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Abstract- Nowadays operating systems are inseparable part of
computer systems. Real-time operating systems (RTOS) are a
special kind of operating systems that their main goal is to
operate correctly and provide correct and valid results in a
bounded and predetermined time. RTOSs are widely used in
safety-critical domains. In these domains all the system’s
requirements should be met and a catastrophe occurs if the
system fails. Hence, fault tolerance is an essential requirement of
RTOSs employed in safety-critical domains. In the past decades,
several fault tolerance techniques have been proposed to protect
different parts of an RTOS against faults and errors. In this
paper, after presenting primary concepts of RTOSs, some
features of these operating systems are reviewed and then a
number of fault tolerance techniques that can be applied to each
feature and their impact on system reliability isinvestigated. The
main contribution of this work is to review and categorize
several fault tolerance techniques applicable to RTOSs based on
the operating system’s features.
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|. INTRODUCTION

“An operating system acts as an intermediary between thénternal or external faults.

y_sedaghat@um.ac.ir™

A system is called safety-critical if the occurrenceaof
failure in meeting system requirements causes to catastrophi
effects In addition to meeting predefined requirements, these
systems should satisfy real-time constraints if they want to
perform their intended functions effectively [2]. Hence
RTOSs are widely used in safety-critical systems. Military
and civilian aircrafts, nuclear plants, and medical devices are
examples of safety-critical systems.

In safety-critical systemsin addition to hardware,
applications and the host operating system ougletfault-
tolerant and their operations should not be failéd other
words, the operating systems employed in safety-critical
domains should produce correct and valid results in the
presence or in the absence of faults. Such feature is known as
reliable computing [3] Requirement of this reliability is to
implement fault tolerance techniques the operating systn
[4]. In spite of the efforts made to prevent and remove faults
during development phases of safety-critical systems,
software faultsaren’t eliminated yet completely and also the
system hardware may still fail during operation because of
Hence, implementing fault

user of a computer and the computer hardware. The purpostlerarce techniqguesn an RTOS to tolerate faults and errors
of an operating system is to provide an environment in whichin a safety-critical system is crucial.

the user can execute programs in a convenient and efficient

In this paper first some basic concepts RTOSs are

manner1]. In fact the main role of an operating system is to presented and then a number of the most important features of
employ some methods manage a computer system, such asRTOSs are reviewed. Afterward, some fault tolerance
scheduling processor(s), process and thread managemerechniques applicabléo the mentioned features along with

inter-process communication,
management, concurrency

memory management,
control, critical

I/Otheir impact on system reliabilityis investigated. The
sections investigated techniques include both hardware-based and

synchronization, interrupt and event handling, controlling software-based techniques which are employed to tolerate
timers and clocks and etc. which are known as operatingransient and permanent faults.

systems’ features.

The organization of ih paper is as follows. Section 2

In the non-real-time world, the value domain is the sole presents some basic concepts and different types of RTOSs
dimension of computations and correctness of results is theésection 3 investigates a number of REO%atures along
sufficient condition to consider results as valid results. Thewith some fault tolerance techniques that can be applied to
inclusion of the time domain in real-time systems adds a neweach feature. Finally Section 4 concludes the paper.

dimension to the computation®keal-time applications in

Il. BASIC CONCEPTS

addition to correct results, have to produce valid results too.

In these applications, correctness is achieved when corredn this section first some definitions of RTOSs are presented
results are produced and validness is achieved when corre@nd then three kinds of these operating systems along with
results are producesh-time, in a bounded and predetermined their primary requirements are discussed.

time.

Time-sharing operating systems provide an environment
to run applications and produce correct results by utilizing
resources fairly and efficiently. A typical RTOS monitors and
controls some external processes/objects, and it shoul
become aware of changes in the external process/object an
respond to them in a timely manner. In order to meet sucq
timing constraints, RTOSs should provide timeliness and
predictability by considering real-time requirements while
designing operating systés features as mentioned before. In
fact, RTOSs should provide both predictability and suitable

feature set for application development.

