community. 

 
Figure 1. MapReduce Data Flow 

MapReduce model has been explored on most parallel computing 
platforms in the past few years. Google implemented the first and 
largest MapReduce system on its clusters [7]. A multi-core 
version, Phoenix [11, 12], was later developed to explore the 
parallelism on shared memory systems. Phoenix automatically 
manages thread creation and dynamic task scheduling. Its problem 
is, the memory and I/O usage of one task may detrimentally affect 
others [12] and this problem becomes more crucial when the 
thread number increases. Meanwhile, the high power consumption 
of multi-core chips will be a wall for their massive usage. On 
general purpose GPU platforms, MapReduce framework was also 
explored [13]. However, GPU prefers coalesced memory access 
pattern, which makes it fumble while dealing with complex data 
structure and the SIMT architecture restricts its computation 
performance to handle irregular applications. In [14], a 
MapReduce framework on Cell clusters was implemented. Yeung, 
et.al [15] adopted both GPU and FPGA to implement a 
MapReduce framework. This framework leaves scheduling work 
to the host CPU and uses GPU and FPGA as co-processors. 

Machine learning and data mining algorithms usually operate 
iteratively on a large corpus of regular data, and there are coarse-
grained parallelisms exist in these data. Thus, it is easy to utilize 
the data locality and parallelism with streaming processing and 
parallel computing. FPMR provides mappers and reducers to 
utilize the parallelism, and the data access scheme provides 
efficient streaming access to the training data. 

In this paper, we focus on a general and scalable MapReduce 
framework on FPGA to shorten the development cycles of the 
FPGA-based computing for machine learning and data mining. In 
this framework, multi-level parallelism can be utilized, ranging 
from bit-level to task-level. To demonstrate the feasibility of the 
proposed framework, we implement RankBoost algorithm, an 
efficient learning algorithm which is extensively used in real 
applications. The results show that our proposed design simplifies 
the hardware programming significantly with an appreciable 
speedup. The accelerator achieves 31.8x speedup (by 146 map 
instances and 1 reduce instances) compared with the results of a 

software implementation. We further expound its performance 
bottleneck, resource utilization, and the achievable data 
bandwidth, to discuss the implementation and optimization of the 
framework for such data-intensive applications. Specially, this 
paper makes following contributions. 

 The reconfigurable ability of FPMR framework allows 
designers to place various mappers and reducers on chip to 
achieve the best performance according to the 
characteristics of the device and the application.  

 An on-chip dynamic scheduling policy is adopted so as to 
maximize the utilization of computation resources and 
achieve better load balancing. Meanwhile, task control and 
communication are hidden away from the designers so that 
designers can focus on the application itself.  

 An efficient data access scheme is implemented to 
maximize the data reuse and alleviate the bandwidth 
bottleneck. Dynamic data synchronization can be also 
achieved by this data control scheme of the framework.  

To the best of our knowledge, this is the first on-chip scheduled 
MapReduce framework on FPGA. With this framework, the 
development cycles can be greatly reduced. 

The remainder of this paper is organized as follows. Section 2 
introduces our FPGA-based design of the MapReduce framework. 
Section 3 invokes an application: RankBoost on FPGA to serve as 
a case study of FPMR. Section 4 shows the experimental results 
and discussions of the case study. Section 5 discusses the mapping 
of Support Vector Machine，PageRank onto FPMR. Section 6 
concludes the paper. 

2. FPMR FRAMEWORK 
In this section, we will introduce the FPMR framework. 
Dedicated processors are designed for different applications under 
FPMR framework. Dynamic on-chip scheduling and efficient data 
control are also included in FPMR to hide the task control, 
communication, and data synchronization away from designers. 

2.1 Framework Overview 
The MapReduce data flow can be simplified as follows. 

map     : < key , value >   intermediate < key , value > 
reduce : intermediate < key , value >  result 

The initial <key,value> pairs are prepared by CPU and then 
transferred to the FPGA through PCI-E bus or CPU bus, e.g. 
HyperTransport or FSB. The configuration parameters shown in 
Table 1 are written down to the registers in FPGA. 

Table 1. Configuration Parameters 
Name Description 
#map_task number of tasks for mappers 
#reduce_task number of tasks for reducers 
#data number of <key,value> pairs 

Then the map and reduce operations are done by mappers and 
reducers on FPGA. What is more, task scheduling and data 
dispatching are also done on chip. The FPMR framework shown 
in Figure 2 is partitioned into four parts: processors 
(mapper/reducer/merger), processor scheduler, data controller 
and storage.  
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Figure 2. FPMR Framework 

The mappers process the initial input <key,value> pairs and 
generate the intermediate <key,value> pairs. The reducers then 
merge the intermediate pairs to obtain the final results. In some 
applications, the outputs of reducers need to be further processed 
to get a single result, in which case a merger will be implemented. 
The processor scheduler generates control signals to schedule 
mappers and reducers. The data controller takes charge of 
communicating with the host CPU, dispatching data to the 
mappers, and receiving data from the reducers. 

