

An Overview of Fault Tolerance Techniques for Real-Time Operating Systems

Reza Ramezani* Yasser Sedaghat**

Dependable Distributed Embedded Systems (DDEmS) Laboratory: http://ddems.um.ac.ir
Department of Computer Engineering

Ferdowsi University of Mashhad, Mashhad, Iran

reza.ramezani@stu.um.ac.ir* y_sedaghat@um.ac.ir**

Abstract- Nowadays operating systems are inseparable part of
computer systems. Real-time operating systems (RTOS) are a
special kind of operating systems that their main goal is to
operate correctly and provide correct and valid results in a
bounded and predetermined time. RTOSs are widely used in
safety-critical domains. In these domains all the system’s
requirements should be met and a catastrophe occurs if the
system fails. Hence, fault tolerance is an essential requirement of
RTOSs employed in safety-critical domains. In the past decades,
several fault tolerance techniques have been proposed to protect
different parts of an RTOS against faults and errors. In this
paper, after presenting primary concepts of RTOSs, some
features of these operating systems are reviewed and then a
number of fault tolerance techniques that can be applied to each
feature and their impact on system reliability is investigated. The
main contribution of this work is to review and categorize
several fault tolerance techniques applicable to RTOSs based on
the operating system’s features.

Keywords: Real-Time Operating System, Fault Tolerance.

I. INTRODUCTION

“An operating system acts as an intermediary between the
user of a computer and the computer hardware. The purpose
of an operating system is to provide an environment in which
the user can execute programs in a convenient and efficient
manner”[1] . In fact the main role of an operating system is to
employ some methods to manage a computer system, such as
scheduling processor(s), process and thread management,
inter-process communication, memory management, I/O
management, concurrency control, critical sections,
synchronization, interrupt and event handling, controlling
timers and clocks and etc. which are known as operating
systems’ features.

In the non-real-time world, the value domain is the sole
dimension of computations and correctness of results is the
sufficient condition to consider results as valid results. The
inclusion of the time domain in real-time systems adds a new
dimension to the computations. Real-time applications in
addition to correct results, have to produce valid results too.
In these applications, correctness is achieved when correct
results are produced and validness is achieved when correct
results are produced on-time, in a bounded and predetermined
time.

Time-sharing operating systems provide an environment
to run applications and produce correct results by utilizing
resources fairly and efficiently. A typical RTOS monitors and
controls some external processes/objects, and it should
become aware of changes in the external process/object and
respond to them in a timely manner. In order to meet such
timing constraints, RTOSs should provide timeliness and
predictability by considering real-time requirements while
designing operating system’s features as mentioned before. In
fact, RTOSs should provide both predictability and suitable
feature set for application development.

A system is called safety-critical if the occurrence of a
failure in meeting system requirements causes to catastrophic
effects. In addition to meeting predefined requirements, these
systems should satisfy real-time constraints if they want to
perform their intended functions effectively [2]. Hence
RTOSs are widely used in safety-critical systems. Military
and civilian aircrafts, nuclear plants, and medical devices are
examples of safety-critical systems.

In safety-critical systems, in addition to hardware,
applications and the host operating system ought to be fault-
tolerant and their operations should not be failed. In other
words, the operating systems employed in safety-critical
domains should produce correct and valid results in the
presence or in the absence of faults. Such feature is known as
reliable computing [3]. Requirement of this reliability is to
implement fault tolerance techniques on the operating system
[4]. In spite of the efforts made to prevent and remove faults
during development phases of safety-critical systems,
software faults aren’t eliminated yet completely and also the
system hardware may still fail during operation because of
internal or external faults. Hence, implementing fault
tolerance techniques on an RTOS to tolerate faults and errors
in a safety-critical system is crucial.

In this paper first some basic concepts of RTOSs are
presented and then a number of the most important features of
RTOSs are reviewed. Afterward, some fault tolerance
techniques applicable to the mentioned features along with
their impact on system reliability is investigated. The
investigated techniques include both hardware-based and
software-based techniques which are employed to tolerate
transient and permanent faults.

The organization of this paper is as follows. Section 2
presents some basic concepts and different types of RTOSs.
Section 3 investigates a number of RTOSs’ features along
with some fault tolerance techniques that can be applied to
each feature. Finally Section 4 concludes the paper.

II. BASIC CONCEPTS

In this section first some definitions of RTOSs are presented
and then three kinds of these operating systems along with
their primary requirements are discussed.

A) Real-Time Operating System (RTOS)
“Real-time operating systems emphasize predictability,

efficiency and include features to support timing constraints”
[5]. In RTOSs all tasks should be released on-time (on release
time) and also should be completed before particular times
called deadline. A real-time task fails if it couldn’t meet these
timing constraints [6]. In other words, violating timing
constraints in RTOSs leads to system failure. In order to
analyze RTOSs precisely and guaranty system safety, their
internal parts should be defined exactly and also their
behavior should be predictable.