A) Real-Time Operating System (RTOS)

“Real-time operating systems emphasize predictability,
efficiency and include features to support timing constraints”
(iJne) and also should be completed before particularstime
called deadlineA real-time task fails ift couldn’t meet these
iming constraints [6]. In other words, violadintiming
constrains in RTOSs leads to system failure. In order to
analyze RTOSs precisely and guaranty system satfedyr
internal parts should be defined exactly and also their
behavior should be predictable.

#5]. In RTOSs all tasks should be relechgmtime (on release



For example XOberon is a small RTOS which provides  Operating systems use memory management units (MMU)
predictability and safety together [7]. to run tasks in their protected memory address. Nevertheless
B) Soft, Firm and Hard Deadlines some RTOSs disable MMkhd don’t use it [9]. OSEK-VDX_,

Y ; . LITRON and RTAI are examples of such RTOSs that disable

Deadline is an important property concerned to tasks in

. . MU [11]. By disabling MMU the operating system and all
RTOSs.and is the instant whgn the results should be produ_ce rocesses are run in the same address space and each task ha
before it. If a result has utility even after the deadline is

o - R ccess to operating system’s and other processes’ codes and
passed, the deadline is classified as soft, otherwise it is firm. If. p g 5y P

severe consequences could result if a firm deadline is missecfjata' Hence a bad written code or a buggode, for example
the deadline lcs]z called hard [8]. In other words violating firm fn managing pointers, would cause to failure in the kernel,
: 9 resulting in the operating system crash. Without memory

;:ineg:tlglst?[rsogehsglts in failure and violating hard deadlines resunsZ';\ddress protection, also some bugs would cause to special

) . corruptions that are difficult to detect. For example in
Different requirements of hard and soft RTOBave PowerPC processors, RAM is often located at physical

impor}ant effects.on the system design. If the system ha_s hargddress 0, so even a NULL pointer dereference may not be
real-time constraints, the designer _has to spend a lot of time t%etecteaI,Z]. In order to prevent such failures, RTOSs must
guaranty system safety and predictability and also guaran%se MMU. By enabling MMU, whenever the étack of a task

:rrﬁitnalIr:n:;;:grﬁg:tsstr::ztsségegdgn:tse)ma;ﬁartnﬁgslfbghset :%lfitr?r?é)verflows an overflow exception is raised and the operating
meet?n tci]min constraints ar,1d aIZo has minimum qualit Ioss:SyStem stops the task execution. Instead of stopping the task

€ling timing const ) quaiity execution, the operating system can suspend the task and
while violating timing constraints should be designed.

Portable media players and online video conferences areSOIVe the problem of stack limitation by migrating the
examples of softpregl-time systems. Examples of hard real> verflowed task to a new memory address spaceanfihger
i P : neé Sys : P . capacity, by regarding reserved and unreserved spaces and
time systems include driviey-wire systems in automobiles,

fly-by-wire systems in avionics, missile control systems andthen re-executing the suspended task. The RTOS designer
y-by Y ' Y should take the migration time into account when analyzing
autonomous space systems.

Hard real-time operating systems focus on timing system.

. . . . X Redundancy is one of the most important techniques in
constraints as the most important issue in the system des'gflc\ult tolerance [3]. This technique can be applied to memory
and don’t pay attention to fault tolerance as much as timing '

constraints. Since occurrence of failure in the RTOS either ' & Wa¥ that when a process is loaded, the operating system

. duplicates its data and states in more than one place/memory
would causes to produce incorrect results because of Wron%hree places/memories to imitate TMR). Whenever a’task

computations or would causes to produce invalid resunsdata/states are changed, these changes are applied
because of missing deadlines, implementing fault tolerance ged, 9

techniques should be considered in the system ddsidhis replic_as. _Whenever the 'gask wants to r_ead_data from memory

paper several primary features of RTOSs along with a numbera voting is done on replicas to determine if data are changed

of fault tolerance techniques that could be applied to eaCHnadver_teriy or are corrupted (for_ any reason, S”Ch as heavy

feature are presented lon radiation) and also to determine which data is correct and
' could be used. Memory redundancy could be supported in

Ill. RTOSS’ FEATURES AND FAULT TOLERANCE TECHNIQUES both software level and hardware levéf].