The basic work flow and scheduling policy are shown in Figure 3. 

1. Generate < key, value > pairs on the host. 
2. Write the configuration parameters to registers on FPGA.
3. Initialize DMA data transferring, copy the <key, value> 

pairs from the CPU to FPGA board. 
4. The processor scheduler assigns the tasks to each mapper.
5. Mappers process the assigned < key, value > and store the 

generated intermediate <key, value> in the local memory 
under the control of data controller. 

6. When a mapper finishes its job and there are jobs left, the 
processor scheduler will assign another job to it. 

7. When some intermediate pairs are generated and one or 
more reducers are idle, the scheduler will assign the 
intermediate pairs to idle reducers. 

8. When all the tasks are finished, the results are returned to 
the host main memory by the data controller. 

Figure 3. The basic work flow and scheduling policy of FPMR 

From Figure 3, it can be seen that our on-chip dynamic scheduling 
policy helps to achieve higher computation resources utilization, 
especially for applications whose parallel tasks take unequal time. 
When a mapper or reducer finishes earlier than others, it will take 
some more work instead of staying idle. 

2.2 Processor 
There are two types of processors on chip, mappers and reducers. 
Mappers and reducers are specifically designed according to the 
target application. They are both triggered and their tasks are 
assigned by the processor scheduler. Mappers request 
<key,value> pairs from data controller, generate the intermediate 
<key,value> pairs, and store the intermediate <key,value> pairs in 
the local memory. Then reducers deal with a set of intermediate 
pairs to obtain the final results. The ratio of mappers to reducers is 
determined by the workloads of these two parts. For those 
applications with complex computation, pipelined strategies will 
be adopted to achieve higher data throughput.  

 
Figure 4. The data exchange between mappers and reducers 

It is worth noting that the working time of mappers may be 
different from one to another in some data-dependant algorithms, 
so that a processor scheduler is essential for the collaboration 
between mappers and reducers. The data exchange between 
mappers and reducers is shown in Figure 4. 

The interface of the mapper is designed as follows. 

module mapper(...); 
input  enable, task_id 
input  [m:0] key; 
input  [n:0] value; 
output finish, read_request, write_request; 
output [j:0] int_key; 
output [k:0] int_value; 
output [i:0] read_addr, write_addr; 
 
// user defined codes below 
... 
 

Endmodule 

The interface of the reducer is designed as follows. 

module reducer(...); 
input  enable, task_id 
input  [m:0] int_key; 
input  [n:0] int_value;  
output finish, read_request, write_request; 
output [k:0] result; 
output [i:0] read_addr, write_addr; 
 
// user defined codes below 
... 
 

Endmodule 

The designers only need to pay attention to the internal structure 
of mappers and reducers by using the interfaces within these two 
modules. 

2.3 Processor Scheduler 
Processor scheduler is designed to dynamically utilize the 
hardware resources by monitoring the status of each mapper and 
reducer. There are two sets of queues in the processor scheduler. 
One queue set is for mappers and the other queue set is for 
reducers. Each queue set consists of two queues, one queue for 
idle processors and the other for pending tasks. The idle processor 
queue records the id of the idle mappers or reducers. The 
configuration parameters, #map_task and #reduce_task define the 
task number and are used to initialize task queues. The numbers of 
mappers and reducers are decided by the designers based on the 
available FPGA resources. 
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Figure 5. The internal structure of mapper scheduler 

To better illustrate the scheduling policy, here we take the idle 
processor queue and task queue for mappers as an example. The 
mechanism and scheduler structure are the same for reducers. 
Figure 5 is the internal structure of a mapper scheduler. If both the 
mapper idle queue and mapper task queue are not empty, the 
processor scheduler will extract the first task in the task queue and 
assign it to the first mapper in the idle queue. Then this mapper’s 
id is also extracted from the idle mapper queue. When a mapper 
finishes its task, the processor scheduler will add its id into the 
idle queue again to wait for the next task. The intermediate pairs 
generated by a mapper also have an id which will be added into 
the reducer task queue. In such a scheme, mappers and reducers 
cooperate with each other to keep all the processors as busy as 
possible. 

2.4 Storage Hierarchy and Data Controller 
There are three levels of storage in this framework. The first level 
is the global memory, which stores the initial <key,value> pairs. 
The second is the local memory, which stores the intermediate 
<key,value> pairs and serves as the shared memory for mappers 
and reducers. The third level is the register file in each processor, 
which is for temporary variables, configuration parameters, and 
results.  

