
FPMR: MapReduce Framework on FPGA
A Case Study of RankBoost Acceleration

Yi Shan1,2 Bo Wang1,2 Jing Yan1,2 Yu Wang1 Ningyi Xu2 Huazhong Yang1
1Tsinghua National Laboratory for Information Science

and Technology
Department of Electronic Engineering

Tsinghua University, Beijing 100084, China
{shany08, wangb06, j-

yan03}@mails.tsinghua.edu.cn
{yu-wang, yanghz}@tsinghua.edu.cn

2Hardware Computing Group
Microsoft Research Asia

Beijing, China
{v-yishan, v-jiy, v-wdavid,
xu.ningyi}@microsoft.com

ABSTRACT
Machine learning and data mining are gaining increasing
attentions of the computing society. FPGA provides a highly
parallel, low power, and flexible hardware platform for this
domain, while the difficulty of programming FPGA greatly limits
its prevalence. MapReduce is a parallel programming framework
that could easily utilize inherent parallelism in algorithms. In this
paper, we describe FPMR, a MapReduce framework on FPGA,
which provides programming abstraction, hardware architecture,
and basic building blocks to developers.

An on-chip processor scheduler is implemented to maximize the
utilization of computation resources and achieve better load
balancing. An efficient data access scheme is carefully designed
to maximize data reuse and throughput. Meanwhile, the FPMR
framework hides the task control, synchronization, and
communication away from designers so that more attention can be
paid to the application itself. A case study of RankBoost
acceleration based on FPMR demonstrates that FPMR efficiently
helps with the development productivity; and the speedup is 31.8x
versus CPU-based implementation. This performance is
comparable to a fully manually designed version, which achieves
33.5x speedup. Two other applications: SVM, PageRank are also
discussed to show the generalization of the framework.

Categories and Subject Descriptors
B.5.1 [Register-Transfer-Level Implementation]: Design –
Control design, Data-path design, Styles

C.3 [Special-Purpose and Application-Based Systems]:
Microprocessor/microcomputer applications;

General Terms
Performance, Design

Keywords
MapReduce, FPGA framework, RankBoost

1. INTRODUCTION
Efficient computing of machine learning and data mining has
gained much more attention of the computing society in recent
years, while it becomes more and more challenging with the ever
growing data size and much higher performance requirements. As
the physical constraints are preventing frequency scaling of CPUs
and the power consumption is becoming a critical problem,
parallel computing becomes the dominant paradigm for large
scale computing applications. FPGA has been widely explored in
various high performance computing applications in recent years
[1]. Compared with other parallel computing platforms, such as
multi-cores, clusters and GPGPUs, the main advantages of FPGA
are i) FPGA is reconfigurable and easy to change functionalities
without changing the platform; ii) logic elements in FPGA work
in a naturally fine-grained parallel way with high flexibility; and
iii) FPGA is one of the best hardware devices that can follow the
Moore's Law persistently [2].

However, the popularity of FPGA-based computing is limited by
the low programming productivity compared with other platforms,
such as GPGPU and multi-core. Practically, the most time-
consuming and essential part is usually the hardware architecture
exploration and the register transfer level implementation.
Although some synthesis tools (e.g. AutoPilot[3], CatapultC[4]
and ImpulseC[5]) can generate optimized RTL code from
descriptions in high-level programming languages (such as C,
C++, or SystemC) and user constraints, developers still need to
design sophisticated hardware structures to efficiently map
random programs to circuits to achieve an acceptable performance.
A. DeHon et al. concluded some design patterns for FPGA-based
computing [6], while the abstraction level of proposed guidelines
are not utilizing the characteristics of specific application domains.

MapReduce is a parallel programming model proposed by Google
[7] for the ease of massive data processing and has been
successfully applied to many applications [7, 8, 9, 10]. This model
provides two primitives, map and reduce. As shown in Figure 1,
the input data to a computing task is split into many <key,value>
pairs and a map function processes these pairs to generate a set of
intermediate <key,value> pairs. The intermediate pairs with the
same intermediate key are grouped together and passed to reduce
function. The communication model within MapReduce is
transparent to users so as to alleviate the development efforts.
Users only need to design the map and reduce function. Then the
MapReduce runtime framework takes care of the parallel
execution by issuing multiple map and reduce tasks to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’10, February 21-23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02...$10.00.

93

computation nodes. MapReduce greatly reduces the complexity of
designing parallel computing programs, and provides efficiency
for data-intensive applications [7]. In [9], many standard machine
learning algorithms has been adapted to the MapReduce
framework on multicore machines, illustrating its benefits to the
machine learning community.

Figure 1. MapReduce Data Flow

MapReduce model has been explored on most parallel computing
platforms in the past few years. Google implemented the first and
largest MapReduce system on its clusters [7]. A multi-core
version, Phoenix [11, 12], was later developed to explore the
parallelism on shared memory systems. Phoenix automatically
manages thread creation and dynamic task scheduling. Its problem
is, the memory and I/O usage of one task may detrimentally affect
others [12] and this problem becomes more crucial when the
thread number increases. Meanwhile, the high power consumption
of multi-core chips will be a wall for their massive usage. On
general purpose GPU platforms, MapReduce framework was also
explored [13]. However, GPU prefers coalesced memory access
pattern, which makes it fumble while dealing with complex data
structure and the SIMT architecture restricts its computation
performance to handle irregular applications. In [14], a
MapReduce framework on Cell clusters was implemented. Yeung,
et.al [15] adopted both GPU and FPGA to implement a
MapReduce framework. This framework leaves scheduling work
to the host CPU and uses GPU and FPGA as co-processors.

