
An Approximate Timing Analysis Framework for Complex Real-Time
Embedded Systems

Yue Lu, Thomas Nolte and Johan Kraft
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
{yue.lu, thomas.nolte, johan.kraft}@mdh.se

Abstract

To maintain, analyze and reuse many of today’s Complex
Real-Time Embedded Systems (CRTES) is very difficult and
expensive, which, nevertheless, offers high business value
in response to great concern in industry. In such context,
not only functional behavior but also non-functional prop-
erties of systems have to be assured, i.e., Worst-Case Re-
sponse Time (WCRT) of tasks has to be known. However,
due to high complexity of such systems and the nature of the
problem, the exact WCRT of tasks is impossible to find in
practice, but may only be bounded. In addition, the existing
relatively well developed theories for modeling and analysis
of real-time systems are having problems which limit their
application in the context. In this paper, we address this
challenge by presenting a framework for approximate tim-
ing analysis of CRTES, namely AESIR-CORES, which pro-
vides a tight interval of WCRT estimates of tasks by the us-
age of two novel contributions. Our evaluation using three
models inspired by two fictive but representative industrial
CRTES indicates that AESIR-CORES can either success-
fully obtain the actual WCRT values, or have the potential
to bound the unknown actual WCRT values from a statisti-
cal perspective.

1 Introduction

Many industrial embedded systems are very large, flex-

ible, and highly configurable software systems, containing

many event-triggered tasks being triggered by other tasks in

complex, nested patterns. Consequently, they have a very

complicated runtime behavior. Such systems may consist

of millions of lines of code, and contain hundreds of tasks,

many with real-time constraints. Examples of such sys-

tems include the robotic control system IRC 5, developed by

ABB [1], as well as several telecom systems. In such sys-

tems, many tasks have intricate dependencies in their tem-

poral behavior, such as 1) asynchronous message-passing

and globally shared state variables, which may decide im-

portant control flow conditions with major impact on task

execution time as well as task response time, 2) task off-

sets, and 3) runtime changeability of priorities and periods

of tasks. We refer to systems with such characteristics as

Complex Real-Time Embedded Systems (CRTES).

To maintain, analyze and reuse CRTES is very impor-

tant, difficult and expensive, which, nonetheless, offers high

business value responding to great concern in industry. For

instance, one specific problem in maintenance, i.e., mod-

ifying the system after delivery to correct faults, improve

performance or other attributes, or to adapt the product to

a changed environment, is the risk for introducing timing-

related errors. In particular, for the CRTES in safety-critical

applications, both functional and temporal correctness are

often equally important. Thus, not only the functional be-

havior of systems has to be assured, but also its temporal

behavior, e.g., Worst-Case Response Time (WCRT) of the

adhering tasks in systems has to be known. For instance,

a failing industrial robot could halt an entire production

line in a factory for hours, causing a huge financial loss.

Software bugs that lead to slow response time in Anti-lock

Brake System (ABS) in cars will cause loss of human lives,

and recall of several hundreds of thousands of vehicles. In

this work, we focus on Response-Time Analysis (RTA) of

CRTES in safety-critical applications.

However, due to high complexity of such CRTES, the ex-

isting relatively well-developed theories for modeling and

analysis of real-time systems are having problems which

limit their application in the above context. For example,

timing analysis methods such as RTA [5], are often not ap-

plicable, as their assumptions of independent tasks in the

analysis do not hold in such CRTES. The results of such

analyses thereby become overly pessimistic; often too pes-

simistic to be useful. Moreover, methods like RTA rely on

the existence of a Worst-Case Execution Time (WCET) of

each task. Correspondingly, the quality of the analysis is

directly correlated to the quality of WCET estimates. In or-

2010 13th IEEE International Conference on Computational Science and Engineering

978-0-7695-4323-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CSE.2010.21

102

der to perform a safe analysis covering system worst-case

scenarios, static WCET analysis [35] has to be adopted in

the context, which makes the assumption that tasks are iso-

lated in the analysis. Nevertheless, such assumptions make

the option to use static WCET analysis to obtain task-level

WCET estimates not proper, due to the fact that task intri-

cate temporal dependencies cannot be well handled. Fur-

thermore, today’s WCET tools cannot analyze the complex

high-performance CPUs used by many industrial systems.

The state of practice in industry is that many companies

developing CRTES have no means for timing analysis, and

are forced to rely on testing to find timing-related problems.

However, timing errors can in most cases not be detected

in unit testing as they only occur in the integrated system,

when concurrent activities are interacting or interfering, un-

der a very specific condition. Moreover, if errors related

to timing and concurrency effects are discovered in testing

of the entire system, they are typically hard to reproduce.

Worse yet, it is not only extremely difficult and expensive

to test all scenarios in the system, but also hard to predict

how a product will be used. Enabling RTA of CRTES is a

problem of high industrial relevance thereof.

One solution to the problem outlined above is to use a

more detailed analysis model, which ideally should be a

subset of the original software program with a certain level

of abstraction, e.g., WCET estimates on jobs1 [25]. More-

over, such models describe execution control flow on code-

level with respect to the significance of task scheduling,

communication and allocation of logical resources. Analyz-

ing such detailed analysis models by using model checking

techniques such as UPPAAL [7, 34], TIMES [3] can result

in a state-space explosion issue, which in many cases makes

such the exhaustive analysis not feasible in practice. The

analysis methods such as Real-Time Calculus (RTC) [31]

using count-based abstraction, do not support to model the

detailed states information about tasks’ intricate temporal

dependencies, as noted above. Another alternative approach

which avoids raising too large search state-space is to use

Monte Carlo simulation-based methods, which can be de-

scribed as keeping the best result from a set of random-

ized simulations. Nonetheless, the main drawback of Monte

Carlo simulation is its low state-space test coverage, which

subsequently decreases the confidence in the results of find-

ing rare worst-case scenarios.

