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Abstract- Nowadays operating systems are inseparable part of 
computer systems. Real-time operating systems (RTOS) are a 
special kind of operating systems that their main goal is to 
operate correctly and provide correct and valid results in a 
bounded and predetermined time. RTOSs are widely used in 
safety-critical domains. In these domains all the system’s 
requirements should be met and a catastrophe occurs if the 
system fails. Hence, fault tolerance is an essential requirement of 
RTOSs employed in safety-critical domains. In the past decades, 
several fault tolerance techniques have been proposed to protect 
different parts of an RTOS against faults and errors. In this 
paper, after presenting primary concepts of RTOSs, some 
features of these operating systems are reviewed and then a 
number of fault tolerance techniques that can be applied to each 
feature and their impact on system reliability is investigated. The 
main contribution of this work is to review and categorize 
several fault tolerance techniques applicable to RTOSs based on 
the operating system’s features. 
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I. INTRODUCTION 

“An operating system acts as an intermediary between the 
user of a computer and the computer hardware. The purpose 
of an operating system is to provide an environment in which 
the user can execute programs in a convenient and efficient 
manner”[1] . In fact the main role of an operating system is to 
employ some methods to manage a computer system, such as 
scheduling processor(s), process and thread management, 
inter-process communication, memory management, I/O 
management, concurrency control, critical sections, 
synchronization, interrupt and event handling, controlling 
timers and clocks and etc. which are known as operating 
systems’ features. 

In the non-real-time world, the value domain is the sole 
dimension of computations and correctness of results is the 
sufficient condition to consider results as valid results. The 
inclusion of the time domain in real-time systems adds a new 
dimension to the computations. Real-time applications in 
addition to correct results, have to produce valid results too. 
In these applications, correctness is achieved when correct 
results are produced and validness is achieved when correct 
results are produced on-time, in a bounded and predetermined 
time.  

Time-sharing operating systems provide an environment 
to run applications and produce correct results by utilizing 
resources fairly and efficiently. A typical RTOS monitors and 
controls some external processes/objects, and it should 
become aware of changes in the external process/object and 
respond to them in a timely manner. In order to meet such 
timing constraints, RTOSs should provide timeliness and 
predictability by considering real-time requirements while 
designing operating system’s features as mentioned before. In 
fact, RTOSs should provide both predictability and suitable 
feature set for application development. 

A system is called safety-critical if the occurrence of a 
failure in meeting system requirements causes to catastrophic 
effects. In addition to meeting predefined requirements, these 
systems should satisfy real-time constraints if they want to 
perform their intended functions effectively [2]. Hence 
RTOSs are widely used in safety-critical systems. Military 
and civilian aircrafts, nuclear plants, and medical devices are 
examples of safety-critical systems. 

In safety-critical systems, in addition to hardware, 
applications and the host operating system ought to be fault-
tolerant and their operations should not be failed. In other 
words, the operating systems employed in safety-critical 
domains should produce correct and valid results in the 
presence or in the absence of faults. Such feature is known as 
reliable computing [3]. Requirement of this reliability is to 
implement fault tolerance techniques on the operating system 
[4]. In spite of the efforts made to prevent and remove faults 
during development phases of safety-critical systems, 
software faults aren’t eliminated yet completely and also the 
system hardware may still fail during operation because of 
internal or external faults. Hence, implementing fault 
tolerance techniques on an RTOS to tolerate faults and errors 
in a safety-critical system is crucial. 

In this paper first some basic concepts of RTOSs are 
presented and then a number of the most important features of 
RTOSs are reviewed. Afterward, some fault tolerance 
techniques applicable to the mentioned features along with 
their impact on system reliability is investigated. The 
investigated techniques include both hardware-based and 
software-based techniques which are employed to tolerate 
transient and permanent faults. 

The organization of this paper is as follows. Section 2 
presents some basic concepts and different types of RTOSs. 
Section 3 investigates a number of RTOSs’ features along 
with some fault tolerance techniques that can be applied to 
each feature. Finally Section 4 concludes the paper.  

II. BASIC CONCEPTS 

In this section first some definitions of RTOSs are presented 
and then three kinds of these operating systems along with 
their primary requirements are discussed. 