Machine learning and data mining algorithms usually operate
iteratively on a large corpus of regular data, and there are coarse-
grained parallelisms exist in these data. Thus, it is easy to utilize
the data locality and parallelism with streaming processing and
parallel computing. FPMR provides mappers and reducers to
utilize the parallelism, and the data access scheme provides
efficient streaming access to the training data.

In this paper, we focus on a general and scalable MapReduce
framework on FPGA to shorten the development cycles of the
FPGA-based computing for machine learning and data mining. In
this framework, multi-level parallelism can be utilized, ranging
from bit-level to task-level. To demonstrate the feasibility of the
proposed framework, we implement RankBoost algorithm, an
efficient learning algorithm which is extensively used in real
applications. The results show that our proposed design simplifies
the hardware programming significantly with an appreciable
speedup. The accelerator achieves 31.8x speedup (by 146 map
instances and 1 reduce instances) compared with the results of a

software implementation. We further expound its performance
bottleneck, resource utilization, and the achievable data
bandwidth, to discuss the implementation and optimization of the
framework for such data-intensive applications. Specially, this
paper makes following contributions.

 The reconfigurable ability of FPMR framework allows
designers to place various mappers and reducers on chip to
achieve the best performance according to the
characteristics of the device and the application.

 An on-chip dynamic scheduling policy is adopted so as to
maximize the utilization of computation resources and
achieve better load balancing. Meanwhile, task control and
communication are hidden away from the designers so that
designers can focus on the application itself.

 An efficient data access scheme is implemented to
maximize the data reuse and alleviate the bandwidth
bottleneck. Dynamic data synchronization can be also
achieved by this data control scheme of the framework.

To the best of our knowledge, this is the first on-chip scheduled
MapReduce framework on FPGA. With this framework, the
development cycles can be greatly reduced.

The remainder of this paper is organized as follows. Section 2
introduces our FPGA-based design of the MapReduce framework.
Section 3 invokes an application: RankBoost on FPGA to serve as
a case study of FPMR. Section 4 shows the experimental results
and discussions of the case study. Section 5 discusses the mapping
of Support Vector Machine，PageRank onto FPMR. Section 6
concludes the paper.

2. FPMR FRAMEWORK
In this section, we will introduce the FPMR framework.
Dedicated processors are designed for different applications under
FPMR framework. Dynamic on-chip scheduling and efficient data
control are also included in FPMR to hide the task control,
communication, and data synchronization away from designers.

2.1 Framework Overview
The MapReduce data flow can be simplified as follows.

map : < key , value > intermediate < key , value >
reduce : intermediate < key , value > result

The initial <key,value> pairs are prepared by CPU and then
transferred to the FPGA through PCI-E bus or CPU bus, e.g.
HyperTransport or FSB. The configuration parameters shown in
Table 1 are written down to the registers in FPGA.

Table 1. Configuration Parameters
Name Description
#map_task number of tasks for mappers
#reduce_task number of tasks for reducers
#data number of <key,value> pairs

Then the map and reduce operations are done by mappers and
reducers on FPGA. What is more, task scheduling and data
dispatching are also done on chip. The FPMR framework shown
in Figure 2 is partitioned into four parts: processors
(mapper/reducer/merger), processor scheduler, data controller
and storage.

94

Figure 2. FPMR Framework

The mappers process the initial input <key,value> pairs and
generate the intermediate <key,value> pairs. The reducers then
merge the intermediate pairs to obtain the final results. In some
applications, the outputs of reducers need to be further processed
to get a single result, in which case a merger will be implemented.
The processor scheduler generates control signals to schedule
mappers and reducers. The data controller takes charge of
communicating with the host CPU, dispatching data to the
mappers, and receiving data from the reducers.

The basic work flow and scheduling policy are shown in Figure 3.

1. Generate < key, value > pairs on the host.
2. Write the configuration parameters to registers on FPGA.
3. Initialize DMA data transferring, copy the <key, value>

pairs from the CPU to FPGA board.
4. The processor scheduler assigns the tasks to each mapper.
5. Mappers process the assigned < key, value > and store the

generated intermediate <key, value> in the local memory
under the control of data controller.

6. When a mapper finishes its job and there are jobs left, the
processor scheduler will assign another job to it.

7. When some intermediate pairs are generated and one or
more reducers are idle, the scheduler will assign the
intermediate pairs to idle reducers.

8. When all the tasks are finished, the results are returned to
the host main memory by the data controller.

Figure 3. The basic work flow and scheduling policy of FPMR

From Figure 3, it can be seen that our on-chip dynamic scheduling
policy helps to achieve higher computation resources utilization,
especially for applications whose parallel tasks take unequal time.
When a mapper or reducer finishes earlier than others, it will take
some more work instead of staying idle.

2.2 Processor
There are two types of processors on chip, mappers and reducers.
Mappers and reducers are specifically designed according to the
target application. They are both triggered and their tasks are
assigned by the processor scheduler. Mappers request
<key,value> pairs from data controller, generate the intermediate
<key,value> pairs, and store the intermediate <key,value> pairs in
the local memory. Then reducers deal with a set of intermediate
pairs to obtain the final results. The ratio of mappers to reducers is
determined by the workloads of these two parts. For those
applications with complex computation, pipelined strategies will
be adopted to achieve higher data throughput.

Figure 4. The data exchange between mappers and reducers

It is worth noting that the working time of mappers may be
different from one to another in some data-dependant algorithms,
so that a processor scheduler is essential for the collaboration
between mappers and reducers. The data exchange between
mappers and reducers is shown in Figure 4.

The interface of the mapper is designed as follows.

module mapper(...);
input enable, task_id
input [m:0] key;
input [n:0] value;
output finish, read_request, write_request;
output [j:0] int_key;
output [k:0] int_value;
output [i:0] read_addr, write_addr;

// user defined codes below
...