In this paper, we are aiming for addressing the above

issue by proposing an approximate timing analysis frame-

work for CRTES, namely AESIR-CORES (Advanced and
Enterprising Solutions for Innovative Research on COm-
plex Real-time Embedded Systems). AESIR-CORES pro-

vides an interval on WCRT estimates of tasks, which con-

sists of lower and upper bounds. In effect, the upper bound

on the WCRT of tasks is given by a statistical approach to

1A task consists of a sequence of jobs.

RTA of CRTES by combining Extreme Value Theory (EVT)

with other statistical methods in order to produce a proba-

bilistic WCRT estimate. Such a probabilistic WCRT esti-

mate may have the potential to be considered as an upper

bound on WCRT estimates, especially in the case where

Conventional Timing Analysis (CTA) methods cannot be

applied in practice. On the other hand, the lower bound

on the WCRT of tasks is obtained through the simulation

optimization-based method, called HCRR [9], which yields

substantially better results in finding system worst-case sce-

narios when compared to the traditional Monte Carlo sim-

ulation in the CTA methods. In addition, it is worth stress-

ing that in this paper, the issue model validation is not dis-

cussed. Instead we assume that the model (extracted from

the target system) is a sufficiently accurate approximation

of the modeled system from the perspective of interesting

timing properties, such as the execution time and response

time of the adhering tasks. However, we have presented

some interesting results in the context of validating tempo-

ral simulation models in timing analysis of CRTES in [24],

to which the interested readers can refer for details. In addi-

tion, the evaluation is done by using three simulation mod-

els inspired by two industrial CRTES developed by ABB

and Arcticus systems [4].

Contributions: The main contributions of this paper are

threefold:

1. We present AESIR-CORES, i.e., an approximate tim-

ing analysis framework for CRTES by using different

analysis techniques, and we show how to use AESIR-

CORES to obtain a WCRT interval on estimates of

tasks. To our best knowledge, no such work has been

done, even no similar concept has been proposed so

far.

2. We discuss the statistical conviction on using RapidRT

in AESIR-CORES to obtain a tighter upper bound on

the WCRT estimate of tasks, i.e., can we statistically

consider the values obtained by RapidRT as good qual-

ity and representative WCRT estimates of tasks given

the system model and approach that we are using?

3. We evaluate AESIR-CORES by using three models

inspired by two fictive but representative industrial

CRTES, which shows that 1) concerning the cases

where the actual WCRT value is known, AESIR-

CORES can successfully bound the actual WCRT

value in a tighter interval when compared to the in-

terval given by the CTA methods, and 2) AESIR-

CORES can provide an interval which has the potential

to bound the actual but unknown WCRT values from

a statistical perspective, especially in the cases where

the CTA methods cannot be applied.

103

Organization: Section 2 introduces our modeling frame-

work for CRTES and research problem. Next, Section 3

provides more details about AESIR-CORES and its two un-

derlying different analysis methods HCRR and RapidRT,

followed by Section 4 which gives the testbed and im-

plementation details. The evaluation framework using

three different simulation models inspired by two industrial

CRTES, and the comparison with the CTA methods are pre-

sented in Section 5. Section 6 and 7 introduce the validity

and scalability of AESIR-CORES, and related work respec-

tively, before conclusions are drawn in Section 8.

2 Timing Analysis of CRTES

This section is split into two parts: Section 2.1 introduces

our modeling and analysis framework for CRTES, and Sec-

tion 2.2 gives the problem definition.

2.1 Modeling of CRTES

The target CRTES are described by the modeling lan-

guage in the RTSSim simulation framework [21], which

is quite similar to the commercial tool VirtualTime [30]

and the academic tool ARTISST [11]. RTSSim allows for

simulating system models containing detailed intricate ex-

ecution dependencies between tasks, such as asynchronous

message-passing, globally shared state variables, and run-

time changeability of priority and period of tasks. In

RTSSim, the system consists of a set of tasks, sharing a

single processor. RTSSim provides typical RTOS services

to the simulation model, such as Fixed-Priority Preemptive

Scheduling (FPPS), Inter-Process Communication (IPC)

via message queues, and synchronization (semaphores).

The tasks in a model are described using C functions, which

are called by the RTSSim framework. The framework pro-

vides an isolated “sandbox”, where time is represented in

a discrete manner using an integer simulation clock, which

is only advanced explicitly by the tasks in the simulation

model, using a special routine, EXECUTE. Calls to this rou-

tine models the tasks’ consumption of CPU time.

All time-related operations in RTSSim, such as timeouts

and activation of time-triggered tasks, are driven by the sim-

ulation clock, which makes the simulation result indepen-

dent of process scheduling and performance of the analysis

PC. The response time and execution time of tasks are mea-

sured whenever the scheduler is invoked, which happens for

example at IPC, task switches, EXECUTE statements, oper-

ations on semaphores, task activations and when tasks end.

This, together with the simulation clock behavior, guaran-

tees that the measured response time and execution time are

exact.