A) Real-Time Operating System (RTOS) 
“Real-time operating systems emphasize predictability, 

efficiency and include features to support timing constraints” 
[5]. In RTOSs all tasks should be released on-time (on release 
time) and also should be completed before particular times 
called deadline. A real-time task fails if it couldn’t meet these 
timing constraints [6]. In other words, violating timing 
constraints in RTOSs leads to system failure. In order to 
analyze RTOSs precisely and guaranty system safety, their 
internal parts should be defined exactly and also their 
behavior should be predictable. 
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For example XOberon is a small RTOS which provides 
predictability and safety together [7]. 

B) Soft, Firm and Hard Deadlines 
Deadline is an important property concerned to tasks in 

RTOSs and is the instant when the results should be produced 
before it. If a result has utility even after the deadline is 
passed, the deadline is classified as soft, otherwise it is firm. If 
severe consequences could result if a firm deadline is missed, 
the deadline is called hard [8]. In other words violating firm 
deadlines results in failure and violating hard deadlines results 
in catastrophe. 

Different requirements of hard and soft RTOSs have 
important effects on the system design. If the system has hard 
real-time constraints, the designer has to spend a lot of time to 
guaranty system safety and predictability and also guaranty 
that all timing constraints (deadlines) are met. If the system 
timing requirements are soft, a system that has best effort to 
meeting timing constraints and also has minimum quality loss 
while violating timing constraints should be designed. 
Portable media players and online video conferences are 
examples of soft real-time systems. Examples of hard real-
time systems include drive-by-wire systems in automobiles, 
fly-by-wire systems in avionics, missile control systems and 
autonomous space systems. 

Hard real-time operating systems focus on timing 
constraints as the most important issue in the system design 
and don’t pay attention to fault tolerance as much as timing 
constraints. Since occurrence of failure in the RTOS either 
would causes to produce incorrect results because of wrong 
computations or would causes to produce invalid results 
because of missing deadlines, implementing fault tolerance 
techniques should be considered in the system design. In this 
paper several primary features of RTOSs along with a number 
of fault tolerance techniques that could be applied to each 
feature are presented. 

III.  RTOSS’ FEATURES  AND FAULT TOLERANCE TECHNIQUES 

In the previous sections, the importance of implementing fault 
tolerance techniques on RTOSs, especially those that are 
employed in safety-critical domains was discussed. In this 
section, a number of RTOSs’ features along with some fault 
tolerance techniques that could be applied to each feature are 
presented. 

A) Memory Management 
In order to protect operating systems’ components prone to 
failure, fault tolerance begins with memory protection. Sine 
programs behavior depends to data in memory, the existence 
of faults in these data would cause to program error and 
failure. 

Since the flexibility and functionality of applications are 
being increased and also they need dynamic access to 
memories, dynamic storage allocation (DSA) algorithms play 
an important role in the operating systems. In addition to 
flexibility, real-time applications require predictability too, 
i.e. memory should be managed dynamically in a bounded 
and predetermined time. The use of DSA leads to uncertainty 
in RTOSs, because of the unconstrained response time of 
DSA algorithms and the fragmentation problem. In [9] a DSA 
algorithm called TLSF has been developed to be employed in 
RTOSs. TLSF provides explicit allocation and de-allocation 
of memory blocks with a bounded and acceptable timing 
behavior Ɵ(1). Using bitmaps and the aid bitmaps is another 
technique to make allocating and de-allocating memory safely 
and reliably. This technique was introduced by [10] to be 
employed in RTEMS RTOS.  

Operating systems use memory management units (MMU) 
to run tasks in their protected memory address. Nevertheless 
some RTOSs disable MMU and don’t use it [9]. OSEK-VDX, 
µITRON and RTAI are examples of such RTOSs that disable 
MMU [ 11]. By disabling MMU the operating system and all 
processes are run in the same address space and each task has 
access to operating system’s and other processes’ codes and 
data. Hence a bad written code or a bug in a code, for example 
in managing pointers, would cause to failure in the kernel, 
resulting in the operating system crash. Without memory 
address protection, also some bugs would cause to special 
corruptions that are difficult to detect. For example in 
PowerPC processors, RAM is often located at physical 
address 0, so even a NULL pointer dereference may not be 
detected [12]. In order to prevent such failures, RTOSs must 
use MMU. By enabling MMU, whenever the stack of a task 
overflows, an overflow exception is raised and the operating 
system stops the task execution. Instead of stopping the task 
execution, the operating system can suspend the task and 
solve the problem of stack limitation by migrating the 
overflowed task to a new memory address space with a larger 
capacity, by regarding reserved and unreserved spaces and 
then re-executing the suspended task. The RTOS designer 
should take the migration time into account when analyzing 
system. 