Global memory For machine learning and data mining 
applications, the <key,value> pairs usually occupy large amount 
of memory, so large capacity memory will be used, such as DDRx 
SDRAMs. Not only the large capability and high bandwidth can 
be provided, but also the scalability can be easily achieved by 
implementing multiple DDRx SDRAMs. 

Local memory The local memory can be implemented as on-chip 
RAMs. The intermediate results obtained from a mapper are 
stored in the local memory and the reducer will fetch the 
intermediate data from the local memory. On-chip RAMs can 
provide this shared memory functionality with low access latency. 
Multiple RAMs can be implemented, and they can be accessed by 
mappers and reducers simultaneously.  

Register file The register file stores the temporary variables, 
parameters of the framework, and results during the processor 
operation. This level of memory can be accessed extremely fast, 
therefore the performance will be increased by well utilization of 
the register files. 

Data Controller 

The data controller is responsible for the following three functions: 
1) to communicate with CPU and transfer data between the host 

and the on board memory; 2) to dispatch requested data to 
mappers; 3) to store the output data from reducers. 

Figure 6. The internal structure of common data path 

To transfer data between the host and FPGA board, four data 
transmission types are used: write/read register and write/read 
memory. Large scale data write/read can adopt the DMA way. 

Several mappers may request data at the same time by sending 
requests to the request queue in the data controller. These requests 
will be satisfied one after another. Similarly, when reducers send 
requests for returning the output results to the global memory, the 
requests will also be inserted into the data returning queue and 
these requests will be also satisfied sequentially one after another. 
It is worth noting that only when the result is stored back to the 
on-chip memory, the reducer will be set to be idle again. 

In machine learning and data mining applications, some parts of 
the data are the same for all mappers and needed to be transferred 
to all the processors when a new iteration begins. In our FPMR 
framework, a common data path (CDP) is built in the data 
controller to avoid the redundant data transfer. Two sets of 
registers inside the data controller are connected to the common 
data path. A ping-pong strategy is adopted to control these two 
register sets. Figure 6 is an illustration of CDP. When the mapper 
is reading register set A, the chip select of the set B is marked 
high and the common data from the global memory is transferred 
to set B at the same time. This strategy can reduce the occupation 
of the memory bandwidth; while overlapping the common data 
transfer time by computation time. The common data path is used 
in the RankBoost acceleration and SVM analysis. 

3. A CASE STUDY: RANKBOOST 
In this section, we first introduce the primitives of RankBoost [16], 
a recently proposed ranking algorithm. Then we show the detailed 
FPGA implementation based on our FPMR framework. 

3.1 RankBoost Introduction 
RankBoost [16] is a Boosting algorithm targeting for rankings. 
Giving an exact and complete ranking for large scale objects is 
difficult. RankBoost is a promising algorithm for this problem by 
combining many “weak” hypothesises which are partly or nearly 
right. The result ranking function will be highly accurate by many 
rounds of training on large scale dataset. 

The training data set is composed of documents. Each document d 
is expressed by a feature vector { fi(d) |, i =1, 2, .. Nf } indicating 
the relevance with the query feature. A distribution D(d0, d1) is 
defined as the importance of document. D(d0, d1) is positive if d0 
is more relevant than d1. This distribution covers all the document 
pairs and is updated in each training round. The flow of 
RankBoost is described in Algorithm1. 
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Algorithm 1 : RankBoost Algorithm 
Input    : D0(d0, d1), π(d) and f (d) of all documents 
Output : the final hypothesis  

1
( ) ( )T

t tt
H d h dα

=
= ∑

for t  1 to T 
Train WeakLearn using distribution Dt 

  WeakLearn returns a weak hypothesis ht and weight αt 
  Update distribution weights: for all (d0, d1) 
         0 1 0 1
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  where Zt is the normalization factor :  
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Z D d d h d h dα= − −∑
endfor 

The most time consuming procedure of RankBoost is WeakLearn, 
which consumes more than 95% execution time [17]. WeakLearn 
gives a weak ranking hypothesis h based on the features 
ofdocuments and the current distribution. h(d) is a binary 
threshold function, i.e. for any document d 

1,    ( )
( )

0,    ( )   or  ( ) is undefined
i

i i

if f d
h d

if f d f d
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θ

 >⎧
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where fi(d) denotes the value of feature fi for document d, 
and θ is a threshold value.To find the best h(d) in each 
round, WeakLearn needs to check all the possible 
combinations of feature fi and threshold θ to ensure the 
accuracy.  
In WeakLearn procedure, the feature fi and threshold θ are found 
so that h has the maximum ranking correctness r, defined as: 

0 1

, 0 1 , 0 ,
,
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d

 
To reduce the computation complexity, we define the π value as 
follows, which is updated in each round.  