Endmodule

The interface of the reducer is designed as follows.

module reducer(...);
input enable, task_id
input [m:0] int_key;
input [n:0] int_value;
output finish, read_request, write_request;
output [k:0] result;
output [i:0] read_addr, write_addr;

// user defined codes below
...

Endmodule

The designers only need to pay attention to the internal structure
of mappers and reducers by using the interfaces within these two
modules.

2.3 Processor Scheduler
Processor scheduler is designed to dynamically utilize the
hardware resources by monitoring the status of each mapper and
reducer. There are two sets of queues in the processor scheduler.
One queue set is for mappers and the other queue set is for
reducers. Each queue set consists of two queues, one queue for
idle processors and the other for pending tasks. The idle processor
queue records the id of the idle mappers or reducers. The
configuration parameters, #map_task and #reduce_task define the
task number and are used to initialize task queues. The numbers of
mappers and reducers are decided by the designers based on the
available FPGA resources.

95

Figure 5. The internal structure of mapper scheduler

To better illustrate the scheduling policy, here we take the idle
processor queue and task queue for mappers as an example. The
mechanism and scheduler structure are the same for reducers.
Figure 5 is the internal structure of a mapper scheduler. If both the
mapper idle queue and mapper task queue are not empty, the
processor scheduler will extract the first task in the task queue and
assign it to the first mapper in the idle queue. Then this mapper’s
id is also extracted from the idle mapper queue. When a mapper
finishes its task, the processor scheduler will add its id into the
idle queue again to wait for the next task. The intermediate pairs
generated by a mapper also have an id which will be added into
the reducer task queue. In such a scheme, mappers and reducers
cooperate with each other to keep all the processors as busy as
possible.

2.4 Storage Hierarchy and Data Controller
There are three levels of storage in this framework. The first level
is the global memory, which stores the initial <key,value> pairs.
The second is the local memory, which stores the intermediate
<key,value> pairs and serves as the shared memory for mappers
and reducers. The third level is the register file in each processor,
which is for temporary variables, configuration parameters, and
results.

Global memory For machine learning and data mining
applications, the <key,value> pairs usually occupy large amount
of memory, so large capacity memory will be used, such as DDRx
SDRAMs. Not only the large capability and high bandwidth can
be provided, but also the scalability can be easily achieved by
implementing multiple DDRx SDRAMs.

Local memory The local memory can be implemented as on-chip
RAMs. The intermediate results obtained from a mapper are
stored in the local memory and the reducer will fetch the
intermediate data from the local memory. On-chip RAMs can
provide this shared memory functionality with low access latency.
Multiple RAMs can be implemented, and they can be accessed by
mappers and reducers simultaneously.

Register file The register file stores the temporary variables,
parameters of the framework, and results during the processor
operation. This level of memory can be accessed extremely fast,
therefore the performance will be increased by well utilization of
the register files.

Data Controller

The data controller is responsible for the following three functions:
1) to communicate with CPU and transfer data between the host

and the on board memory; 2) to dispatch requested data to
mappers; 3) to store the output data from reducers.

Figure 6. The internal structure of common data path

To transfer data between the host and FPGA board, four data
transmission types are used: write/read register and write/read
memory. Large scale data write/read can adopt the DMA way.

Several mappers may request data at the same time by sending
requests to the request queue in the data controller. These requests
will be satisfied one after another. Similarly, when reducers send
requests for returning the output results to the global memory, the
requests will also be inserted into the data returning queue and
these requests will be also satisfied sequentially one after another.
It is worth noting that only when the result is stored back to the
on-chip memory, the reducer will be set to be idle again.

In machine learning and data mining applications, some parts of
the data are the same for all mappers and needed to be transferred
to all the processors when a new iteration begins. In our FPMR
framework, a common data path (CDP) is built in the data
controller to avoid the redundant data transfer. Two sets of
registers inside the data controller are connected to the common
data path. A ping-pong strategy is adopted to control these two
register sets. Figure 6 is an illustration of CDP. When the mapper
is reading register set A, the chip select of the set B is marked
high and the common data from the global memory is transferred
to set B at the same time. This strategy can reduce the occupation
of the memory bandwidth; while overlapping the common data
transfer time by computation time. The common data path is used
in the RankBoost acceleration and SVM analysis.

3. A CASE STUDY: RANKBOOST
In this section, we first introduce the primitives of RankBoost [16],
a recently proposed ranking algorithm. Then we show the detailed
FPGA implementation based on our FPMR framework.

3.1 RankBoost Introduction
RankBoost [16] is a Boosting algorithm targeting for rankings.
Giving an exact and complete ranking for large scale objects is
difficult. RankBoost is a promising algorithm for this problem by
combining many “weak” hypothesises which are partly or nearly
right. The result ranking function will be highly accurate by many
rounds of training on large scale dataset.

The training data set is composed of documents. Each document d
is expressed by a feature vector { fi(d) |, i =1, 2, .. Nf } indicating
the relevance with the query feature. A distribution D(d0, d1) is
defined as the importance of document. D(d0, d1) is positive if d0
is more relevant than d1. This distribution covers all the document
pairs and is updated in each training round. The flow of
RankBoost is described in Algorithm1.