Redundancy is one of the most important techniques in 
fault tolerance [3]. This technique can be applied to memory 
in a way that when a process is loaded, the operating system 
duplicates its data and states in more than one place/memory 
(three places/memories to imitate TMR). Whenever a task’s 
data/states are changed, these changes are applied to all 
replicas. Whenever the task wants to read data from memory, 
a voting is done on replicas to determine if data are changed 
inadvertently or are corrupted (for any reason, such as heavy 
ion radiation) and also to determine which data is correct and 
could be used. Memory redundancy could be supported in 
both software level and hardware level [13]. 

In addition to redundancy, a fault-tolerant memory 
management system could be constructed by four concurrent 
mechanisms as: a first recording mechanism that is activated 
to record memory update (write) events, a second recording 
mechanism that records at least a limited number of memory 
update events, an activator to activate the first recording 
mechanism in the event of a fault event and a memory 
reintegration mechanism that is utilized to data recovery by 
reintegrating some parts of memory [14]. In this memory 
management system, error recovery can be done rapidly and 
efficiently by reintegrating memory pages identified in the 
first and second recording mechanisms by considering 
memory updates log. 

Error-correcting code memory (ECC memory) is an 
instrument to improve operating systems reliability from the 
memory protection perspective. ECC memory is a type of 
computer data storage that has ability to detect and correct 
many kinds of internal data corruption. This memory is 
resistant to single-bit errors: the data that is read from each 
word is always the same as the data that has been written to it, 
even if a single bit has been flipped to the wrong state [15]. 
Some non-ECC memories with parity support allows errors to 
be detected, but not corrected. The reliability of a fault-
tolerant RTOS would be improved by employing this kind of 
memory. In contrast to these hardware-based techniques, 
software-based memory error detection and correction 
methods such as [16] would provide both reliability and 
flexibility. 

  



B) Kernel Considerations 
Error detection could be done by hardware or software 
methods, such as “Transient fault detection via simultaneous 
multithreading” [17] which is an example of software 
methods. The kernel of a fault-tolerant RTOS should provide 
a mechanism that whenever an error occurs, a notification is 
sent to an agent that has duty to perform some types of error 
recovery actions. This agent is called supervisor and must be 
run in an isolated address space, because data in the address 
space containing faulty task may be corrupted. For example in 
Nooks which is a reliability subsystem, Nooks Recovery 
Manager is an agent for error recovery [18]. VxWorks RTOS 
employs a tree structure to manage error notifications 
produced by OS’s components by higher-level components in 
the hierarchical tree [19]. The supervisor would recover the 
faulty task by using backward- or forward- recovery or by re-
starting it from the beginning. The selected recovery strategy 
should be considered and defined in the system analysis. 

The kernel also has to provide an event logging 
mechanism to determine the root of an explicit error by 
analyzing everything that has been happened in the system, 
such as kernel service calls, task context switches and 
interrupts, prior to the fault [12]. To detect implicit errors, the 
kernel should provide a software watchdog capability to be 
notified whenever a task is not run in its expected code 
sequence or time slices. This mechanism also is useful in the 
control flow checking technique [20]. For example QNX 
RTOS uses Critical Process Monitor (CPM) module and 
VxWorks RTOS uses Failover Management System (FMS) 
module to detect malfunctioning system’s components. 

As a technique for error prevention, fault-tolerant RTOSs 
should protect themselves against improper invoking system 
calls and passing invalid parameters. For example some 
RTOSs send an actual pointer of kernel objects (e.g. 
semaphores) to tasks and then dereference this pointer when 
changed and passed into other kernel service calls made by 
the tasks. In this sequence if a task after receiving a pointer 
fails, this failure would cause to pointer corruption and as a 
result passing the corrupted pointer to the kernel and using it 
by the RTOS may leads to the RTOS crash [12]. To make this 
kind of failures impossible, RTOSs’ kernel must validate the 
parameters sent to all service calls. This validation could be 
done by employing descriptors for application’s references to 
kernel objects or by using n-copy programming technique [3]. 