In RTSSim, the system S contains a set of non-blocking

tasks. A task τi may not be released for execution until a

certain non-negative time (the offset Oi) has elapsed after

the arrival of the activating event. Each task also has a pe-

riod Ti, a maximum arrival jitter Ji, and a priority Pi. Peri-

ods and priorities can be changed at any time by any task in

the application, and offset and jitter can both be larger than

the period. Tasks with equal priorities are served on a First

Come First Served (FCFS) basis. The framework allows

for three types of selections which are directly controlled

by simulator input data: 1) selection of execution times, 2)

selection of task-arrival jitter, and 3) selection of task con-

trol flow, directly or indirectly based on environmental input

stimulus. In addition, Monte Carlo simulation can be real-

ized by providing randomly generated (conforming to the

uniform distribution) simulator input data, and gives out-

put in terms of a set of traces, each of which contains the

measured RT and ET data of each task invocation during

simulation.

2.2 Problem Formulation

In general, the actual value of WCRT of tasks in the real

system is impossible to find, as its input WCET of tasks

is undecidable in practice. The research in [13] recently

proved that the time complexity of computing a WCRT of

an independent task τi by using basic RTA (as shown by

Equation 1) is NP-hard. Furthermore, referring to the sys-

tem model with intricate task execution dependencies as the

fact in CRTES, the WCET of tasks Ci is better off being rep-

resented in terms of the symbolic formula [25] in the corre-

sponding timing analysis. Nevertheless, to use such tasks’

parametric WCET representation is still an open and chal-

lenging question, which significantly increases the com-

plexity of the problem, without a doubt. Therefore, one fea-

sible solution is to find a tight interval consisting of lower

and upper bounds on the WCRT of tasks, by using approxi-

mation techniques.

Rn+1
i = Ci +

∑
∀ j∈hp(i)

⌈
Rn

i

T j

⌉
×C j (1)

where hp(i) is the set of all tasks with a priority higher than

that of task τi.

Our research problem can be defined as follows: we are

given a model M describing the target CRTES, which can

be simulated on the RTSSim simulation instance2 s. Let

R(s) denote the highest response time measured for the task

under analysis in the simulation instance s. Given m simu-

lation instances s1, ..., sm as the samples in the entire search

space S , i.e., S ← s1, ..., sn, where n ∈ N. The goal of the

2A simulation in RTSSim is completely deterministic given a specific

input, referred to as a simulation instance. Moreover, a simulation instance

is represented as a set of sequences of integers, where each sequence is as-

sociated with either an arrival jitter of a specific task, or a specific execution

time, or a specific environmental input stimulus.

104

Basic RTAExact WCRT
HCRR

Monte Carlo simulation

Value of WCRT
0

RapidRT

A tighter interval on the WCRT estimate
of tasks given by AESIR-CORE

An interval on the WCRT estimate
of tasks given by the CTA methods

Figure 1. Illustration of applying different WCRT analy-

sis methods in the system model of CRTES.

problem is then to find a WCRT estimate interval consist-

ing of lower and upper bounds between which the actual

WCRT s∗ is. Moreover, the relationship between the results

obtained by AESIR-CORES and the exact WCRT value of

tasks in the system model describing CRTES is illustrated

in Figure 1.

3 AESIR-CORES

In this section, we first show an overview of our re-

search on timing analysis of CRTES, and then introduce the

proposed analysis framework AESIR-CORES. In contrast

to Conventional Timing Analysis (CTA) methods, AESIR-

CORES performs approximate WCRT analysis by provid-

ing an interval on WCRT estimates of tasks. Such an in-

terval consists of a lower bound obtained through a simu-

lation optimization-based method (to be introduced in Sec-

tion 3.2), and an upper bound derived from a statistical RTA

method (to be introduce in Section 3.3).

3.1 Overview of Our Research

As shown in Figure 2, the entire process of our research

starts with the model extraction work which is about to ex-

tract a set of models from a real system which depict the de-

tailed task execution dependencies, based on program slic-

ing [33]. Then a validation process will be performed in

order to decide if the extracted models are sufficiently ac-

curate approximation of the modeled system. If they are,

then our proposed analysis framework AESIR-CORES us-

ing the simulation optimization-based method HCRR and

the statistical-based RTA method RapidRT will perform

RTA of tasks in the system; otherwise, the model extraction

process has to be refined such that the extracted models can

capture sufficiently accurate details about the target system,

in the view of interesting system timing properties such as

tasks’ response time and execution time.

Figure 2. Overview of our research on timing analysis of

Complex Real-Time Embedded Systems.

3.2 The HCRR Approach

HCRR is a meta-heuristic search algorithm based on

hill climbing using random-restarts guides the traditional

Monte Carlo simulation to find higher response times. Hill-

climbing has the advantage of being one of the simplest

meta-heuristics available, and is based on the idea of start-

ing at a random point, and then repeatedly taking small

steps pointing upward (to higher measured response time)

whenever such search directions exist. If no such step ex-

ists, a local maximum has been reached.

Advantages of HCRR come from the combination of a

strictly local improvement part, which quickly converges

to high response times, with diversification mechanisms

(jump-back to equal candidates, and full restarts) that are

important to avoid local maxima. As shown in [9], HCRR

yields substantially better results than Monte Carlo simula-

tion. In details, the HCRR algorithm begins by choosing

as starting point the best simulation instance from m ran-

domly selected candidates using Monte Carlo simulation.

Then, in each iteration, k · len(curr) random values of the

current simulation instance curr (which has len(curr) input

values) used before RT(curr) are selected and modified us-

ing the neighborhood procedure Nbh. The response time for

the task under analysis is measured by running an RTSSim

call on a neighbor nb. Modifications suggested by Nbh that

105

increase response time are accepted, and changes that de-

crease response time are rejected. Modifications that have

equal response time are rejected but saved for future refer-

ence, as described below.