3th International eConference on Computer and Knowledge Engineering (ICCKE 2013)

Link at IEEE: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6739552

For example XOberon is a small RTOS which provides
predictability and safety together [7].

B) Soft, Firm and Hard Deadlines
Deadline is an important property concerned to tasks in

RTOSs and is the instant when the results should be produced
before it. If a result has utility even after the deadline is
passed, the deadline is classified as soft, otherwise it is firm. If
severe consequences could result if a firm deadline is missed,
the deadline is called hard [8]. In other words violating firm
deadlines results in failure and violating hard deadlines results
in catastrophe.

Different requirements of hard and soft RTOSs have
important effects on the system design. If the system has hard
real-time constraints, the designer has to spend a lot of time to
guaranty system safety and predictability and also guaranty
that all timing constraints (deadlines) are met. If the system
timing requirements are soft, a system that has best effort to
meeting timing constraints and also has minimum quality loss
while violating timing constraints should be designed.
Portable media players and online video conferences are
examples of soft real-time systems. Examples of hard real-
time systems include drive-by-wire systems in automobiles,
fly-by-wire systems in avionics, missile control systems and
autonomous space systems.

Hard real-time operating systems focus on timing
constraints as the most important issue in the system design
and don’t pay attention to fault tolerance as much as timing
constraints. Since occurrence of failure in the RTOS either
would causes to produce incorrect results because of wrong
computations or would causes to produce invalid results
because of missing deadlines, implementing fault tolerance
techniques should be considered in the system design. In this
paper several primary features of RTOSs along with a number
of fault tolerance techniques that could be applied to each
feature are presented.

III. RTOSS’ FEATURES AND FAULT TOLERANCE TECHNIQUES

In the previous sections, the importance of implementing fault
tolerance techniques on RTOSs, especially those that are
employed in safety-critical domains was discussed. In this
section, a number of RTOSs’ features along with some fault
tolerance techniques that could be applied to each feature are
presented.

A) Memory Management
In order to protect operating systems’ components prone to
failure, fault tolerance begins with memory protection. Sine
programs behavior depends to data in memory, the existence
of faults in these data would cause to program error and
failure.

Since the flexibility and functionality of applications are
being increased and also they need dynamic access to
memories, dynamic storage allocation (DSA) algorithms play
an important role in the operating systems. In addition to
flexibility, real-time applications require predictability too,
i.e. memory should be managed dynamically in a bounded
and predetermined time. The use of DSA leads to uncertainty
in RTOSs, because of the unconstrained response time of
DSA algorithms and the fragmentation problem. In [9] a DSA
algorithm called TLSF has been developed to be employed in
RTOSs. TLSF provides explicit allocation and de-allocation
of memory blocks with a bounded and acceptable timing
behavior Ɵ(1). Using bitmaps and the aid bitmaps is another
technique to make allocating and de-allocating memory safely
and reliably. This technique was introduced by [10] to be
employed in RTEMS RTOS.

Operating systems use memory management units (MMU)
to run tasks in their protected memory address. Nevertheless
some RTOSs disable MMU and don’t use it [9]. OSEK-VDX,
µITRON and RTAI are examples of such RTOSs that disable
MMU [11]. By disabling MMU the operating system and all
processes are run in the same address space and each task has
access to operating system’s and other processes’ codes and
data. Hence a bad written code or a bug in a code, for example
in managing pointers, would cause to failure in the kernel,
resulting in the operating system crash. Without memory
address protection, also some bugs would cause to special
corruptions that are difficult to detect. For example in
PowerPC processors, RAM is often located at physical
address 0, so even a NULL pointer dereference may not be
detected [12]. In order to prevent such failures, RTOSs must
use MMU. By enabling MMU, whenever the stack of a task
overflows, an overflow exception is raised and the operating
system stops the task execution. Instead of stopping the task
execution, the operating system can suspend the task and
solve the problem of stack limitation by migrating the
overflowed task to a new memory address space with a larger
capacity, by regarding reserved and unreserved spaces and
then re-executing the suspended task. The RTOS designer
should take the migration time into account when analyzing
system.

Redundancy is one of the most important techniques in
fault tolerance [3]. This technique can be applied to memory
in a way that when a process is loaded, the operating system
duplicates its data and states in more than one place/memory
(three places/memories to imitate TMR). Whenever a task’s
data/states are changed, these changes are applied to all
replicas. Whenever the task wants to read data from memory,
a voting is done on replicas to determine if data are changed
inadvertently or are corrupted (for any reason, such as heavy
ion radiation) and also to determine which data is correct and
could be used. Memory redundancy could be supported in
both software level and hardware level [13].