'
( ) ( ( ', ) ( , '))

d
d D d d D d dπ = −∑  

Then r can be obtained as follow. 
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In [17], to map the algorithm to hardware more efficiently, the 
WeakLearn is transformed from continuous style to discrete style 
by discretizing the continuous fk(d) to several separate bins. The 
threshold value θs for each bin are calculated as follows. 

bin
k

bin

kk
k
s Nsfs

N
ff ,...,1,0,min

minmax =+⋅
−

=θ  

where and are maximum and minimum value of k-th 
feature fk(d) with respect to all documents. To accommodate with 
the hardware structure, each feature is divided into 256 bins.  

kf max
kfmin

Then the bin value for fk(d) is mapped as follows. 
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max min
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k
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f d fbin d floor
f f
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−
 

After transformation, the correctness ri,θ is obtained through 
finding the max integralk(i). To calculate integralk(i), firstly a 
histogram of π(d) over feature fk should be built. 

: ( )

( ) ( ),     0,..., ( 1)
k

k b
d bin d i

hist i d i Nπ
=
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Then, we can build an integral histogram by summing elements in 
the histogram from the right (i = Nbin - 1) to the left (i = 0). That is: 
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a i

integral i hist a i N
>
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The discrete WeakLearn procedure is shown in Algorithm 2. 
Firstly, an integral histogram is built over all documents. After 
finding the value integralmax as well as the corresponding feature 
index fmax and bin index binmax, the hypothesis h and weight αt are 
calculated in the following form. 

max max

max max max

1,    ( )
( )

0,    ( )   or  ( ) is undefined
f

f f

if bin d bin
h d

if bin d bin bin d

 >⎧⎪= ⎨  ≤  ⎪⎩
 

     11 ln
2 1

fmax

fmax

integral
integral

α
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 

Algorithm 2 : WeakLearn Procedure in RankBoost Algorithm 
Input    : π(d) for t-th round and bin (d) of all documents 
Output : a weak hypothesis ht and weight αt 

(1) for k  0 to Nf 
(2)      for d  0 to Nd 
(3)           histk(binf(d))  histk(binf(d)) + π(d) 
(4)      Endfor 

(5)      for i  Nbin – 1 to 0 
(6)           integralk(i)  histk(i) + integralk(i+1) 
(7)      Endfor 
(8) Endfor 
(9) Find the max { integralfmax (binmax) }

(10) for d  0 to Nd
(11)      if binfmax(d) > binmax 
(12)      ht(d)  1
(13)      Else 
(14)           ht(d)  0
(15) Endfor 

(16)
11 ln

2 1
fmax

t
fmax

integral
integral

α
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠

 

3.2 RankBoost on FPMR Framework 
In this subsection, the mapping strategy and hardware 
implementation of RankBoost are described in detail as a case 
study of FPMR framework. 

3.2.1 Mapping RankBoost to FPMR 
The most time-consuming, WeakLearn procedure, will be done on 
FPGA. Data pair initialization and π values update are assigned to 
the software.  

To map WeakLearn procedure onto MapReduce framework, the 
procedure is decomposed into two parts, histogram building and 
integral histogram calculation. Each mapper is responsible to 
build a histogram for a feature (line 2-4 in Algorithm 2) and a 
reducer is responsible to calculate the integral on these histograms 
(line 5-7 in Algorithm 2). In accordance with the mapping scheme, 
the initial pairs and the intermediate pairs are defined as follows. 
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initial  < key , value >  : < fi, (binfi(d), π(d))> 
intermediate < key , value >  : <fi, histfi> 

The denotations above are described below. 
fi is the feature index;  
binfi(d) is the transformed fi-th feature values of all documents; 
π(d) is the π value of all documents;  
histfi is the mapper-generated histogram of the fi-th feature. 

The map function for RankBoost can be described as follows. 

map (int key, pair value): 
// key : feature index fi 
// value : document bin fi, document π 
for each document d in value : 
     hist(binfi(d)) = hist(binfi(d)) + π(d) 
EmitIntermediate (fi, histfi); 

Here, only one histogram building task is assigned to one mapper. 
Otherwise the intermediate <key, value> pairs generated by the 
mappers will be too large to store in the on-chip memory. 

The reduce function for RankBoost can be described as follows. 

reduce (int key, array value) : 
// key : feature index fi 
// value : histograms histfi , fi = 1…Nf 
for each histogram histfi 
     for i = Nbin – 1 to 0 
          integralfi(i) = histfi(i) + integralfi(i+1) 
EmitIntermediate (fi, integralfi) 

The ratio of mappers to reducers is determined by their relative 
throughput. The computation complexity of map function is 
O(Nf×Ndoc) which is several magnitudes higher than that of reduce, 
which is only O(Nf×Nbin). As a result, only one reducer is 
implemented while up to 146 mappers are realized. The number 
of mappers is limited by the on-chip resources, which will be 
further discussed in Section 4. 