96

Algorithm 1 : RankBoost Algorithm
Input : D0(d0, d1), π(d) and f (d) of all documents
Output : the final hypothesis

1
() ()T

t tt
H d h dα

=
= ∑

for t 1 to T
Train WeakLearn using distribution Dt

 WeakLearn returns a weak hypothesis ht and weight αt
 Update distribution weights: for all (d0, d1)
 0 1 0 1

1 0 1
(,) exp((() ()))(,) t t t

t
t

D d d h d h dD d d
Z

tα
+

− −
=

 where Zt is the normalization factor :

0 1

0 1 0 1
,

(,) exp((() ()))t t t t t
d d

Z D d d h d h dα= − −∑
endfor

The most time consuming procedure of RankBoost is WeakLearn,
which consumes more than 95% execution time [17]. WeakLearn
gives a weak ranking hypothesis h based on the features
ofdocuments and the current distribution. h(d) is a binary
threshold function, i.e. for any document d

1, ()
()

0, () or () is undefined
i

i i

if f d
h d

if f d f d
θ
θ

 >⎧
= ⎨ ≤ ⎩

where fi(d) denotes the value of feature fi for document d,
and θ is a threshold value.To find the best h(d) in each
round, WeakLearn needs to check all the possible
combinations of feature fi and threshold θ to ensure the
accuracy.
In WeakLearn procedure, the feature fi and threshold θ are found
so that h has the maximum ranking correctness r, defined as:

0 1

, 0 1 , 0 ,
,

(,)(() ())i i
d d

r D d d h d h dθ θ= −∑ 1i θ

d

To reduce the computation complexity, we define the π value as
follows, which is updated in each round.

'
() ((',) (, '))

d
d D d d D d dπ = −∑

Then r can be obtained as follow.

, ,

()
() () ()

i

i i
d f d

r h d dθ θ
θ

π π
≥

= =∑ ∑

In [17], to map the algorithm to hardware more efficiently, the
WeakLearn is transformed from continuous style to discrete style
by discretizing the continuous fk(d) to several separate bins. The
threshold value θs for each bin are calculated as follows.

bin
k

bin

kk
k
s Nsfs

N
ff ,...,1,0,min

minmax =+⋅
−

=θ

where and are maximum and minimum value of k-th
feature fk(d) with respect to all documents. To accommodate with
the hardware structure, each feature is divided into 256 bins.

kf max
kfmin

Then the bin value for fk(d) is mapped as follows.

min

max min

()() (1)
k

k
k k k

f d fbin d floor
f f

−
= −

−

After transformation, the correctness ri,θ is obtained through
finding the max integralk(i). To calculate integralk(i), firstly a
histogram of π(d) over feature fk should be built.

: ()

() (), 0,..., (1)
k

k b
d bin d i

hist i d i Nπ
=

in= = −∑

Then, we can build an integral histogram by summing elements in
the histogram from the right (i = Nbin - 1) to the left (i = 0). That is:

() (), 0,..., (1)k k bi
a i

integral i hist a i N
>

n= = −∑

The discrete WeakLearn procedure is shown in Algorithm 2.
Firstly, an integral histogram is built over all documents. After
finding the value integralmax as well as the corresponding feature
index fmax and bin index binmax, the hypothesis h and weight αt are
calculated in the following form.

max max

max max max

1, ()
()

0, () or () is undefined
f

f f

if bin d bin
h d

if bin d bin bin d

 >⎧⎪= ⎨ ≤ ⎪⎩

 11 ln
2 1

fmax

fmax

integral
integral

α
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠

Algorithm 2 : WeakLearn Procedure in RankBoost Algorithm
Input : π(d) for t-th round and bin (d) of all documents
Output : a weak hypothesis ht and weight αt

(1) for k 0 to Nf
(2) for d 0 to Nd
(3) histk(binf(d)) histk(binf(d)) + π(d)
(4) Endfor

(5) for i Nbin – 1 to 0
(6) integralk(i) histk(i) + integralk(i+1)
(7) Endfor
(8) Endfor
(9) Find the max { integralfmax (binmax) }

(10) for d 0 to Nd
(11) if binfmax(d) > binmax
(12) ht(d) 1
(13) Else
(14) ht(d) 0
(15) Endfor

(16)
11 ln

2 1
fmax

t
fmax

integral
integral

α
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠

3.2 RankBoost on FPMR Framework
In this subsection, the mapping strategy and hardware
implementation of RankBoost are described in detail as a case
study of FPMR framework.

3.2.1 Mapping RankBoost to FPMR
The most time-consuming, WeakLearn procedure, will be done on
FPGA. Data pair initialization and π values update are assigned to
the software.

To map WeakLearn procedure onto MapReduce framework, the
procedure is decomposed into two parts, histogram building and
integral histogram calculation. Each mapper is responsible to
build a histogram for a feature (line 2-4 in Algorithm 2) and a
reducer is responsible to calculate the integral on these histograms
(line 5-7 in Algorithm 2). In accordance with the mapping scheme,
the initial pairs and the intermediate pairs are defined as follows.

97

initial < key , value > : < fi, (binfi(d), π(d))>
intermediate < key , value > : <fi, histfi>

The denotations above are described below.
fi is the feature index;
binfi(d) is the transformed fi-th feature values of all documents;
π(d) is the π value of all documents;
histfi is the mapper-generated histogram of the fi-th feature.

The map function for RankBoost can be described as follows.

map (int key, pair value):
// key : feature index fi
// value : document bin fi, document π
for each document d in value :
 hist(binfi(d)) = hist(binfi(d)) + π(d)
EmitIntermediate (fi, histfi);

Here, only one histogram building task is assigned to one mapper.
Otherwise the intermediate <key, value> pairs generated by the
mappers will be too large to store in the on-chip memory.

The reduce function for RankBoost can be described as follows.

reduce (int key, array value) :
// key : feature index fi
// value : histograms histfi , fi = 1…Nf
for each histogram histfi
 for i = Nbin – 1 to 0
 integralfi(i) = histfi(i) + integralfi(i+1)
EmitIntermediate (fi, integralfi)

The ratio of mappers to reducers is determined by their relative
throughput. The computation complexity of map function is
O(Nf×Ndoc) which is several magnitudes higher than that of reduce,
which is only O(Nf×Nbin). As a result, only one reducer is
implemented while up to 146 mappers are realized. The number
of mappers is limited by the on-chip resources, which will be
further discussed in Section 4.