Availability is an important part of dependable computing 
which can be achieved by providing replications of operating 
nodes. These replicas are operated concurrently and their 
internal data and states are synchronous and equivalent. OSs 
would detect nodes failure by sending and receiving heartbeat 
message to and from active nodes via reliable channels. When 
the heartbeat message fails to arrive, the active node is 
discarded and one of the redundant nodes is tagged as active 
node and then it can be taken into processing. Figure 1 depicts 
this scenario. In RTOSs it’s preferable to use Active 
Replication instead of Passive Replication when using 
redundancy techniques [8]. 

Fault-tolerant RTOS also should prevent the spread of 
faults to the kernel. This goal can be achieved by reducing the 
size of the kernel by keeping fundamental services inside the 
kernel and excluding others, especially those that are prone to 
errors, such as drivers [21]. VxWorks RTOS provides such 
isolation by inserting protection boundaries between different 
components [19]. 

 
Figure 1 - Redundancy in Operating Nodes 

C) Process and Thread Management 
Similar to time-sharing OSs, process definition and activation 
is one of the most important roles of RTOSs. But, there are 
some differences between these two kinds of OS in managing 
processes because of timing constraints in RTOSs. Time-
sharing OSs do their best effort to activate and release tasks 
timely. But in contrast, RTOSs should activate a process once 
and release it once or periodically and also guaranty each 
release is started on-time and is finished before its deadline. In 
order to adhere these timing constraints, an RTOS must 
guaranty the availability of the processes’ required resources.  

If tasks’ behavior is not monitored and controlled by the 
RTOS, a task may, as a result of malicious or careless 
execution of another task, cannot use processor or other 
system resources. When a task creates a new task or another 
kernel object, the kernel allocates some system resource, 
especially a chunk of memory and CPU time to this new task. 
A bug or a fault in the application would cause a situation 
where this task creates too many other tasks or kernel objects 
and exhausts system resources. As a result other tasks may 
fail because of their inability in acquiring required resources 
and resulting in deadline miss. In a fault-tolerant RTOS, a 
mechanism must exist to prevent such failures caused by 
resources shortage. One possible solution is to determine the 
maximum required resources, especially memory space and 
CPU time by processes before the execution, so the RTOS can 
reserve required resources for each process and as result none 
of processes are stopped because of resources shortage. In this 
method none of processes can acquire more than reserved 
resources and if they want to use more than their quota, this 
act is regarded as an error and should be discarded. Since in 
systems with static tasks, the attributes of all tasks are known 
in advance, a more relax approach can be chosen in resource 
allocation in a way that the RTOS allocates resources to each 
process from its reserved resources and from the remaining 
resources that are free and also aren’t reserved by other 
processes. For example a framework called RRES has been 
introduced by [22] for resource reservation that with a little 
coding improves system reliability significantly.  

In fixed-priority systems, tasks’ priority would be changed 
incorrectly because of fault occurrence in process table. A 
possible technique to solve this problem is to acquaint process 
manager with the importance of the tasks (e.g. hard RT task 
versus soft RT task or critical task versus normal tasks) by 
using partitions in the memory. The concept of partition 
process management is a major part of ARINC Specification 
653, an Avionics Application Software Standard Interface 
[23]. The ARINC 653 partition process manager runs 
partitions, or address spaces, according to a timeline provided 
by the system designer. Each address space is placed into one 



or more windows of execution in a hyper period. During each 
window, all tasks in other address spaces cannot be run, and 
only tasks within the currently active address space are 
selected by process manager to be run. When the hard/critical 
processes’ window is active, its processing resource is 
guaranteed and soft/normal processes cannot be run and take 
away processing time from the hard/critical process. An 
implementation of ARINC 653 in RTEMS RTOS has been 
addressed in [24]. 