A pure hill-climbing procedure is susceptible to getting

stuck in local maxima, and can therefore exhibit less than

satisfactory performance on many problems. In order to

avoid convergence to locally maximal areas and to improve

the probability of finding a true global maximum, two dif-

ferent diversification mechanisms were implemented. First

of all, the algorithm jumps back to a previously encoun-

tered, randomly selected simulation instance with an equal

response time to the current instance after non-improving

simulations. This distributes focus over a number of equal

instances, which can help in avoiding small local maxima.

The second mechanism performs a full restart of HCRR

from a random point after non-improving simulations. We

call the jump-back threshold and the random-restart thresh-
old. For details, the interested readers can refer to [9].

3.3 The RapidRT Approach

RapidRT is based on Extreme Value Thoery (EVT) [16,

17], which was first codified in 1958 and is a separate

branch of statistics for dealing with the tail behavior of a

distribution. EVT is used to model the risk of the extreme,

rare events, without the vast amount of sample data required

by a brute-force approach. Example applications of EVT in-

clude risk management, insurance, hydrology, material sci-

ences, telecommunications.

RapidRT is a recursive procedure which, as the first two

arguments, takes n reference data sets each of which con-

tains m simulation traces containing tasks’ response times.

For each reference data set, the algorithm returns the WCRT

estimation with a probability of being exceeded, e.g., 10−9,

which is the third algorithm argument. For instance, Air-

bus [2] uses such the value 10−9 which is at the highest

development assurance level in the safety-critical system

domain. Next, RapidRT will verify if the sampling dis-

tribution consisting of n WCRT estimates given by EVT

for all n reference data sets (we refer to such the sampling

distribution as the EVT distribution hereafter) conforms to

a normal distribution or not, according to the result given

by the non-parametric Kolmogorov-Smirnov test [22] (the

KS test hereafter). If it is, then RapidRT will calculate the

confidence interval (i.e., CI hereafter) of the EVT distribu-

tion, at the given confidence level 99.7%, and choose the

upper bound of the CI as the final WCRT estimate. This

invents a new hard statistic constraint, i.e., from the statis-

tical perspective, given the modeled system, the possibil-

ity of the existence of the actual WCRT which is higher

than the WCRT estimate given by RapidRT is no more than

1.5 × 10−12 (i.e., (100% − 99.7%)/2 × 10−9). Otherwise, if

the EVT distribution cannot be fitted to a normal distribu-

tion, a resampling statistic bootstrap [29] will be adopted to

obtain the upper bound of the CI of the EVT distribution.

Furthermore, in our evaluation, the EVT distributions for

all the three evaluation models conform to a normal distri-

bution, therefore the bootstrap test will not be introduced in

this paper.

RapidRT consists of the following three steps: 1) con-

struction of the referenced data sets, 2) WCRT estimation

of each referenced data set using EVT, and 3) derivation of

a final WCRT estimate that is given by the algorithm. In

addition, the outline of the algorithm is as follows:

1. Construct n reference data sets for the WCRT esti-

mates by running m Monte Carlo simulations for each

reference data at first, and then choosing the highest

maximum value of response time of the task under

analysis in each simulation. Consequently, the sam-

pling distribution of response-time (RT) data per ref-

erence data set consists of the m highest maximum RT

data of m simulations.

2. Perform the WCRT estimates on the task under analy-

sis per each reference data set, i.e., esti where 1 ≤ i ≤
n.

(a) Set the initial block size b to 1, for each reference

data set.

(b) If the number of blocks k =
⌊m

b

⌋
is less than 30,

the algorithm stops as there are not enough sam-

ples to generate an estimate.

(c) Segment m response times into blocks of size b,

and for each of the
⌊m

b

⌋
blocks find the maximum

values.

(d) Estimate the best-fit Gumbel parameters μ and

β to the block maximum values by using a pro-

posed lower-part binary search algorithm intro-

duced in [26].

(e) Calculate a WCRT estimate based on the best-fit

Gumbel Max parameters estimated through Step

d), i.e., μ, β, and a target acceptance probability

Pe, i.e., 10−9.

3. After verifying if the EVT distribution (i.e., ES T ←
est1, ..., estn) can successfully be fitted to a normal dis-

tribution by using the KS test, RapidRT will return a

result, i.e., ES T + 3σES T (the sum of mean value and

3 standard deviation of ES T at the confidence level

99.7%).

106

4 Implementation

Our testbed is running Microsoft Windows XP Profes-

sional, version 2002 with Service Pack 3. The computer

is equipped with the Intel Core Duo CPU E6550 processor,

2GB RAM and a 4MB L2 Cache. The processor has 2 cores

and 1 frequency level: 2.33 GHz.

As shown in Figure 3, the two main components in

the AESIR-CORES toolchain are SimOpti and ThinkStati,
which are prototypes of both HCRR and RapidRT as ex-

ecutable programs with a simple user interface developed

using Microsoft’s C# programming language and .NET

framework 2.0. Both SimOpti and ThinkStati read the

same output of the RTSSim simulator, i.e., one text file

out.txt which contains m lines of simulation results repre-

senting the highest value of response time for a specific

task observed during each simulation in m simulation runs.

For RapidRT, in particular, it first generates the text file

yblock.txt for each reference data set after segmenting the

samples, then produces the WCRT estimation on tasks un-

der analysis according to the best-fit Gumbel Max parame-

ters (verified and returned by using our proposed lower-part
binary search algorithm in [26] and the commercial soft-

ware EasyFit [12]) and the acceptance probability, i.e., 10−9

in this work. The output of ThinkStati is a text file contain-

ing the EVT distribution, which is used by EXCEL 2007 to

construct the CI at the confidence level 99.7%. Concern-

ing the Chi-squared test required by ThinkStati, it is done

by using EasyFit. Specifically, given the text file yblock.txt
which contains a certain number of samples generated by

ThinkStati, as the input, the Chi-squared test engine em-

bedded in EasyFit will return the results in terms of reject-

ing or not rejecting the H0 or the null hypothesis. Such the

null hypothesis (H0) is expressed as if the maxima of blocks
are conforming to the Gumbel Max distribution, and the
corresponding parameters of the Gumbel Max distribution
should not be rejected, and they will be used to generate a
WCRT estimate of the task on focus.