When integral histograms are built over all the features, the
merger finds the maximum integral value as the output result. The
update of weak hypothesis ht(d) and weight αt are done on the host.

In this way, tasks are assigned to different mappers and reducers
dynamically. The data requests of these processors are processed
by data controller automatically. The on-chip processors work
concurrently. So, we only need to map the applications onto map
and reduce functions, and design the specific mapper and reducer,
the parallelism can be achieved naturally.

3.2.2 Hardware Implementation based on FPMR
The RankBoost on FPMR framework is shown in Figure 7.

Figure 7. RankBoost on FPMR Framework

In this design, two conventional DDR2 SDRAMs are used as the
global memory, separately for bin and π values. They are stored
by features for access convenience. The bin values stay the same
for all training rounds, so only the π values need to be transferred
each round. At the end of WeakLearn procedure, the maximum
integral histogram value, corresponding bin and feature will be
returned to the host to update the π values. The π value calculation
and weight updating are the major software computation tasks.

Mappers and reducers are in charge of building histogram and
integral histogram respectively. Processor scheduler controls the
working status of these processors by dynamically assigning tasks.
The three level storage and data controller make the memory
hierarchy efficient for the system.

Mapper
In a mapper, a histogram is built for every feature. The generated
histogram for a feature, histf, is stored in a dual port RAM. For
every document, binf(d) serves as the read address and the target
hist[binf(d)] value will be added by the corresponding π. After
several cycles’ delay of floating point adder, results will be stored
in the RAM, and the same binf(d) also serves as the write address.
Two adjacent documents may have the same bin, the second add
operation must wait until the previous results are updated in the
hist RAM. After all the add operations, the results in the hist
RAM are transferred to the corresponding Local Memory.

It will be explained in section 5 that although a pipeline is not
used here, we increase the number of mappers in order to avoid
the processors’ computation capability to become the performance
bottleneck. When all documents of a feature are processed, the
generated histogram is written back to the local memory for
reduction.

The implementation of mapper is shown in Figure 8.

Figure 8. The internal structure of mapper

Reducer
In a reducer, an integral histogram will be built based on the
histograms for all the features that are built by mappers. The
reducer requests data from the Local Memory that is addressed by
the task. There is also a floating point adder to build the integral
histogram by accumulating the histf of a feature from the last to
the first. The add operation also has to be done sequentially, and
waits for several cycles for the results to perform the next add. An
integral histogram is built over each feature and the maximum
integral value is picked out by the floating point comparator. After
all the features are handled, the maximum value, the
corresponding feature index fi, and the bin value will be sent back
to the host.

98

Reducer’s implementation is shown in Figure 9.

Figure 9. The internal structure of reducer

Processor scheduler

When we finish transferring the <key,value> pairs from host CPU
to FPGA board, the processor scheduler starts working. It
activates or halts mappers and reducers according to the status of
the mapper/reducer queue and task queue.

When all the pairs are processed by mappers and reducers,
scheduler sets the finish register to high so as to tell the software
to read the output data format and fetch the result via DMA read.
Then, the updating process starts to generate the π(d) for the next
round.

Storage hierarchy and data controller

Storage hierarchy is designed for storing the data on different
levels and takes advantage of the locality. Two DDR2 SDRAMs
are used as global memory for bin and π values. Intermediate data,
hist, are stored in multiple on-chip RAMs. Mappers and reducers
can share these local memories for data exchange. Register files
are used to store temporary variables, parameters of framework,
and results of WeakLearn.

Figure 10. The internal structure of data controller

Data controller is responsible for transferring π and bin values
from the host to on board memory, dispatching these data from
global memory to mappers and returning the maximum integral
histogram to the host. Figure 10 is an illustration of data controller.
In this system, it takes several clock cycles for DDR2 memory to
satisfy a mapper’s request. To access memory more efficiently, N
pairs are returned to a mapper with respect to a request. Then in
the following N×tcompute, this mapper will keep busy and it is the
turn for other mappers to fetch data. In accordance to the fact that
the π values are the same for all mappers for each data fetch, a
common data path (CDP) is used to avoid redundant data transfer.
To cooperate with this common data path, two sets of registers are
defined inside the data controller for the ping-pong strategy. In
this way, the time for π values fetching will be overlapped by
computation. Reducers only need to access the local memory for

the intermediate data, so their interconnection to data controller is
only the result output.

4. EXPERIMENTAL RESULTS
This section introduces the experimental setup and presents the
results. The framework with CDP and without CDP are both
tested and theoretically analyzed. The scalability of this
framework is also discussed in this section.

4.1 Experimental Setup
To test the performance of the RankBoost acceleration on FPMR,
a real world dataset for a commercial search engine is used. The
dataset information is illustrated as Table 2. The feature value of
each document is firstly compressed into an 8-bits bin value
(0~255) which occupies only 1 byte. Four bin values are merged
into a 32-bits integer for storage. The π value is stored in the
single-precision float type which occupies 4 bytes memory.

Table 2. Benchmark Dataset
#documents 1,196,711
#features 2,576
#pairs 15,146,236
data size 2.89 GB

A computer with an Intel Pentium 4 3.2GHz processor, 4GB
DDR400 memory is used as the platform for software
implementation. The FPGA is Altera Stratix II EP2S180F1508.
Quartus II 8.1 and ModelSim 6.1 are used for hardware simulation.
Based on the critical path delay and the practical bandwidth of
PCI-E, the frequency is set to 125MHz. Two Micron 667MHz
DDR2 SDRAM models are used in the simulation. The theoretical
bandwidth is as follows, while the actual bandwidth is about
2GB/s.