When integral histograms are built over all the features, the 
merger finds the maximum integral value as the output result. The 
update of weak hypothesis ht(d) and weight αt are done on the host. 

In this way, tasks are assigned to different mappers and reducers 
dynamically. The data requests of these processors are processed 
by data controller automatically. The on-chip processors work 
concurrently. So, we only need to map the applications onto map 
and reduce functions, and design the specific mapper and reducer, 
the parallelism can be achieved naturally. 

3.2.2 Hardware Implementation based on FPMR 
The RankBoost on FPMR framework is shown in Figure 7. 

 
Figure 7. RankBoost on FPMR Framework 

In this design, two conventional DDR2 SDRAMs are used as the 
global memory, separately for bin and π values. They are stored 
by features for access convenience. The bin values stay the same 
for all training rounds, so only the π values need to be transferred 
each round. At the end of WeakLearn procedure, the maximum 
integral histogram value, corresponding bin and feature will be 
returned to the host to update the π values. The π value calculation 
and weight updating are the major software computation tasks. 

Mappers and reducers are in charge of building histogram and 
integral histogram respectively. Processor scheduler controls the 
working status of these processors by dynamically assigning tasks. 
The three level storage and data controller make the memory 
hierarchy efficient for the system. 

Mapper 
In a mapper, a histogram is built for every feature. The generated 
histogram for a feature, histf, is stored in a dual port RAM. For 
every document, binf(d) serves as the read address and the target 
hist[binf(d)] value will be added by the corresponding π. After 
several cycles’ delay of floating point adder, results will be stored 
in the RAM, and the same binf(d) also serves as the write address. 
Two adjacent documents may have the same bin, the second add 
operation must wait until the previous results are updated in the 
hist RAM. After all the add operations, the results in the hist 
RAM are transferred to the corresponding Local Memory. 

It will be explained in section 5 that although a pipeline is not 
used here, we increase the number of mappers in order to avoid 
the processors’ computation capability to become the performance 
bottleneck. When all documents of a feature are processed, the 
generated histogram is written back to the local memory for 
reduction. 

The implementation of mapper is shown in Figure 8. 

 
Figure 8. The internal structure of mapper 

 
Reducer 
In a reducer, an integral histogram will be built based on the 
histograms for all the features that are built by mappers. The 
reducer requests data from the Local Memory that is addressed by 
the task. There is also a floating point adder to build the integral 
histogram by accumulating the histf of a feature from the last to 
the first. The add operation also has to be done sequentially, and 
waits for several cycles for the results to perform the next add. An 
integral histogram is built over each feature and the maximum 
integral value is picked out by the floating point comparator. After 
all the features are handled, the maximum value, the 
corresponding feature index fi, and the bin value will be sent back 
to the host. 

98



Reducer’s implementation is shown in Figure 9. 

 
Figure 9. The internal structure of reducer 

Processor scheduler 

When we finish transferring the <key,value> pairs from host CPU 
to FPGA board, the processor scheduler starts working. It 
activates or halts mappers and reducers according to the status of 
the mapper/reducer queue and task queue. 

When all the pairs are processed by mappers and reducers, 
scheduler sets the finish register to high so as to tell the software 
to read the output data format and fetch the result via DMA read. 
Then, the updating process starts to generate the π(d) for the next 
round. 

Storage hierarchy and data controller 

Storage hierarchy is designed for storing the data on different 
levels and takes advantage of the locality. Two DDR2 SDRAMs 
are used as global memory for bin and π values. Intermediate data, 
hist, are stored in multiple on-chip RAMs. Mappers and reducers 
can share these local memories for data exchange. Register files 
are used to store temporary variables, parameters of framework, 
and results of WeakLearn. 

 
Figure 10. The internal structure of data controller 

Data controller is responsible for transferring π and bin values 
from the host to on board memory, dispatching these data from 
global memory to mappers and returning the maximum integral 
histogram to the host. Figure 10 is an illustration of data controller. 
In this system, it takes several clock cycles for DDR2 memory to 
satisfy a mapper’s request. To access memory more efficiently, N 
pairs are returned to a mapper with respect to a request. Then in 
the following N×tcompute, this mapper will keep busy and it is the 
turn for other mappers to fetch data. In accordance to the fact that 
the π values are the same for all mappers for each data fetch, a 
common data path (CDP) is used to avoid redundant data transfer. 
To cooperate with this common data path, two sets of registers are 
defined inside the data controller for the ping-pong strategy. In 
this way, the time for π values fetching will be overlapped by 
computation. Reducers only need to access the local memory for 

the intermediate data, so their interconnection to data controller is 
only the result output. 