5 Empirical Results

In this section, we first introduce three evaluation mod-

els (including one validation model) inspired by two in-

dustrial CRTES, and then we compare our solution against

the Conventional Timing Analysis methods (CTA) as ref-

erence: Monte Carlo simulation and the basic RTA using

the Response-Time Computation Formula (RTCF) without

blocking (as shown in Equation 1 in Section 2.2). It is

worth stressing that though there are many considerable re-

search in RTA of systems with excessive blocking, shared

resources, etc, our evaluation models do not have such be-

haviors. We therefore use the basic RTA (out of other RTA

methods) as a representative reference method in the evalu-

ation.

RTSSim

out.txt
ThinkStati

EasyFit
Chi-square test engine An interval on the WCRT

estimates of tasks in CRTES

Best-fit Gumbel Max
parameters estimation

Monte Carlo simulation

yblock.txt

Excel 2007

EVT Distribution

Simopti

A lower bound on
the WCRT of tasks

An upper bound on
the WCRT of tasks

Figure 3. The toolchain in AESIR-CORES timing analy-

sis framework.

5.1 Evaluation Models

Two of three evaluation models, i.e. Model 1 (M1) and

Model for Validation (MV), have similar architecture and

analysis problems as one industrial real-time application in

use at ABB. M1 is representing a control system for indus-

trial robots developed by ABB Robotics, which is not pos-

sible to analyze using methods such as RTA [5, 23]. M2

is constructed from a test application used by Arcticus Sys-

tems, which develops the Rubus RTOS used in many ve-

hicular systems. We also use a simplified version of M1,

making the basic RTA is applicable, for validation (MV).

The sole purpose of MV is to investigate if the interval on

the response time estimation given by AESIR-CORES can

bound the known actual WCRT. The scheduling policy is

FPPS for all models, apart from M1 (where FPPS is used

as base but one task changes its priority during runtime). In

addition, in all evaluation models, the basic time unit is one

simulation time unit (tu).

5.1.1 Model 1 (M1)

This model is designed to include some behavioral mech-

anisms from the ABB system which RTA cannot take into

account:

• tasks with intricate dependencies in temporal behav-

ior due to IPC and Globally Shared State Variables

(GSSVs);

• the use of buffered message queues for IPC, where trig-

gering messages may be delayed;

• tasks that change scheduling priority or periods dy-

namically, in response to system events.

The modeled system controls a set of electric motors

based on periodic sensor readings and aperiodic events. The

107

calculations necessary for a real control system are, how-

ever, not included in the model; the model only describes

behavior with a significant impact on the temporal behav-

ior of the system, such as resource usage (e.g., CPU time),

task interactions and important state changes. The model

contains four periodic tasks with the parameters shown in

Table 1 (a lower valued priority is more significant).

Table 1. Task parameters for Model 1.
Task Priority Period Offset Depends on

PLAN 5 40 000 0 UI

CTRL 4 or 2 10 000 or 20 000 0 PLAN, IO, UI

IO 3 5 000 500 Sensor

DRIVE 1 2 000 1 2000 CRTL, UI

The environmental input stimulus in this problem is a se-

quence of integers from zero to two, denoting the number

of external events that are generated by a sensor, measured

in one IO task period. The IO task then sends equally many

messages to the CTRL task. The CTRL task may change

priority and periodicity in response to two specific events

in the model. The PLAN task is responsible for planning

the movement of the physical object connected to the mo-

tors. The CTRL task calculates control signals for the mo-

tors with respect to coordinates sent from the PLAN task

and the IO events provided by the IO task. The DRIVE task

actuates the motors based on the CTRL task output, which

impacts the execution time of the CTRL task. Moreover,

the DRIVE task will change the priority of the CTRL task

according to different conditions.

The model also describes a user interface (UI) which

generates sporadic events which impact the system behav-

ior. There are three types of user interface events: START,

STOP and GETSTATUS. The START and STOP events

make the system change between two system modes, IDLE

and WORKING, with different temporal behaviours. The

GETSTATUS event makes the PLAN, CTRL and DRIVE

tasks send a status message to the UI, which increases the

execution time of those task instances. The task in focus

of analysis is the CTRL task. The details of the model are

described in [21].

5.1.2 Model 2 (M2)

M2 is based on a test application from Arcticus systems,

developers of the Rubus RTOS [4] which is used in heavy

vehicles. This model uses a pipe-and-filter architecture,

where tasks trigger other tasks through trigger ports, form-

ing transactions. M2 contains 3 periodic transactions and

one interrupt-driven task, in total 11 tasks. The interrupt

has a small jitter, while the other transactions are strictly

periodic. The parameters of tasks and their execution times

are given in Table 2.