Theoretical Bandwidth = 667MHz×64bits/8=5.3GB/s

Each mapper is responsible for millions of documents with
respect to a feature while the reducer only processes the 256-bin
histograms generated by each mapper. The workload of mappers
is much heavier than that of the reducer, so the bottleneck may lie
on one of the following two aspects: 1) the computation ability of
mappers and 2) the data bandwidth between global memory and
mappers. In the framework without CDP, the bandwidth is the
bottleneck due to the massive redundant memory access. After
using CDP, the logic resources on FPGA become the performance
limitation.

4.2 Experimental results without CDP
Table 3 shows the results of a pure software implementation and
FPGA acceleration with up to 64 mappers and 1 reducer.

Table 3. Execution time on CPU and FPMR (without CDP)

#mapper #reducer WL/s Total/s Speedup
WL Total

1 1 320.89 321.96 0.325 0.327
2 1 160.45 161.52 0.650 0.652
4 1 80.224 81.293 1.300 1.296
8 1 40.112 41.181 2.600 2.559
16 1 20.056 21.125 5.200 4.988
32 1 10.090 11.159 10.33 9.443
52 1 6.228 7.297 16.74 14.44
64 1 6.228 7.297 16.74 14.44

Optimized software 104.30 105.37 1 1
(*) WL stands for the WeakLearn procedure.

99

The WeakLearn procedure takes up to 97% computation time.
This time-consuming procedure achieves up to 16.74x speedup in
our FPMR framework. Due to the time spent on the weight
updating and π value calculation, the total speedup is 14.44x.

Because two DDR2 memories are used for bin and π respectively,
the bit-width for both bin and π are 128 bits. A maximum of 16
bin values and 4 π values can be fetched at one clock cycle. Then
the π value throughput will become the bottleneck, because one
bin value corresponds to one π value. For one data pair
<bin(d),π(d)>, it takes 13 cycles for a mapper to process. So 52
clock cycles are required for a mapper to finish a 4 pair suit. As a
result, at most 52 mappers can be implemented to achieve the best
performance. If more mappers are added, no more performance
gain can be obtained since the bottleneck now is the π value
memory bandwidth rather than the computation power. Figure 11
is the sequence chart of mappers without using CDP.

Figure 11. The sequence chart of mappers without CDP

4.3 Experimental results with CDP
In the above design, the system bottleneck is the π value memory
bandwidth. However, the π values belong to the common data and
the redundant transfer can be avoided using common data path.
The sequence chart of mappers with common data path is shown
in Figure 12.

Figure 12. The sequence chart of mappers with CDP

As we can see, the time for π value transfer is overlapped by
computation. To fully utilize the bin memory bandwidth, 16 bin
values are fetched at a time. The ping-pong memory to store π
values containts 64 bytes so that up to 16 π values can be
prefetched. In this way, the π values of the same documents need
to be read only once from DDR2 memory and will no longer be
the bottleneck. To fully utilize the bandwidth of π value memory,
16 bin values should be fetched at a time. The π value throughput
is as follows.

16×8bits×125MHz = 2 GB/s

Each data fetch requires 13×16 = 208 clock cycles to process, as a
result, a maximum of 208 mappers can be placed on chip to
achieve the maximum throughput. However, due to the FPGA
resource limitation, only 146 mappers can be placed on chip. The
experimental results for mappers with CDP are shown in Table 4.

Table 4. Execution time on CPU and FPMR (with CDP)

#mapper #reducer WL/s Total/s Speedup
WL Total

1 1 320.9 321.96 0.33 0.33
2 1 160.5 161.52 0.65 0.65
4 1 80.22 81.293 1.30 1.30
8 1 40.11 41.181 2.60 2.56
16 1 20.06 21.125 5.20 4.99
32 1 10.09 11.159 10.33 9.44
52 1 6.228 7.297 16.74 14.44
64 1 5.107 6.176 20.42 17.06

128 1 2.616 3.685 39.87 28.59
146 1 2.242 3.311 46.52 31.82

Optimized software 104.3 105.37 1 1
(*) WL stands for the WeakLearn procedure.

In Table 4, the speed up of WeakLearn procedure is expected to
be linear until the mapper number reaches 146 while achieving
46.52x speedup. With the common data path, the performance of
WeakLearn procedure can be 2.7 times of that without CDP. The
total speedup, 31.8x, is comparable with a fully manually
designed version [17] which achieved 33.5x speedup.

4.4 Scalability
Figure 13 shows the theoretical speedup for different
mapper/reducer ratio. The WeakLearn speedup is linear before the
maximal mapper number is reached. The total speedup is not
linear due to π calculation and weight updating. The CDP method
can greatly relieve the bandwidth pressure and extend the
maximal mapper number to 208, along with approximate 4x
speedup than the system without CDP.

0 50 100 150 200 250 300
0

20

40

60

80
WL with CDP

Total with CDP

WL w/o CDP

Total w/o CDP

Nmappers

S
pe

ed
up

Figure 13. The speedup of different mapper numbers

Practically, due to the resource limitation of Stratix EP2S180
FPGA, only a maximum of 146 mappers can be placed on chip
before the new data bandwidth limit is reached. The resource
occupation is listed in Table 5.

Table 5. FPGA resource occupation
Mapper 1 2 4 8 16

ALUT 1% 2% 3% 5% 10%

Register 1% 2% 4% 6% 11%

Mapper 32 52 64 128 146

ALUT 19% 31% 38% 75% 86%

Register 17% 32% 39% 81% 89%

A higher performance can be achieved when using FPGAs with
more ALUTs and registers. Our framework is scalable and can
utilize the maximal resources of the underlying devices.