4. EXPERIMENTAL RESULTS 
This section introduces the experimental setup and presents the 
results. The framework with CDP and without CDP are both 
tested and theoretically analyzed. The scalability of this 
framework is also discussed in this section. 

4.1 Experimental Setup 
To test the performance of the RankBoost acceleration on FPMR, 
a real world dataset for a commercial search engine is used. The 
dataset information is illustrated as Table 2. The feature value of 
each document is firstly compressed into an 8-bits bin value 
(0~255) which occupies only 1 byte. Four bin values are merged 
into a 32-bits integer for storage. The π value is stored in the 
single-precision float type which occupies 4 bytes memory. 

Table 2. Benchmark Dataset 
#documents 1,196,711 
#features 2,576 
#pairs 15,146,236 
data size 2.89 GB 

A computer with an Intel Pentium 4 3.2GHz processor, 4GB 
DDR400 memory is used as the platform for software 
implementation. The FPGA is Altera Stratix II EP2S180F1508. 
Quartus II 8.1 and ModelSim 6.1 are used for hardware simulation. 
Based on the critical path delay and the practical bandwidth of 
PCI-E, the frequency is set to 125MHz. Two Micron 667MHz 
DDR2 SDRAM models are used in the simulation. The theoretical 
bandwidth is as follows, while the actual bandwidth is about 
2GB/s. 

Theoretical Bandwidth = 667MHz×64bits/8=5.3GB/s 

Each mapper is responsible for millions of documents with 
respect to a feature while the reducer only processes the 256-bin 
histograms generated by each mapper. The workload of mappers 
is much heavier than that of the reducer, so the bottleneck may lie 
on one of the following two aspects: 1) the computation ability of 
mappers and 2) the data bandwidth between global memory and 
mappers. In the framework without CDP, the bandwidth is the 
bottleneck due to the massive redundant memory access. After 
using CDP, the logic resources on FPGA become the performance 
limitation. 

4.2 Experimental results without CDP 
Table 3 shows the results of a pure software implementation and 
FPGA acceleration with up to 64 mappers and 1 reducer. 

Table 3. Execution time on CPU and FPMR (without CDP) 

#mapper #reducer WL/s Total/s Speedup 
WL Total

1 1 320.89 321.96 0.325 0.327
2 1 160.45 161.52 0.650 0.652
4 1 80.224 81.293 1.300 1.296
8 1 40.112 41.181 2.600 2.559
16 1 20.056 21.125 5.200 4.988
32 1 10.090 11.159 10.33 9.443
52 1 6.228 7.297 16.74 14.44
64 1 6.228 7.297 16.74 14.44

Optimized software 104.30 105.37 1 1 
(*) WL stands for the WeakLearn procedure. 
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The WeakLearn procedure takes up to 97% computation time. 
This time-consuming procedure achieves up to 16.74x speedup in 
our FPMR framework. Due to the time spent on the weight 
updating and π value calculation, the total speedup is 14.44x. 

Because two DDR2 memories are used for bin and π respectively, 
the bit-width for both bin and π are 128 bits. A maximum of 16 
bin values and 4 π values can be fetched at one clock cycle. Then 
the π value throughput will become the bottleneck, because one 
bin value corresponds to one π value. For one data pair 
<bin(d),π(d)>, it takes 13 cycles for a mapper to process. So 52 
clock cycles are required for a mapper to finish a 4 pair suit. As a 
result, at most 52 mappers can be implemented to achieve the best 
performance. If more mappers are added, no more performance 
gain can be obtained since the bottleneck now is the π value 
memory bandwidth rather than the computation power. Figure 11 
is the sequence chart of mappers without using CDP. 

 
Figure 11. The sequence chart of mappers without CDP 

4.3 Experimental results with CDP 
In the above design, the system bottleneck is the π value memory 
bandwidth. However, the π values belong to the common data and 
the redundant transfer can be avoided using common data path. 
The sequence chart of mappers with common data path is shown 
in Figure 12. 

 
Figure 12. The sequence chart of mappers with CDP 

As we can see, the time for π value transfer is overlapped by 
computation. To fully utilize the bin memory bandwidth, 16 bin 
values are fetched at a time. The ping-pong memory to store π 
values containts 64 bytes so that up to 16 π values can be 
prefetched. In this way, the π values of the same documents need 
to be read only once from DDR2 memory and will no longer be 
the bottleneck. To fully utilize the bandwidth of π value memory, 
16 bin values should be fetched at a time. The π value throughput 
is as follows. 