Table 2. Task parameters for Model 2.
Task Period Offset Jitter Priority Execution

swcIT 1 5 000 500 100 0 [100, 200]

swcIT 2 5 000 500 100 0 [100, 200]

swcA 1 5 000 0 0 1 [400, 500]

swcA 2 10 000 0 0 1 [400, 500]

swcA 3 30 000 0 0 1 [400, 500]

swcB 2 10 000 0 0 1 [400, 500]

swcB 3 30 000 0 0 1 [400, 500]

swcA et2 10 000 0 0 2 [500, 600]

swcA et3 30 000 0 0 2 [500, 600]

swcB et2 10 000 0 0 2 [500, 600]

swcC et1 30 000 0 0 2 [500, 600]

M2 is less complex than M1 in the sense that there exist

no shared variables or IPC via message passing which can

impact the tasks’ timing and functional behavior. Instead,

the tasks have large variations in execution times, which

makes the state space of this model very large. For this

model, the evaluation focuses on the end-to-end response

time of the transaction which contains the tasks with the

lowest priority.

5.1.3 Validation Model (MV)

MV is constructed based on M1, but the adhering task exe-

cution dependencies are simplified in that

• GSSVs have been removed,

• priority and period are strictly static,

• explicit loop bounds have been added manually,

• the constant offset of tasks is removed.

As a consequence, MV has considerably lower complex-

ity, which makes both using the basic RTA by using the

RTCF without blocking as shown by Equation 1 in Sec-

tion 2.2 to calculate the WCRT of tasks under analysis, and

achieving the exact WCRT by using both Monte Carlo sim-

ulation and HCRR [9], feasible.

5.2 Results Comparison

Before we present experimental results, it is interesting

to note that the WCRT estimate of tasks given by RapidRT

in AESIR-CORES is in the floating-point representation.

This is due to the fact that we are using the upper bound

on the CI of the EVT distribution at the confidence level

99.7%, for reference data sets. In addition, the results re-

garding different evaluation models are shown in Table 3.

In particular, we can see:

108

• For MV, when the actual WCRT value of the task un-

der analysis is known, the upper bound on the WCRT

estimate given by AESIR-CORES is 13.13% (i.e.,

(5 982−5 196.68)/5 982×100%) less pessimistic when

compared to the upper bound obtained by the basic

RTA in the CTA methods. Though both of AESIR-

CORES and the CTA methods find the actual WCRT

value, the interval given by AESIR-CORES is 47.60%

(i.e., {(5 982 − 4 332) − (5 196.68 − 4 332)} ÷ (5 982 −
4 332) × 100%) tighter than the one derived from the

CTA methods.

• For M1, when the actual WCRT value of the task un-

der analysis is not known, 1) the basic RTA in the

CTA methods cannot perform analysis since all the un-

derline assumptions cannot be made. Therefore, the

upper bound on the WCRT of the task under anal-

ysis is NA (i.e., not applicable). However, by using

AESIR-CORES, such an upper bound can be derived

from RapidRT under a hard statistical constraint, i.e.,

1.5×10−12, which could be considered to bound the ac-

tual WCRT value (refer to Section 6.1 for the validity

of statistically considering the result given by RapidRT

as a sound upper bound). On the other hand, the

lower bound given by AESIR-CORES, i.e., 792 tu is

higher than the one given by the CTA methods, which

shows that AESIR-CORES can significantly improve

the lower bound of the WCRT estimate of the task un-

der analysis in the sense of finding higher response

times. Clearly, the interval on the WCRT of the task

under analysis obtained by AESIR-CORES is much

tighter than the one given by the CTA methods, espe-

cially in the cases where the latter cannot be applied.

• The same conclusion can be drawn for M2, except that

the lower bound given by AESIR-CORES is 297 (i.e.,

6299 − 6002) tu higher than the one given by the CTA

methods. While the WCRT estimate of the task on fo-

cus given by RapidRT is 7 262.77 tu, which we believe

is an upper bound on the WCRT of the task under anal-

ysis from the statistical point of view.

Table 3. The intervals on WCRT estimates given by

AESIR-CORES and the CTA methods for three evaluation

models.

AESIR-CORES CTA methods Actual WCRT

MV [4 332, 5 196.68] [4 332, 5 982] 4 332
M1 [8 474, 8 698.29] [7 682, NA] Unknown

M2 [6 299, 7 262.77] [6 002, NA] Unknown

6 Validity and Scalability of AESIR-CORES

This section discusses the validity of the WCRT interval

given by AESIR-CORES and the scalability of our analysis

framework.

6.1 Validity of the WCRT Interval Given by
AESIR-CORES

In AESIR-CORES, as we are aiming for bounding the

actual WCRT value of tasks in CRTES that is either known

or unknown depending on different system complexities, it

is therefore important to show the validity of such an in-

terval on the WCRT given by AESIR-CORES. This typi-

cally lies in the validity of the upper bound given by us-

ing RapidRT. Put it in the other way, we have to answer

the question, i.e., can we statistically consider the values
obtained by RapidRT as good quality and representative
WCRT estimates of tasks given the system model and ap-
proach that we are using?

First, looking at Step 1 in RapidRT, the sample size for

all reference data sets in the analysis is statistically suffi-

cient in the sense of successfully covering the parameter of

the underline population, i.e., the maximum value of the

entire search space of RT data of the task on focus in the

system model. In effect, as shown by the evaluation of the

model MV, the result given by 500 000 samples (i.e., 50

reference data sets each of which contains 10 000 samples)