D) Scheduling 
Scheduler is the heart of an RTOS. In fact in order to guaranty 
system safety, the scheduler by considering tasks attributes 
have to determine what task should be released and should be 
preempted at what times. There are different scheduling 
algorithms in RTOSs. The most important of them are as 
follows [25]:  RM: Rate Monotonic (RM) is a fixed-priority scheduling 

algorithm which tasks priority is defined in advance and 
tasks with smaller period have higher priority.  EDF: Earliest Deadline First (EDF) is a dynamic 
scheduling algorithm which tasks priority is defined 
dynamically in run-time in a way that tasks with closer 
deadline have higher priority.  LLS: similar to EDF, Least Laxity First (LLF) is a 
dynamic scheduling algorithm. It assigns priority based 
on the slack time of a process. Slack time is the amount 
of time left after a job if the job was started now. In LLS 
processes with smaller slack time have higher priority 
[26]. 

Scheduler as the most important task of an RTOS has to 
be protected against failures. If the scheduler fails, other 
system tasks are not scheduled and released correctly and as 
result the system crashes. If the scheduler is fixed-priority, its 
misbehavior can be detected by using a pre-constructed static 
scheduling table and comparing the output of the scheduler 
with this table. This table has to be constructed for a hyper 
period. N-copy programming (NCP) is another fault tolerance 
technique that can be employed for both fixed-priority and 
dynamic scheduling algorithms. With this technique, n copies 
of a scheduler (n ≥ 3) are run concurrently in different address 
spaces. Then the right scheduling can be done by taking votes 
of these replicas. 

In addition to be fault-tolerant, the scheduler should take 
the required time to handle faulty tasks into its time analyses. 
As it was mentioned before, a faulty task can be re-executed 
from the beginning or can be restored from the last checkpoint 
prior to fault. This recovery and re-executing of faulty tasks, 
wastes time and could violate timing constraints. In order to 
guaranty system safety in the presence of failures, fault-
tolerant RTOSs must consider these wasting times in system 
analysis and scheduler design. In system analysis it should be 
explicitly determined for each task at-most how many re-
execution is possible, if task recovery is done by re-starting it 
from the beginning, and in situation of using backward 
recovery as fault tolerance scheme, by having fault rate, error 
detection latency and required time for saving and restoring 
checkpoints data, at-most how many failures could be 
recovered and also how many checkpoints has to be taken to 
do that, [27, 28]. This analysis can be done statically in 
advance or dynamically in run-time. RTOS more tend to use 
g-state instead of checkpoint [8]. 

In addition to recovering tasks from errors, fault-tolerant 
RTOSs should be able to recover processors from transient 
and permanent faults too. If a processor fails temporarily and 
its internal states and assigned tasks are not recovered, this 
failure leads to violate timing constraints and system crash. 

By sending heartbeat messages, a processor failure could be 
detected and by having checkpoints of the entire processor 
states and the assigned tasks, in disks, the faulty processor 
would be recovered from transient faults correctly [29]. In 
situation of permanent faults, after recovering faulty processor 
states, task migration must be done to run recovered tasks on 
another hale processor. Also tolerating more than one faulty 
processor preferably must be taken into account while system 
design [30]. Since disks have low speed, using diskless 
checkpointing schemas and storing checkpoints data on other 
processors’ memory would help to decrease waste times [31].  

A research on implementing a fault tolerance scheduler in 
RTEMS RTOS has been presented in [32]. In addition to fault 
tolerance, energy management and dynamic voltage scaling 
issues could be considered in time analysis especially for 
embedded systems [33]. 

E) Communications 
In all operating systems, processes need to communicate with 
each other through some mechanisms, such as message 
passing or memory sharing. Message passing methods causes 
to uncertainty in the system timing, because of systems 
architecture features, i.e. it’s impossible to determine exactly 
how long a message passing takes. In an RTOS the maximum 
latency of message passing should be determined. To achieve 
such determinacy some token based techniques such as Ring 
and TDMA can be employed [34]. Moreover if the reliability 
of communication channels is not 100%, some techniques 
such as dynamic time redundancy in the lower levels of the 
communication protocols or using QoS services could be 
employed to increase the communication channels reliability 
significantly [34]. 