In addition to redundancy, a fault-tolerant memory
management system could be construdtgdour concurrent

mechanisms as: a first recording mechanism ithattivated

In the previous sections, the importance of implementing fault
tolerance techniquesn RTOSs, especially those that are

employed in safety-critical domains was discussed. In thisto record memory update (write) events, a second recording

section, a numper of RTOSteatures alqng with some fault mechanism that records at least a limited number of memory
tolerance techniques that could be applied to each feature ar@pdate events, an activator to activate the first recording

presented. mechanism in the event of a fault event and a memory
A) Memory Management reintegration mechanism that is utilized to data recovery by
In order to protect operating systems’ components prone to reintegrating some parts of memor¥4]. In this memory

failure, fault tolerance begins with memory protection. Sine management system, error recovery can be done rapidly and
programs behavior depends to data in memory, the existencefficiently by reintegrating memory pages identified in the
of faults in these data would cause to program error andirst and second recording mechanisms by considering
failure. memory updates log.

Since the flexibility and functionality of applications are Error-correcting code memory (ECC memory) is an
being increased and also they need dynamic access tstrument to improve operating systems reliability from the
memories, dynamic storage allocation (DSA) algorithms playmemory protection perspective. ECC memory is a type of
an important role in the operating systems. In addition tocomputer data storage that has ability to detect and correct
flexibility, real-time applications require predictability too, many kinds of internal data corruption. This memasy
i.e. memory should be managed dynamically in a boundedesistant to single-bit errors: the data that is read from each
and predetermined time. The use of DSA leads to uncertaintyvord is always the same as the data that has been written to it,
in RTOSs, because of the unconstrained response time cfven if a single bit has been flipped to the wrong state [15]
DSA algorithms and the fragmentation problem. In [9] a DSA Some non-ECC memories with parity support allows errors to
algorithm called TLSF has been developed to be emplioyed be detected, but not corrected. The reliability of a fault-
RTOSs TLSF provides explicit allocation and de-allocation tolerant RTOS would be improved by employing this kind of
of memory blocks with a bounded and acceptable timingmemory. In contrast to these hardware-based techniques,
behavior©(1). Using bitmaps and the aid bitmaps is another software-based memory error detection and correction
technique to make allocating and de-allocating memory safelynethods such as1§] would provide both reliability and
and reliably. This technique was introduckd [10] to be flexibility.
employed in RTEMS RTQOS