In addition to redundancy, a fault-tolerant memory
management system could be constructed by four concurrent
mechanisms as: a first recording mechanism that is activated
to record memory update (write) events, a second recording
mechanism that records at least a limited number of memory
update events, an activator to activate the first recording
mechanism in the event of a fault event and a memory
reintegration mechanism that is utilized to data recovery by
reintegrating some parts of memory [14]. In this memory
management system, error recovery can be done rapidly and
efficiently by reintegrating memory pages identified in the
first and second recording mechanisms by considering
memory updates log.

Error-correcting code memory (ECC memory) is an
instrument to improve operating systems reliability from the
memory protection perspective. ECC memory is a type of
computer data storage that has ability to detect and correct
many kinds of internal data corruption. This memory is
resistant to single-bit errors: the data that is read from each
word is always the same as the data that has been written to it,
even if a single bit has been flipped to the wrong state [15].
Some non-ECC memories with parity support allows errors to
be detected, but not corrected. The reliability of a fault-
tolerant RTOS would be improved by employing this kind of
memory. In contrast to these hardware-based techniques,
software-based memory error detection and correction
methods such as [16] would provide both reliability and
flexibility.

B) Kernel Considerations
Error detection could be done by hardware or software
methods, such as “Transient fault detection via simultaneous
multithreading” [17] which is an example of software
methods. The kernel of a fault-tolerant RTOS should provide
a mechanism that whenever an error occurs, a notification is
sent to an agent that has duty to perform some types of error
recovery actions. This agent is called supervisor and must be
run in an isolated address space, because data in the address
space containing faulty task may be corrupted. For example in
Nooks which is a reliability subsystem, Nooks Recovery
Manager is an agent for error recovery [18]. VxWorks RTOS
employs a tree structure to manage error notifications
produced by OS’s components by higher-level components in
the hierarchical tree [19]. The supervisor would recover the
faulty task by using backward- or forward- recovery or by re-
starting it from the beginning. The selected recovery strategy
should be considered and defined in the system analysis.

The kernel also has to provide an event logging
mechanism to determine the root of an explicit error by
analyzing everything that has been happened in the system,
such as kernel service calls, task context switches and
interrupts, prior to the fault [12]. To detect implicit errors, the
kernel should provide a software watchdog capability to be
notified whenever a task is not run in its expected code
sequence or time slices. This mechanism also is useful in the
control flow checking technique [20]. For example QNX
RTOS uses Critical Process Monitor (CPM) module and
VxWorks RTOS uses Failover Management System (FMS)
module to detect malfunctioning system’s components.

As a technique for error prevention, fault-tolerant RTOSs
should protect themselves against improper invoking system
calls and passing invalid parameters. For example some
RTOSs send an actual pointer of kernel objects (e.g.
semaphores) to tasks and then dereference this pointer when
changed and passed into other kernel service calls made by
the tasks. In this sequence if a task after receiving a pointer
fails, this failure would cause to pointer corruption and as a
result passing the corrupted pointer to the kernel and using it
by the RTOS may leads to the RTOS crash [12]. To make this
kind of failures impossible, RTOSs’ kernel must validate the
parameters sent to all service calls. This validation could be
done by employing descriptors for application’s references to
kernel objects or by using n-copy programming technique [3].

Availability is an important part of dependable computing
which can be achieved by providing replications of operating
nodes. These replicas are operated concurrently and their
internal data and states are synchronous and equivalent. OSs
would detect nodes failure by sending and receiving heartbeat
message to and from active nodes via reliable channels. When
the heartbeat message fails to arrive, the active node is
discarded and one of the redundant nodes is tagged as active
node and then it can be taken into processing. Figure 1 depicts
this scenario. In RTOSs it’s preferable to use Active
Replication instead of Passive Replication when using
redundancy techniques [8].

Fault-tolerant RTOS also should prevent the spread of
faults to the kernel. This goal can be achieved by reducing the
size of the kernel by keeping fundamental services inside the
kernel and excluding others, especially those that are prone to
errors, such as drivers [21]. VxWorks RTOS provides such
isolation by inserting protection boundaries between different
components [19].

Figure 1 - Redundancy in Operating Nodes

C) Process and Thread Management
Similar to time-sharing OSs, process definition and activation
is one of the most important roles of RTOSs. But, there are
some differences between these two kinds of OS in managing
processes because of timing constraints in RTOSs. Time-
sharing OSs do their best effort to activate and release tasks
timely. But in contrast, RTOSs should activate a process once
and release it once or periodically and also guaranty each
release is started on-time and is finished before its deadline. In
order to adhere these timing constraints, an RTOS must
guaranty the availability of the processes’ required resources.