successfully covered the actual WCRT value. Moreover, we

use Simple Random Samples (SRS) [29] by running Monte

Carlo simulation which eliminates the bias on the sampling

in terms of giving every possible sample of a given size the

same chance to be chosen. This also gives us the confi-

dence that no matter how big the population is, the inference

based on the sampling distribution collected by SRS can

successfully estimate the parameters of the underline pop-

ulation [29]. Therefore, we believe that the step about the

construction of the sampling distribution for each reference

data set is sound in the sense that it has a statistically large

enough sample size and accuracy of the inference regard-

ing the actual WCRT value of tasks. It is however possible

to construct cases where this method would fail to produce

a safe overestimation. For instance, a task may contain an

if-statement with a very unlikely condition, which is never

true during measurements. But when it is true, the execu-

tion time of the task will be increased vastly, e.g., with a

factor 1 000. Such a task is unlikely, but possible in prac-

tice. However, if using simulations as a base for this analy-

sis, it is possible to insert detailed monitoring of the execu-

tion, without affecting the simulation results (execution and

response times). This since execution time is typically con-

sumed explicitly in simulators like RTSSim, by increment-

ing the simulation clock. Through extra simulation monitor-

109

ing it should be possible to keep track of what behaviors of

the tasks that have been explored, and thereby determine if

there are unexplored control branches, which possibly may

result in vastly higher execution time and thereby response

time. Besides, more advance measurement-based tracing

mechanisms can also be used to remedy the situation.

Second, looking at Step 2 in RapidRT, for each reference

data set, the usage of EVT to create a corresponding Gum-

bel Max distribution in the WCRT estimation allows us to

statistically state that the probability of existence of an exact

WCRT value that is greater than the resulting EVT estimate

is no more than 10−9. Such the probability is at the high-

est development assurance level in the safety-critical system

domain, adopted by industrial companies.

Finally, looking at Step 3 in RapidRT, we use an upper

bound of the CI of the EVT distribution which ensures that

the possibility of having an actual WCRT value larger than

the estimate given by RapidRT is less than 1.5 × 10−12 (i.e.,

(100% − 99.7%)/2 × 10−9). In other words, the probability

of the WCRT estimate given by RapidRT to be lower than

an unknown exact value of the WCRT of tasks is no more

than 1.5 × 10−12. Hence, we believe that the result given by

RapidRT can be statistically considered as a good quality

upper bound on the WCRT estimate of tasks, especially in

the case where the basic RTA cannot be practically applied.

6.2 Scalability of AESIR-CORES

Table 4. The computation time corresponding to the num-

ber of simulations required to execute by each method in

AESIR-CORES. The time unit is one second (s).

MV M1 M2

HCRR 44.39 s 44.39 s 1 716.73 s

RapidRT 1 573.36 s 4 805.90 s 2 086.23 s

In AESIR-CORES, the input to HCRR and RapidRT i.e.,

a number of simulation traces containing response time data

of tasks in the system model, is collected by running Monte

Carlo simulation, which in general scales to larger size sys-

tems [8]. Specifically, in our evaluation, the computation

time cost by each method in AESIR-CORES at the testbed

(introduced in Section 4) is reasonably affordable, i.e., the

maximum computation time is 4 805.90 s (which is approx-

imately equal to 1.3 hours). Though one disadvantage of

the current implementation of AESIR-CORES, is that, in

ThinkStati one proposed search algorithm has not yet been

integrated in the toolchain. Therefore, manual effort on

finding the best-fit Gumbel distribution parameters is nec-

essary. Nevertheless, we would like to separate the scala-

bility of the method from this issue, since the integration

can be managed given a reasonable effort, with the purpose

of toolchain automation.

7 Related Work

This section introduces the work that are not mentioned

previously, but related. Moreover, such work are mainly

falling into three categories, i.e., existing RTA techniques,

simulation optimization, and statistical timing analysis. For

RTA, the current work on execution precedence constraints

of tasks is presented in [6]. The latest work on temporal

dependencies between tasks, in terms of offset, is presented

in [27]. In [32], Samii et al aim to find extreme response

times for distributed systems by optimizing a set of simu-

lation parameters for models containing temporal attributes

and communication. They use a genetic algorithm [14] to

explore combinations of task execution times in order to

maximize end-to-end response time. However, flow of con-

trol within tasks is not considered. The analysis framework

by Kim et al [20] also has a similar basis of temporal task

attributes. In the view of statistical timing analysis, an in-

teresting approach features the use of stochastic task exe-

cution times in RTA of priority-driven soft real-time sys-

tems [19] and schedulability analysis [28]. Nonetheless,

this approach currently does not allow for execution depen-

dencies between tasks in the analysis. Burns [10] presents

another probabilistic framework extending RTA to incorpo-

rate a probabilistic characterization of task arrivals and ex-

ecution times. However, task execution dependencies such

as runtime changeability of task priorities and periods, and

message-passing, are not taken into consideration. Other

related work includes [18] presenting how likely a WCET

estimate generated by EVT will be exceeded in the future.

Here, the search algorithm concerning the best-fit Gumbel

distribution parameters is done in a simple way, by only

doubling the block size.

8 Conclusions and Future Work

This paper has provided a link between traditional

Response-Time Analysis (RTA) engineering and the more

complicated domain of Complex Real-Time Embedded

Systems (CRTES). In effect, we have presented and

proposed an approximate timing analysis framework for

CRTES, namely AESIR-CORES, by using a collection of

novel approximation techniques. Specifically, two methods

are outlined for obtaining a tight interval of the Worst-Case

Response Time (WCRT) of tasks in CRTES, consisting of

lower and upper bounds; the methods are based on simula-

tion optimization and statistical RTA techniques. Finally, in

the evaluation of our technical contributions, we have used

three simulation models describing two fictive but represen-

tative industrial applications. Moreover, we have discussed

110

the validity of results given by AESIR-CORES, in particular

from the perspective of statistically considering the results

as a tighter interval on the WCRT estimate of tasks.

Our future work will investigate ways in which to de-

velop more advanced sampling strategy for covering un-

likely conditions in the statistical RTA of CRTES, and con-

duct more evaluations of AESIR-CORES in industrial cir-

cles. Finally, we will consider using the proposed statistical

RTA for CRTES together with trace-driven techniques in the

context of analyzing real systems execution, as well as val-

idating temporal simulation models extracted from CRTES

by using statistical hypothesis testing.