B) Kernel Considerations
Error detection could be done by hardware software
methods, such aSTransient fault detection via simultaneous
multithreading” [17] which is an example of software
methods The kernel of a fault-tolerarRTOS should provide
a mechanism that whenever an error occurs, a notification is
sent to an agent that has duty to perform some types of error
recovery actions. This agent is called supervisor and must be
run in an isolated address space, because data in the address
space containing faulty task may be corrupted. For example in
Nooks which is a reliability subsystem, Nooks Recovery
Manager is an agent for error recovelg][ VxWorks RTOS
employs a tree structure to manage error notifications
producedby OS’s components by higher-level components in
the hierarchical treelP]. The supervisor would recover the
faulty task by using backward- or forward- recovery ordy
starting it from the beginning. The selected recovery strategyC) Process and Thread Management
should be considered and defined in the system analysis. Similar to time-sharingOSs, process definition and activation
The kernel also has to provide an event loggingis one of the most important roles of RTOSs.,Blere are
mechanism to determine the root of an explicit error by some differences between these two kind®8fin managing
analyzing everything that has been happened in the systengroceses because of timing constraints in RTOSs. Time-
such as kernel service calls, task context switches andharingOSs do their best effort to activate and release tasks
interrupts, prior to the faultlP]. To detect implicit errors, the  timely. But in contrast, RTOSs should activate a process once
kernel should provide a software watchdog capabibtye and releaseat once or periodically and also guaranty each
notified whenever a task is not run in its expected coderelease is startesh-time and is finished before its deadline. In
seqguence or time slices. This mechanism also is useful in therder to adhere these timing constrairis, RTOS must
control flow checking technique2(]. For example QNX  guaranty the availability of the processesjuired resources.
RTOS uses Critical Process Monitor (CPM) module and If tasks behavior is not monitored and controlled by the
VWWorks RTOS uses Failover Management System (FMS)RTOS, a task may, as a result of malicious or careless
module to detect malfunctioningstem’s components. execution of another taskcannot use processor or other
As a technique for error preventidgiault-tolerant RTOSs  system resources. When a task creates a new task or another
should protect themselves against improper invoking systenkernel object, the kernel allocates some system resource,
calls and passing invalid parameters. For example somespecially a chunk of memory and CPU time to this new task.
RTOSs send an actual pointef kernel objects (e.g. A bugor a faultin the application would cause a situation
semaphores) to tasks and then dereference this pointer whemhere this task creates too many other tasks or kernel objects
changed and passed into other kernel service calls made bgnd exhausts system resourcAs a result other tasks may
the taskslIn this sequence if a task after receiving a pointer fail because of their inability in acquiring required resources
fails, this failure would cause to pointer corruption and as aand resulting in deadline miss. mIfault-tolerant RTOS, a
result passing the corrupted pointer to the kernel and using itnechanism must exist to prevent such failures caused by
by the RTOS may leads to the RTOS crakl.[To make this  resources shortage. One possible solution is to determine the
kind of failures impossible, RTGSkernel must validate the maximum required resources, especially memory space and
parameters sent to all service calls. This validation could beCPU time by processes before the execution, so the RTOS can
done by employing descriptors for applicatioreferences to  reserve required resources &achprocess and as result none
kernel objects or by using n-copy programming technique [3]. of processes are stopped because of resources shortage. In this
Availability is an important part of dependable computing method none of processes can acquire more than reserved
which can be achieved by providing replicatiarisoperating resources and if they want to use more than their quota, this
nodes. These replicas are operated concurrently and themct is regarded as an error and should be discarded. Since in
internal data and states are synchronous and equivalBet. O systems with static tasks, the attributes of all tasks are known
would detect nodes failure by sending and receiving heartbeain advance, a more relax approach can be chosen in resource
message to and from active nodes via reliable channels. Wheallocation in a way that the RTOS allocates resources to each
the heartbeat message fails to arrive, the active node iprocess from its reserved resources and from the remaining
discarded and one of the redundant nodes is tagged as activesources that are free and alsonareeserved by other
node and then it cdpe taken into processing. Figure 1 depicts processs For example a framework calld@RES has been
this scenario. In RTOSdt’s preferable to use Active introducedby [22] for resource reservation that with a little
Replication insteadof Passive Replication when using coding improves system reliability significantly.
redundancy techniques [8]. In fixed-priority systemstasks’ priority would be changed
Fault-tolerant RTOS also should prevent the spread ofincorrectly because of fault occurrence in process table. A
faults to the kernel. This goal can be achieved by reducing thgossible technique to solve this problem is to acquaint process
size of the kernel by keeping fundamental services inside thenanager with the importance of the tasks (e.g. hard RT task
kernel and excluding others, especially those that are prone twersus soft RT task or critical task versus normal tasks) by
errors, such as driver2]]. VWWorks RTOS provides such using partitions in the memory. The concept of partition
isolation by inserting protection boundaries between differentprocess management is a major part of ARINC Specification
components19]. 653, an Avionics Application Software Standard Interface
[23]. The ARINC 653 partition process manager runs
partitions, or address spaces, according to a timeline provided
by the system designer. Each address space is pldaoezhi