16×8bits×125MHz = 2 GB/s 

Each data fetch requires 13×16 = 208 clock cycles to process, as a 
result, a maximum of 208 mappers can be placed on chip to 
achieve the maximum throughput. However, due to the FPGA 
resource limitation, only 146 mappers can be placed on chip. The 
experimental results for mappers with CDP are shown in Table 4. 

Table 4. Execution time on CPU and FPMR (with CDP) 

#mapper #reducer WL/s Total/s Speedup 
WL Total

1 1 320.9 321.96 0.33 0.33 
2 1 160.5 161.52 0.65 0.65 
4 1 80.22 81.293 1.30 1.30 
8 1 40.11 41.181 2.60 2.56 
16 1 20.06 21.125 5.20 4.99 
32 1 10.09 11.159 10.33 9.44 
52 1 6.228 7.297 16.74 14.44
64 1 5.107 6.176 20.42 17.06

128 1 2.616 3.685 39.87 28.59
146 1 2.242 3.311 46.52 31.82

Optimized software 104.3 105.37 1 1 
(*) WL stands for the WeakLearn procedure. 

In Table 4, the speed up of WeakLearn procedure is expected to 
be linear until the mapper number reaches 146 while achieving 
46.52x speedup. With the common data path, the performance of 
WeakLearn procedure can be 2.7 times of that without CDP. The 
total speedup, 31.8x, is comparable with a fully manually 
designed version [17] which achieved 33.5x speedup. 

4.4 Scalability 
Figure 13 shows the theoretical speedup for different 
mapper/reducer ratio. The WeakLearn speedup is linear before the 
maximal mapper number is reached. The total speedup is not 
linear due to π calculation and weight updating. The CDP method 
can greatly relieve the bandwidth pressure and extend the 
maximal mapper number to 208, along with approximate 4x 
speedup than the system without CDP. 
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Figure 13. The speedup of different mapper numbers 

Practically, due to the resource limitation of Stratix EP2S180 
FPGA, only a maximum of 146 mappers can be placed on chip 
before the new data bandwidth limit is reached. The resource 
occupation is listed in Table 5. 

Table 5. FPGA resource occupation 
Mapper 1 2 4 8 16 

ALUT 1% 2% 3% 5% 10% 

Register 1% 2% 4% 6% 11% 

Mapper 32 52 64 128 146 

ALUT 19% 31% 38% 75% 86% 

Register 17% 32% 39% 81% 89% 

A higher performance can be achieved when using FPGAs with 
more ALUTs and registers. Our framework is scalable and can 
utilize the maximal resources of the underlying devices. 
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5. DISCUSSION 
A large variety of applications can be accelerated in MapReduce 
framework. In [18], ten machine learning applications are chosen 
to be accelerated with MapReduce. All of them can be fit into our 
framework. Here, two examples on machine learning and data 
mining are selected to illustrate the mapping methods as well as to 
demonstrate FPMR’s ability of dealing with computation-
intensive and load-unbalancing problems. 

5.1 Support Vector Machine 
Support Vector Machine (SVM) [19], is a solution of the 
classification and nonlinear function estimation problems based 
on a convex quadratic programming (QP). An efficient approach 
for SVM training is the Sequential Minimal Optimization (SMO) 
[20]. To fit the SMO approach into our framework, the algorithm 
is decomposed into map function and reduce function, which is 
similar to [21]. A brief description is shown in Algorithm 3. 

Algorithm 3 : SVM Training 
Input    : training data xi, label yi,  {1... }i n∀ ∈
Output : weights αi 
(1) Initialize : αi, fi, bhigh, blow, ihigh, ilow 
(2) repeat 
(3)       for   i  1 to n 

(4) 
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(5) Endfor 
(6)       Compute bhigh, blow, ihigh, ilow 
(7)              bhigh = min {fi : i ∈Ihigh},  blow = max {fi : i ∈Ilow} 
(8)       Update  αihigh and αilow 
(9) until blow < bhigh+2τ 

The training dataset and initialized variables are firstly transported 
to the global memory on FPGA. Then according to the two 
selected weights, αihigh and αilow, the scheduler assigns tasks to 
mappers to update the Karush-Kuhn-Tucker optimality 
conditions, i.e. update fi, for the remaining set of weights (line 4 in 
Algorithm 3). It is obvious that this operation can be naturally 
parallel since no data-dependent lies between different fi. The 
corresponding data are sent to each mapper from global memory 
by data controller. When a mapper finishes its work of calculating 
the new weight, the new weight is stored into the local memory 
and another weight update job is assigned to it. The fi update is the 
most time-consuming part due to the large number of documents 
and the complicated calculation of kernel Φ(x, xi). For illustration, 
the most popular kernel, the Gaussian kernel, is calculated as 
below. 