References

[1] Website of ABB Group. www.abb.com.

[2] Airbus, www.airbus.com/en/, 2009.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and

W. Yi. Times: a tool for schedulability analysis and code

generation of real-time systems. In FORMATS’ 03, number

2791 in LNCS, pages 60–72. Springer-Verlag, 2003.

[4] Website of Arcticus Systems. www.arcticus-systems.se.

[5] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings.

Fixed priority pre-emptive scheduling: an historical per-

spective. Real-Time Systems, 8(2/3):129–154, 1995.

[6] I. Bate and A. Burns. An integrated approach to schedul-

ing in safety-critical embedded control systems. Real-Time
Syst., 25(1):5–37, 2003.

[7] G. Behrmann, A. David, and K. G. Larsen. A tutorial on up-

paal. In M. Bernardo and F. Corradini, editors, SFM-RT’ 04,

number 3185 in LNCS, pages 200–236. Springer–Verlag,

September 2004.

[8] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte. Best-

effort simulation-based timing analysis using hill-climbing

with random restarts. Technical Report ISSN 1404-3041

ISRN MDH-MRTC-236/2009-1-SE, Mälardalen University,

June 2009.

[9] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte.

Simulation-based timing analysis of complex real-time sys-

tems. In RTCSA’ 09, pages 321–328, August 2009.

[10] A. Burns, G. Bernat, and I. Broster. A probabilistic frame-

work for schedulability analysis. In EMSOFT’ 03, pages

1–15, 2003.

[11] D. Decotigny and I. Puaut. ARTISST: an extensible and

modular simulation tool for real-time systems. In ISORC’
02, pages 365–372, 2002.

[12] EasyFit, www.mathwave.com/products/easyfit.html, 2010.

[13] F. Eisenbrand and T. Rothvoβ. Static-priority real-time

scheduling: Response time computation is np-hard. In

RTSS’ 08, pages 397–406, 2008. IEEE Computer Society.

[14] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley Professional,

January 1989.

[15] J. Goossens and C. Hernalsteen. A tool for statistical anal-

ysis of hard real-time scheduling algorithms. In SS’ 98,

page 58, 1998. IEEE Computer Society.

[16] E. Gumbel. Statistics of Extremes. Columbia University

Press, 1958.
[17] J. S. J. Beirlant, Y. Goegebeur and J. Teugels. Statistics of

Extremes: Theory and Applications. Wiley Press, 2004.
[18] S. H. J. Hansen and G. Moreno. Statistical-based wcet esti-

mation and validation. In WCET’ 09, pages 123–133, 2009.
[19] G. A. Kaczynski, L. L. Bello, and T. Nolte. Deriving ex-

act stochastic response times of periodic tasks in hybrid

priority-driven soft real-time systems. In ETFA’ 07, pages

101–110. IEEE Industrial Electronics Society, September

2007.
[20] K. Kim, J. L. Diaz, L. L. Bello, J. M. Lopez, C.-G. Lee, and

S. L. Min. An exact stochastic analysis of priority-driven

periodic real-time systems and its approximations. IEEE
Trans. Comput., 54(11):1460–1466, 2005.

[21] J. Kraft. RTSSim - A Simulation Framework for Complex

Embedded Systems. Technical Report, Mälardalen Univer-

sity, March 2009.
[22] A. M. Law and D. M. Kelton. Simulation Modeling and

Analysis. McGraw-Hill Higher Education, 1999.
[23] C. Liu and J. Layland. Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment. Journal of the
ACM, 20(1):46–61, 1973.

[24] Y. Lu, J. Kraft, T. Nolte, and C. Norström. A statistical

approach to simulation model validation in timing analysis

of complex real-time embedded systems. In WATERS’ 10,

July 2010.
[25] Y. Lu, T. Nolte, I. Bate, and C. Norström. Timing analyzing

for systems with task execution dependencies. In COMP-
SAC’ 10. IEEE, July 2010.

[26] Y. Lu, T. Nolte, J. Kraft, and C. Norström. A statistical

approach to response-time analysis of complex embedded

real-time systems. In RTCSA’ 10, August 2010.
[27] J. Mäki-Turja and M. Nolin. Efficient implementation of

tight response-times for tasks with offsets. Real-Time Sys-
tems Journal, 40(1):77–116, October 2008.

[28] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis

of applications with stochastic task execution times. ACM
Trans. Embed. Comput. Syst., 3(4):706–735, 2004.

[29] D. S. Moore, G. P. Mccabe, and B. A. Craig. Introduction
to the practice of statistics. W. H. Freeman and Company,

New York, NY 10010, sixth edition, 2009.
[30] Rapita systems, www.rapitasystems.com, 2008.
[31] Website of Real-Time Calculus. http://www.mpa.ethz.ch/.
[32] S. Samii, S. Rafiliu, P. Eles, and Z. Peng. A simulation

methodology for worst-case response time estimation of dis-

tributed real-time systems. In DATE’ 08, volume 10-14,

pages 556–561. IEEE, March 2008.
[33] F. Tip. A survey of program slicing techniques. Journal of

programming languages, 3:121–189, 1995.
[34] Uppaal, www.uppaal.com, 2009.
[35] R. Wilhelm, J. Engblom, A. Ermedahl, . Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mi-

tra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and

P. Stenström. The worst-case execution-time problem—

overview of methods and survey of tools. Trans. on Em-
bedded Computing Sys., 7(3):1–53, 2008.

111