100

5. DISCUSSION
A large variety of applications can be accelerated in MapReduce
framework. In [18], ten machine learning applications are chosen
to be accelerated with MapReduce. All of them can be fit into our
framework. Here, two examples on machine learning and data
mining are selected to illustrate the mapping methods as well as to
demonstrate FPMR’s ability of dealing with computation-
intensive and load-unbalancing problems.

5.1 Support Vector Machine
Support Vector Machine (SVM) [19], is a solution of the
classification and nonlinear function estimation problems based
on a convex quadratic programming (QP). An efficient approach
for SVM training is the Sequential Minimal Optimization (SMO)
[20]. To fit the SMO approach into our framework, the algorithm
is decomposed into map function and reduce function, which is
similar to [21]. A brief description is shown in Algorithm 3.

Algorithm 3 : SVM Training
Input : training data xi, label yi, {1... }i n∀ ∈
Output : weights αi
(1) Initialize : αi, fi, bhigh, blow, ihigh, ilow
(2) repeat
(3) for i 1 to n

(4)

' '

'

() (

 () (,)

highhigh high high

lowlow low low

i ii i i i i

i ii i i

,)f f y x

y x x

α α

α α

← + − Φ

+ − Φ

x

(5) Endfor
(6) Compute bhigh, blow, ihigh, ilow
(7) bhigh = min {fi : i ∈Ihigh}, blow = max {fi : i ∈Ilow}
(8) Update αihigh and αilow
(9) until blow < bhigh+2τ

The training dataset and initialized variables are firstly transported
to the global memory on FPGA. Then according to the two
selected weights, αihigh and αilow, the scheduler assigns tasks to
mappers to update the Karush-Kuhn-Tucker optimality
conditions, i.e. update fi, for the remaining set of weights (line 4 in
Algorithm 3). It is obvious that this operation can be naturally
parallel since no data-dependent lies between different fi. The
corresponding data are sent to each mapper from global memory
by data controller. When a mapper finishes its work of calculating
the new weight, the new weight is stored into the local memory
and another weight update job is assigned to it. The fi update is the
most time-consuming part due to the large number of documents
and the complicated calculation of kernel Φ(x, xi). For illustration,
the most popular kernel, the Gaussian kernel, is calculated as
below.

{ }2
(, ,) expi j i jx x x xγ γΦ = − −

Meanwhile, reducers are responsible for finding the two
maximally violating weights and updating the index set (line 6-8
in Algorithm 3). When the two new candidate weights are found,
scheduler updates them and issues the next round. This loop will
end when all the points meet the optimality condition.

The data need to be transferred are three feature vectors, xihigh,
xilow and xi, which may contain more than thousands of elements.
It is worth noting that, in each training round, the feature vectors
xihigh and xilow are the same for all mappers, because all mapper
share the same index ihigh and ilow. Therefore, these two vectors
should be transferred to all mappers using the common data path

before the first mapper using these data. This strategy can save up
to 2/3 bandwidth and further allow more parallel mappers.

Compared with RankBoost which is a data-intensive application,
SVM is both data-intensive and computation-intensive. Then logic
resources of the underlying FPGA will become the major
bottleneck.

5.2 PageRank
PageRank [22] is a method for computing the relative rank of web
pages based on the Web link structure. Algorithm 4 is the power
method for PageRank computation.

Algorithm 4 : Power method of PageRank
 Input: web matrix A, escape vector E, initial ranking vector R0

Output: final ranking vector R
(1) Initialize R randomly to be R0, then let k 0
(2) repeat
(3) Compute Rk+1 ARk
(4) d ||Rk||1 － ||Rk+1||1
(5) Rk+1 Rk+1 +dE
(6) k k + 1
(7) until || Rk+1－Rk|| < ε

The most time-consuming part of the PageRank computation is
Step (2), which takes more than 95% of the total execution time.
Due to the huge number of web pages, the web-matrix is stored in
a sparse format. So Step 3 is to perform a sparse matrix vector
multiplication (SpMV). The parallelism in this step can be
explored in a MapReduce way. Algorithm 5 is the computation of
SpMV with CSR(Compressed Sparse Row) format sparse matrix.
The CSR format matrix consists of three arrays, Aval for the value
of non-zeros, Acol for the column index of corresponding non-
zeros and Arow for the serial number of the first non-zeros in a row.

Algorithm 5 : Sparse Matrix-Vector Multiplication (Y = A·X)
 Input : square matrix A of size Nrow, vector X
 Output : vector Y

(1) for i 0 to Nrow－1
(2) rbegin Arow[i]
(3) rend Arow[i+1]
(4) acc 0
(5) for c rbegin to rend
(6) acc acc + Aval[c]·X[Acol[c]]
(7) Endfor
(8) Y[i] acc
(9) Endfor

The matrix A and vector R is firstly transferred to DDR2 memory
on FPGA and then assigned the vector R and a row of matrix A to
a mapper. The vector-vector multiplication (line 2-7 in Algorithm
5) is conducted within a mapper and then result is returned and
collected(line 8 in Algorithm 5) by the reducer. The remaining
parts of the computation can be either executed on FPGA or on
CPU since they take much less time than the SpMV.

In this application, the non-zeros between different rows vary
drastically, and the execution time for each mapper may differ
from each other. However, the dynamic scheduling policy will
ensure the load balancing and keep mappers as busy as possible.