Synchronization
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Figure 1 - Redundancy in Operating Nodes



or more windows of execution in a hyper period. During eachBy sending heartbeat messages, a processor failure could be
window, all tasks in other address spaces cannot be run, andetected and by having checkpoimts the entire processor
only tasks within the currently active address space arestates and the assigned tasks, in disks, the faulty processor
selected by process manager to be run. When the hard/criticalould be recovered from transient faults correcg][ In
processes’ window is active, its processing resource is situation of permanent faults, after recovering faulty processor
guaranteed and soft/normal processes cannot be run and takgates, task migration must be done to run recovered tasks on
away processing time from the hard/critical process. Ananother hale processor. Alsoldrating more than one faulty
implementation of ARINC 653 in RTEMS RTOS has been processor preferably must be taken into account while system
addressed in?{]. design B0]. Since diskshave low speed, using diskless

D) Scheduling checkpointing schemas and storing checkpoints data on other

Scheduler is the heart of an RTOS. In fact in order to guarant)processor’smemory would help to decrease waste tingd, |

system safety, the scheduler by considering tasks attribute A research on implementing a fault toleraqqe scheduler in
have to deterrr,ﬂne what task should be released and should RTEMS RTOS has been presented3g{ In ad(_jmon to fault .
preempted at what times. There are different schedulinq lerance, energy management and dynamic voltage scaling
. . : ! Yssues could be considered in time analysis especially for
algorithms in RTOSs. The most important of them are as bedded systemsJ
follows [25]: embe Y ‘
e RM: Rate Monotonic (RM) is a fixed-priority scheduling E) Communications
algorithm which tasks priority is defined in advance and In all operating systems, processes need to communicate with
tasks with smaller period have higher priority. each other through some mechanisms, such as message
e EDF: Earliest Deadline First (EDF) is a dynamic passing or memory sharing. Message passing methods causes
scheduling algorithm which tasks priority is defined to uncertainty in the system timing, because of systems
dynamically in run-time in a way that tasks with closer architecture features, i.&’s impossible to determine exactly
deadline have higher priority. how long a message passing takes. In an RTOS the maximum
e LLS: similar to EDF, Least Laxity FirstL(F) is a latency of message passing should be determined. To achieve

dynamt scheduling algorithm. It assigns priority based such determinacy some token based techniques such as Ring

on the slack time of a process. Slack time is the amoun@nd TDMA can be employed4]. Moreover if the reliability

of time left after a job if the job was started now. In LLS of communication channels is not 100%, some techniques

processes with smaller slack time have h|gher priority such as dynamic time redundancy in the lower levels of the

[26]. communication protocols or using QoS services could be

Scheduler as the most important taskan RTOS has to  employed to increasthe communication channels reliability
be protected against failures. If the scheduler (faither  Significantly [34].
system tasks are not scheduled and released correctly and as In addition to physical and dynamic time redundancy
result the system crashes. If the scheduler is fixed-pridtsty, there are other approaches and methodologies to increase the
misbehavior can be detected by using a pre-constructed stati&liability of inter-processes communications. For example in
scheduling table and comparing the output of the schedulef35] @ facility has been introduced that provides supports for
with this table. This table has to be constructed for a hyperfault-tolerant process groupry a family of reliable multicast
period. N-copy programming (NCP) is another fault tolerance Protocols that can be employéd fault-tolerant RTOSs. In
technique that can be employed for both fixed-priority and this facility a protocol that guaranties delivery orderings has
dynamic scheduling algorithms. With this technique, n copiesbeen introduced which ensures the processes belonging to a
of ascheduler (n > 3) are run concurrently in different address fault-tolerant process group will see consistent orderings of
spaces. Then the right scheduling can be done by taking votegvents that affect the system reliability including process
of these replicas. failures, recoveries, migration, and dynamic changes to group
In addition to be fault-toleranthe scheduler should take —Properties like member rankings. This is done by using some