{ }2
( , , ) expi j i jx x x xγ γΦ = − −  

Meanwhile, reducers are responsible for finding the two 
maximally violating weights and updating the index set (line 6-8 
in Algorithm 3). When the two new candidate weights are found, 
scheduler updates them and issues the next round. This loop will 
end when all the points meet the optimality condition. 

The data need to be transferred are three feature vectors, xihigh, 
xilow and xi, which may contain more than thousands of elements. 
It is worth noting that, in each training round, the feature vectors 
xihigh and xilow are the same for all mappers, because all mapper 
share the same index ihigh and ilow. Therefore, these two vectors 
should be transferred to all mappers using the common data path 

before the first mapper using these data. This strategy can save up 
to 2/3 bandwidth and further allow more parallel mappers. 

Compared with RankBoost which is a data-intensive application, 
SVM is both data-intensive and computation-intensive. Then logic 
resources of the underlying FPGA will become the major 
bottleneck. 

5.2 PageRank 
PageRank [22] is a method for computing the relative rank of web 
pages based on the Web link structure. Algorithm 4 is the power 
method for PageRank computation. 

Algorithm 4 : Power method of PageRank 
    Input: web matrix A, escape vector E, initial ranking vector R0 

Output: final ranking vector R 
(1) Initialize R randomly to be R0, then let k  0 
(2) repeat
(3)        Compute  Rk+1  ARk 
(4)        d  ||Rk||1 － ||Rk+1||1 
(5)    Rk+1  Rk+1 +dE 
(6)        k  k + 1 
(7) until  || Rk+1－Rk|| < ε 

The most time-consuming part of the PageRank computation is 
Step (2), which takes more than 95% of the total execution time. 
Due to the huge number of web pages, the web-matrix is stored in 
a sparse format. So Step 3 is to perform a sparse matrix vector 
multiplication (SpMV). The parallelism in this step can be 
explored in a MapReduce way. Algorithm 5 is the computation of 
SpMV with CSR(Compressed Sparse Row) format sparse matrix. 
The CSR format matrix consists of three arrays, Aval for the value 
of non-zeros, Acol for the column index of corresponding non-
zeros and Arow for the serial number of the first non-zeros in a row. 

Algorithm 5 : Sparse Matrix-Vector Multiplication (Y = A·X) 
    Input    : square matrix A of size Nrow, vector X 
    Output : vector Y 

(1) for i  0 to Nrow－1 
(2)       rbegin  Arow[i] 
(3)       rend    Arow[i+1] 
(4)       acc    0 
(5)       for c  rbegin to rend 
(6)             acc  acc + Aval[c]·X[Acol[c]] 
(7)      Endfor
(8)       Y[i]  acc 
(9) Endfor

The matrix A and vector R is firstly transferred to DDR2 memory 
on FPGA and then assigned the vector R and a row of matrix A to 
a mapper. The vector-vector multiplication (line 2-7 in Algorithm 
5) is conducted within a mapper and then result is returned and 
collected(line 8 in Algorithm 5) by the reducer. The remaining 
parts of the computation can be either executed on FPGA or on 
CPU since they take much less time than the SpMV. 

In this application, the non-zeros between different rows vary 
drastically, and the execution time for each mapper may differ 
from each other. However, the dynamic scheduling policy will 
ensure the load balancing and keep mappers as busy as possible. 

6. CONCLUSION AND FUTURE WORKS 
This paper introduces FPMR, a MapReduce framework on FPGA, 
which provides programming abstraction, hardware architecture 
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and basic building blocks to developers. High parallelism can be 
easily achieved on FPMR, while the programming efforts are 
alleviated. Using this framework, designers only need to map the 
applications onto the mapper modules and the reducer modules. 
Task scheduling, communication, and data synchronization are 
done by the framework automatically. 

In the case study of RankBoost, 31.8x speedup is achieved with 
146 mappers and 1 reducer, comparable with a fully manually 
designed version where the speedup is 33.5x. The tradeoffs 
among resources, performance, and memory bandwidth are also 
discussed. As the technology advances, the resource of FPGA will 
increase and more and more processors can be placed on chip for 
higher performance. Finally, the bandwidth of memory will be the 
limiting factor during the application acceleration based on FPMR. 

In our future work, we would like to investigate into the 
combination of automated HLS tools such as AutoPilot[3], which 
has already shown encouraging results in both performance and 
productivity of hand-coded applications[23]. The mapper and 
reducer modules can be directly written in high-level languages 
and automatically translated to hardware languages and then 
integrated into the framework. Also, we would like to support 
dynamic memory management with hardware paging for complex 
applications. Then we plan to test the efficiency and productivity 
of the framework on applications of different levels, ranging from 
machine learning to basic parallel primitives. We are also working 
on the open source release of the framework. 
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