6. CONCLUSION AND FUTURE WORKS
This paper introduces FPMR, a MapReduce framework on FPGA,
which provides programming abstraction, hardware architecture

101

and basic building blocks to developers. High parallelism can be
easily achieved on FPMR, while the programming efforts are
alleviated. Using this framework, designers only need to map the
applications onto the mapper modules and the reducer modules.
Task scheduling, communication, and data synchronization are
done by the framework automatically.

In the case study of RankBoost, 31.8x speedup is achieved with
146 mappers and 1 reducer, comparable with a fully manually
designed version where the speedup is 33.5x. The tradeoffs
among resources, performance, and memory bandwidth are also
discussed. As the technology advances, the resource of FPGA will
increase and more and more processors can be placed on chip for
higher performance. Finally, the bandwidth of memory will be the
limiting factor during the application acceleration based on FPMR.

In our future work, we would like to investigate into the
combination of automated HLS tools such as AutoPilot[3], which
has already shown encouraging results in both performance and
productivity of hand-coded applications[23]. The mapper and
reducer modules can be directly written in high-level languages
and automatically translated to hardware languages and then
integrated into the framework. Also, we would like to support
dynamic memory management with hardware paging for complex
applications. Then we plan to test the efficiency and productivity
of the framework on applications of different levels, ranging from
machine learning to basic parallel primitives. We are also working
on the open source release of the framework.

7. ACKNOWLEGEMENT
This work was supported by National Key Technological Program
of China No. 2008ZX01035-001, NSFC No. 60870001, MSRA
UR project, AMD China university program and Tsinghua
National Laboratory for Information Science and Technology
Cross-discipline Foundation. The authors would like to thank the
anonymous reviewers for their useful and detailed suggestions and
comments on this paper.

8. REFERENCES
[1] Martin C. Herbordt, Tom VanCourt, Yongfeng Gu, Bharat

Sukhwani, Al Conti, Josh Model, Doug DiSabello, Achieving
High Performance with FPGA-Based Computing , Computer,
Volume 40 , Issue 3 (March 2007), Pages 50-57

[2] FPGAs and Moore's Law ,
http://www.ciol.com/Semicon/Design-Trends/News-
Reports/FPGAs-and-Moores-Law/111108112450/0/

[3] AutoPilot, AutoESL, www.autoesl.com
[4] CatapultC, Mentor Graphics, www.mentor.com
[5] Impulse C, IA Technologies, www.impulseaccelerated.com
[6] A.DeHon et al., “Design Patterns for Reconfigurable

Computing,” Proc. 12th Ann. IEEE Symp. Field-
Programmable Custom Computing Machines, IEEE CS Press,
2004, pp. 13-23.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Sixth Symposium on
Operating System Design and Implementation (OSDI), San
Francisco, CA, 2004.

[8] Apache Hadoop, http://hadoop.apache.org/

[9] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K.
Olukotun. Map-reduce for machine learning on multicore. In
NIPS'07: Proceedings of Twenty-First Annual Conference on
Neural Information Processing Systems. Neural Information
Processing Systems Foundation, 2007.

[10] Adam Pisoni. Skynet, Apr. 2008. http://skynet.rubyforge.org.
[11] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary

Bradski, and Christos Kozyrakis. Evaluating MapReduce for
Multi-core and Multiprocessor Systems. Proceedings of the
13th Intl. Symposium on High-Performance Computer
Architecture (HPCA), Phoenix, AZ, February 2007.

[12] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis.
Phoenix Rebirth: Scalable MapReduce on a Large-Scale
Shared-Memory System. Proceedings of the 2009 IEEE
International Symposium on Workload Characterization
(IISWC), Austin, TX, October 2009.

[13] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.
Govindaraju, and Tuyong Wang. Mars: A MapReduce
Framework on Graphics Processors. PACT 2008.

[14] M. Mustafa Rafique, Benjamin Rose, Ali R. Butt,
D.S.Nikolopoulos. CellMR: A Framework for Supporting
MapReduce on Asymmetric Cell-Based Clusters. IPDPS’09

[15] J. H. Yeung, C. Tsang, K. Tsoi, B. S. Kwan, C. C. Cheung, A.
P. Chan, and P. H. Leong. Map-reduce as a programming
model for custom computing machines. IEEE Symposium on
Field-Programmable Custom Computing Machines, 2008.

[16] Yoav Freund, Raj Iyer, Robert E. Schapire and Yoram Singer,
An efficient boosting algorithm for combining preferences,
The Journal of Machine Learning Research, Volume 4 ,
(December 2003), Pages: 933 – 969

[17] NY Xu, XF Cai, R Gao, L Zhang, FH Hsu, FPGA
Acceleration of RankBoost in Web Search Engines, ACM
Transactions on Reconfigurable Technology and Systems
(TRETS), Volume 1 , Issue 4 (January 2009), Article No. 19

[18] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K.
Olukotun. Map-reduce for machine learning on multicore. In
NIPS ’07: Proceedings of Twenty-First Annual Conference
on Neural Information Processing Systems. Neural
Information Processing Systems Foundation, 2007.

[19] Boser, B., Guyon, I., Vapnik, V. A training algorithm for
optimal margin classifiers. Proc. of the Fifth Annual
Workshop on Computational Learning Theory, Pittsburgh,
ACM, pp, 144-152

[20] J. Platt. Sequential minimal optimization: A fast algorithm for
training support vector machines. Technical Report MSR-TR-
98-14, Microsoft Research

[21] Bryan Catanzaro, Narayanan Sundaram and Kurt Keutzer.
Fast support vector machine training and classification on
graphics processors, Proceedings of the 25th International
Conference on Machine Learning, Helsinki, Finland, 2008.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[23] Ningyi Xu, Even Microsoft uses AutoESL's C synthesis to
speed up its SW, http://deepchip.com/items/0482-06.html

102