the required time to handle faulty taskeo its time analyses ~ broadcast primitives, such as: group broadcast (GBCAST),
As it was mentioned before, a faulty taskn be re-executed —atomic broadcast (ABCAST) and causal broadcast
from the beginning ocanbe restored from the last checkpoint (CBCAST).
prior to fault. This recovery and re-executing of faulty tasks, ~ Similar to inter-process communications, inter-processors
wastes time and could violate timing constraimh order to ~ communications should be reliable too. Bf][ a subsystem
guaranty system safety in the presence of failures, fault-called Transis has been introduced that by using reliable
tolerant RTOSs must consider these wasting times in systerfulticast message services, supports reliable communication
analysis and scheduler design. In system analysiould be ~ @mong processors. VxFusion is a run-time extensio
explicitly determined for each tasktmost how many re- ~ Support inter-processor communication that is employed by
execution is possible, if task recovery is done by re-starting it¥xWorks RTOS [9]. In additon to the mentioned
from the beginning, and in situation of using backward mechanisms, there are different channel models that by using
recovery as fault tolerance scheme, by having fault rate, erropppropriate encoders and decoders, guaranty cannels
detection latency and required time for saving and restoringreliability [37]. In order to select a model for a
checkpoints data,atmost how many failures could be communication, several factors must be considered. These
recovered and also how many checkpoints has to be taken t@ctors include the physical and statistical nature of the
do that, R7, 28]. This analysiscan be done statically in ~channel disturbances, the information available to the

advance or dynamically in run-imBTOS more tend to use transmitter and receiver, the presence of any feedback link
g-state instead of checkpoint [8]. from the receiver to the transmitter, and the availahilitthe

In addition to recovering tasks from errors, fault-tolerant transmitter and receiver of a shared source (independent of the
RTOSs should be able to recover processors from transierfthannel disturbances37].
and permanent faults too. If a processor fails temporarily and RPCis a remote communication method which in order to
its internal states and assigned tasks are not recovered, thigeet requirements of fault-tolerant RTOSsould be done in
failure leads to violate timing constraints and system crash@ reliable manner. Sun Batching RPC is a variation of RPC



that performs reliable and dependable telecommunicatibns discarded or hindered unboundedly which cause to
typically uses reliable byte stream protocols (like TCP) for its indeterminacy in timing system calls that is undesired for
transport B8] which in addition to guaranty reliable RTOSs [L2]. A static analysis approach to obtain the WCET
communication guaranties at-most-once semantics and of system calls in RTEMS RTOS has been introducedé6h [

ordered delivery of messages. These features qualify Fault-tolerant RTOSs should guaranty both predictability
Batching RPC to be employed by fault-tolerant RTOSs. and reliability while handling interrupts. To achieve these

The implementation of a fault-tolerant RPC based grid goals, all kernel service calls should be revertible, so that the
applications was discussed B9 RTOS can preempt the service call, restore carried out

operations and restart it later. Therefore the time to get back

to the scheduler may take by a few instructions and the higher
riority interrupts are always executed with an absolute
inimum  latency. This method improves system

F) I/O Management
RTOSs should manage the order of I/O acesissa way that
interferences are prevented and also all tasks (especially ha
real_—t_|me tasks) _coulld meet their timing constinin predictability and reliability in terms of avoidance of access to
addition to considering timing constraints, fault-tolerance . .
. . inconsistent data.

RTOSs must provide some fault tolerance techniques to
tolerate faulty 1/0 devices. There are many fault toleranceH) Programming Languages
techniques for 1/0O devices that are concerned to the targeBince fault-tolerant RTOSs have special requirements, in
device. Replication is the most common technique that can berder to meet them special programming languages should be
employed by duplicating 1/0 devices. The main 1/O device is employed as well. Some features of traditional programming
called active (primary) and the replicated ones are calledanguages are prone to problems that using them in fault-
backup. One anactive device fails and its failuie detected  tolerant RTOSs is discouraged, such as: pointers, dynamic
by heartbeat messages, one of the backup devices mustemory allocation and de-allocation, unstructured
perform the duties of active device from the fault point. Suchprogramming, multiple entry points and exit points, variant
duplications via PCls have been investigated4j.[In order data, implicit declaration and implicit initialization,
to mitigate wasting times, it’s desired to design backups as procedural parameters, recursion, concurrency and race, and
active redundancy. For example RAID is an example ofinterrupts aware programming{]. In addition to considering
active redundancy in secondary storage devi¢#s [ these programming featuresgaktime applications has to