In addition to physical and dynamic time redundancy, 
there are other approaches and methodologies to increase the 
reliability of inter-processes communications. For example in 
[35] a facility has been introduced that provides supports for 
fault-tolerant process groups by a family of reliable multicast 
protocols that can be employed in fault-tolerant RTOSs. In 
this facility a protocol that guaranties delivery orderings has 
been introduced which ensures the processes belonging to a 
fault-tolerant process group will see consistent orderings of 
events that affect the system reliability including process 
failures, recoveries, migration, and dynamic changes to group 
properties like member rankings. This is done by using some 
broadcast primitives, such as: group broadcast (GBCAST), 
atomic broadcast (ABCAST) and causal broadcast 
(CBCAST). 

Similar to inter-process communications, inter-processors 
communications should be reliable too. In [36] a subsystem 
called Transis has been introduced that by using reliable 
multicast message services, supports reliable communication 
among processors. VxFusion is a run-time extension to 
support inter-processor communication that is employed by 
VxWorks RTOS [19]. In addition to the mentioned 
mechanisms, there are different channel models that by using 
appropriate encoders and decoders, guaranty cannels 
reliability [37]. In order to select a model for a 
communication, several factors must be considered. These 
factors include the physical and statistical nature of the 
channel disturbances, the information available to the 
transmitter and receiver, the presence of any feedback link 
from the receiver to the transmitter, and the availability of the 
transmitter and receiver of a shared source (independent of the 
channel disturbances) [37]. 

RPC is a remote communication method which in order to 
meet requirements of fault-tolerant RTOSs, should be done in 
a reliable manner. Sun Batching RPC is a variation of RPC 



that performs reliable and dependable telecommunications. It 
typically uses reliable byte stream protocols (like TCP) for its 
transport [38] which in addition to guaranty reliable 
communication, guaranties at-most-once semantics and 
ordered delivery of messages. These features qualify Sun 
Batching RPC to be employed by fault-tolerant RTOSs. 

The implementation of a fault-tolerant RPC based grid 
applications was discussed in [39]. 

F) I/O Management 
RTOSs should manage the order of I/O accesses in a way that 
interferences are prevented and also all tasks (especially hard 
real-time tasks) could meet their timing constraints. In 
addition to considering timing constraints, fault-tolerance 
RTOSs must provide some fault tolerance techniques to 
tolerate faulty I/O devices. There are many fault tolerance 
techniques for I/O devices that are concerned to the target 
device. Replication is the most common technique that can be 
employed by duplicating I/O devices. The main I/O device is 
called active (primary) and the replicated ones are called 
backup. Once an active device fails and its failure is detected 
by heartbeat messages, one of the backup devices must 
perform the duties of active device from the fault point. Such 
duplications via PCIs have been investigated in [40]. In order 
to mitigate wasting times, it’s desired to design backups as 
active redundancy. For example RAID is an example of 
active redundancy in secondary storage devices [41]. 

Robustness is an important system quality feature which is 
defined by the IEEE standard glossary of software 
engineering terminology  as: “The degree to which a system 
or component can function correctly in the presence of invalid 
inputs or stressful environmental conditions” [42]. Avizienis 
et al. also define robustness as “dependability with respect to 
erroneous input” [43]. When the input data are missed or 
incorrect, robustness techniques try to fix or calculate the 
exact or approximate value of the input data. One technique in 
robustness is to request correct data from the sender or user by 
considering correct data format which has been defined in a 
predefined data pattern table. Another technique is to use last 
correct data instead of the missed/incorrect input data or to 
approximate correct value of the input data by applying some 
machine learning algorithms to previous input data in similar 
situations. Such techniques don’t guaranty a correct behavior 
in the system, but they would alleviate the side effects of data 
loss. 

The robustness of an OS would be measured by the ability 
of its APIs in handling exceptional input parameters which 
consists of detecting invalid parameters and tolerating them 
[44]. Experiments on 233 functions of 13 POSIX OSs reveals 
a 6% to 19% robustness failure rate for single-OS tests that by 
employing N-version technique this rate was reduced to 3.8%. 

The desired robustness model should be selected while the 
system development. Based on study in [45], almost 47% of 
researches consider robustness in verification & validation 
phase of the system development and only 35% of researches 
consider it in the system design phase. Other researches do it 
in different phases. 