Robustness ianimportant system quality feature which is guaranty correct responses within strict timing constraints. In
defined by the I|EEE standard glossary of software other words the maximum required time to respond to a
engineering terminology asThe degree to which a system request or to complete a work by a process should be
or component can function correctly in the presence of invalidaccountable. To attain this time, the maximum time that each
inputs or stressful environmental conditidngl2]. Avizienis part of a program takes should be determined explicitly.
et al. also define robustness ‘@ependability with respect to Hence for example in the real-time programming, variable
erroneous input [43]. When the input data are missed or loops with undetermined or unbounded iteration are not
incorrect, robustness techniques toy fix or calculate the  acceptable.
exact or approximate value of the input data. One technique in In general, real-time programming languages are
robustness is to request correct data from the sender or user lemployed in three real-time programming models as
considering correct data format which has been defined in aynchronousscheduled, and timed that differ in time they
predefined data pattern table. Another technique is to use lagake to complete and in their compiler to meet corresponding
correct data instead of the missed/incorrect input data or toequirements 48]. In addition to considering these models,
approximate correct value of the input data by applying someprogramming languages employed in Ifaolerant RTOSs
machine learning algorithnmts previous input data in similar  should support some error detection and error correction

situations. Such techniques don’t guaranty a correct behavior techniques. Ada is one of the most widely used programming
in the system, but they would alleviate the side effects of datdanguage in fault-tolerant real-time domains because of its
loss. major strengths, such as: the well-defined language semantics,

The robustness of an OS would be measured by the abilitghe strong type checking, structuring mechanisms like
of its APIs in handling exceptional input parameters which packages and supporting the development of code analysis,
consists of detecting invalid parameters and tolerating themverification and testing tools4§]. Euclid is another fault-
[44]. Experiments on 233 functions of 13 POSIX OSs revealstolerant real-time programming language that employs
a6% to 19% robustness failure rate for single-OS tests that byexception handlers and import/export lists to provide
employing N-version technique this rate was reduced to 3.8%comprehensive error detection, isolation, and recovery. The

The desired robustness model should be selected while thphilosophy of this language is that every exception detectable
system development. Based on study4B],[ almost 47% of by the hardware or the software should have an exception
researches consider robustness énmifigation & validation handler associated with it. Moreover, Euclid forces everything
phase of the system development and only 35% of researchéds the language to be time- and space-boun&& [Using
considerit in the system design phase. Other researches do isuch programming languages would cause to improve the
in different phases. system reliability $1].

G) Interrupt Handling [\VV. CONCLUSION

OSs have several types of interrupts with different priorities Real-time operating systems are widely used in safety-critical

and execution times. Interrupis with higher priority need domains to interact with controlled objects in the external

faster response time. When internal data structures are being : . : .
: ) . . nvironment and should provide correct and valid resulés in
manipulated by and during service calls, other interrupts

especially timer’s scheduler should be disabled because bounded and predetermined time. In these domains, the costs

otherwise a related service call may be executed and cause %VZSS&/:;TiLa'tIﬁ;egg?ndsu:grcgﬁsﬁf?ﬁ: 22‘:;0);";%6%%.?; |r]||_tc|)al
access to inconsistent data. In fact in order to handle lower revent such failures s stem desinmust quarant thajlt th.e
priority interrupts reliably, the higher priority interrupts are P » Y 9 9 y

system can meet requirements as specified in the domains of



both value and time during all anticipated operational
situations even when an error occurs. To attain this goal, the
employedRTOS should be able to tolerate faults and errors
appear in the system.

Similar to traditional operating systems, RTOSs have
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Management Communications I/O Management Interrupt
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14971506, 1989.
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fault tolerance techniques that could be appltedeach
mentioned features were presentethis paper in fact
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Categorizes several fault tolerance techniques app|icab|e td?9] G. Bournoutian and A. Orailoglu, "Dynamic transient faultedgon and

RTOSs based on some primitive features of operating
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