G) Interrupt Handling 
OSs have several types of interrupts with different priorities 
and execution times. Interrupts with higher priority need a 
faster response time. When internal data structures are being 
manipulated by and during service calls, other interrupts 
especially timer’s scheduler should be disabled because 
otherwise a related service call may be executed and cause an 
access to inconsistent data. In fact in order to handle lower 
priority interrupts reliably, the higher priority interrupts are 

discarded or hindered unboundedly which cause to 
indeterminacy in timing system calls that is undesired for 
RTOSs [12]. A static analysis approach to obtain the WCET 
of system calls in RTEMS RTOS has been introduced in [46]. 

Fault-tolerant RTOSs should guaranty both predictability 
and reliability while handling interrupts. To achieve these 
goals, all kernel service calls should be revertible, so that the 
RTOS can preempt the service call, restore carried out 
operations and restart it later. Therefore the time to get back 
to the scheduler may take by a few instructions and the higher 
priority interrupts are always executed with an absolute 
minimum latency. This method improves system 
predictability and reliability in terms of avoidance of access to 
inconsistent data. 

H) Programming Languages 
Since fault-tolerant RTOSs have special requirements, in 
order to meet them special programming languages should be 
employed as well. Some features of traditional programming 
languages are prone to problems that using them in fault-
tolerant RTOSs is discouraged, such as: pointers, dynamic 
memory allocation and de-allocation, unstructured 
programming, multiple entry points and exit points, variant 
data, implicit declaration and implicit initialization, 
procedural parameters, recursion, concurrency and race, and 
interrupts aware programming [47]. In addition to considering 
these programming features, real-time applications has to 
guaranty correct responses within strict timing constraints. In 
other words the maximum required time to respond to a 
request or to complete a work by a process should be 
accountable. To attain this time, the maximum time that each 
part of a program takes should be determined explicitly. 
Hence for example in the real-time programming, variable 
loops with undetermined or unbounded iteration are not 
acceptable.  

In general, real-time programming languages are 
employed in three real-time programming models as 
synchronous, scheduled, and timed that differ in time they 
take to complete and in their compiler to meet corresponding 
requirements [48]. In addition to considering these models, 
programming languages employed in fault-tolerant RTOSs 
should support some error detection and error correction 
techniques. Ada is one of the most widely used programming 
language in fault-tolerant real-time domains because of its 
major strengths, such as: the well-defined language semantics, 
the strong type checking, structuring mechanisms like 
packages and supporting the development of code analysis, 
verification and testing tools [49]. Euclid is another fault-
tolerant real-time programming language that employs 
exception handlers and import/export lists to provide 
comprehensive error detection, isolation, and recovery. The 
philosophy of this language is that every exception detectable 
by the hardware or the software should have an exception 
handler associated with it. Moreover, Euclid forces everything 
in the language to be time- and space-bounded [50]. Using 
such programming languages would cause to improve the 
system reliability [51]. 

IV.  CONCLUSION 

Real-time operating systems are widely used in safety-critical 
domains to interact with controlled objects in the external 
environment and should provide correct and valid results in a 
bounded and predetermined time. In these domains, the costs 
of a system failure leads to catastrophe and exceeds the initial 
investment in the computer and in the controlled object. To 
prevent such failures, system designer must guaranty that the 
system can meet requirements as specified in the domains of 



both value and time during all anticipated operational 
situations, even when an error occurs. To attain this goal, the 
employed RTOS should be able to tolerate faults and errors 
appear in the system. 

Similar to traditional operating systems, RTOSs have 
some primitive features that are essential for a basic RTOSs to 
meet value and time domains requirements. Implementing 
fault tolerance techniques on these features would cause to 
improve the reliability of the RTOS and the whole system as 
well. 

In this paper first some definitions of RTOSs along with 
their requirements was reviewed followed by investigating 
some primitive features of an RTOS such as Memory 
Management, Kernel Considerations, Process and Thread 
Management, Communications, I/O Management, Interrupt 
Handling and Programming Languages. Then a number of 
fault tolerance techniques that could be applied to each 
mentioned features were presented. This paper in fact 
categorizes several fault tolerance techniques applicable to 
RTOSs based on some primitive features of operating 
systems. Some techniques could only deal with transient 
faults and some could tolerate both transient and permanent 
faults. Some techniques are only software-based and some 
rely on the involved hardware. In order to have a fault-tolerant 
RTOS, the system designer has to consider the requirements 
of the intended fault tolerance techniques in the requirement 
analysis and system design phases while developing system. 
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