If tasks’ behavior is not monitored and controlled by the
RTOS, a task may, as a result of malicious or careless
execution of another task, cannot use processor or other
system resources. When a task creates a new task or another
kernel object, the kernel allocates some system resource,
especially a chunk of memory and CPU time to this new task.
A bug or a fault in the application would cause a situation
where this task creates too many other tasks or kernel objects
and exhausts system resources. As a result other tasks may
fail because of their inability in acquiring required resources
and resulting in deadline miss. In a fault-tolerant RTOS, a
mechanism must exist to prevent such failures caused by
resources shortage. One possible solution is to determine the
maximum required resources, especially memory space and
CPU time by processes before the execution, so the RTOS can
reserve required resources for each process and as result none
of processes are stopped because of resources shortage. In this
method none of processes can acquire more than reserved
resources and if they want to use more than their quota, this
act is regarded as an error and should be discarded. Since in
systems with static tasks, the attributes of all tasks are known
in advance, a more relax approach can be chosen in resource
allocation in a way that the RTOS allocates resources to each
process from its reserved resources and from the remaining
resources that are free and also aren’t reserved by other
processes. For example a framework called RRES has been
introduced by [22] for resource reservation that with a little
coding improves system reliability significantly.

In fixed-priority systems, tasks’ priority would be changed
incorrectly because of fault occurrence in process table. A
possible technique to solve this problem is to acquaint process
manager with the importance of the tasks (e.g. hard RT task
versus soft RT task or critical task versus normal tasks) by
using partitions in the memory. The concept of partition
process management is a major part of ARINC Specification
653, an Avionics Application Software Standard Interface
[23]. The ARINC 653 partition process manager runs
partitions, or address spaces, according to a timeline provided
by the system designer. Each address space is placed into one

or more windows of execution in a hyper period. During each
window, all tasks in other address spaces cannot be run, and
only tasks within the currently active address space are
selected by process manager to be run. When the hard/critical
processes’ window is active, its processing resource is
guaranteed and soft/normal processes cannot be run and take
away processing time from the hard/critical process. An
implementation of ARINC 653 in RTEMS RTOS has been
addressed in [24].

D) Scheduling
Scheduler is the heart of an RTOS. In fact in order to guaranty
system safety, the scheduler by considering tasks attributes
have to determine what task should be released and should be
preempted at what times. There are different scheduling
algorithms in RTOSs. The most important of them are as
follows [25]:  RM: Rate Monotonic (RM) is a fixed-priority scheduling

algorithm which tasks priority is defined in advance and
tasks with smaller period have higher priority.  EDF: Earliest Deadline First (EDF) is a dynamic
scheduling algorithm which tasks priority is defined
dynamically in run-time in a way that tasks with closer
deadline have higher priority.  LLS: similar to EDF, Least Laxity First (LLF) is a
dynamic scheduling algorithm. It assigns priority based
on the slack time of a process. Slack time is the amount
of time left after a job if the job was started now. In LLS
processes with smaller slack time have higher priority
[26].

Scheduler as the most important task of an RTOS has to
be protected against failures. If the scheduler fails, other
system tasks are not scheduled and released correctly and as
result the system crashes. If the scheduler is fixed-priority, its
misbehavior can be detected by using a pre-constructed static
scheduling table and comparing the output of the scheduler
with this table. This table has to be constructed for a hyper
period. N-copy programming (NCP) is another fault tolerance
technique that can be employed for both fixed-priority and
dynamic scheduling algorithms. With this technique, n copies
of a scheduler (n ≥ 3) are run concurrently in different address
spaces. Then the right scheduling can be done by taking votes
of these replicas.

In addition to be fault-tolerant, the scheduler should take
the required time to handle faulty tasks into its time analyses.
As it was mentioned before, a faulty task can be re-executed
from the beginning or can be restored from the last checkpoint
prior to fault. This recovery and re-executing of faulty tasks,
wastes time and could violate timing constraints. In order to
guaranty system safety in the presence of failures, fault-
tolerant RTOSs must consider these wasting times in system
analysis and scheduler design. In system analysis it should be
explicitly determined for each task at-most how many re-
execution is possible, if task recovery is done by re-starting it
from the beginning, and in situation of using backward
recovery as fault tolerance scheme, by having fault rate, error
detection latency and required time for saving and restoring
checkpoints data, at-most how many failures could be
recovered and also how many checkpoints has to be taken to
do that, [27, 28]. This analysis can be done statically in
advance or dynamically in run-time. RTOS more tend to use
g-state instead of checkpoint [8].

In addition to recovering tasks from errors, fault-tolerant
RTOSs should be able to recover processors from transient
and permanent faults too. If a processor fails temporarily and
its internal states and assigned tasks are not recovered, this
failure leads to violate timing constraints and system crash.

By sending heartbeat messages, a processor failure could be
detected and by having checkpoints of the entire processor
states and the assigned tasks, in disks, the faulty processor
would be recovered from transient faults correctly [29]. In
situation of permanent faults, after recovering faulty processor
states, task migration must be done to run recovered tasks on
another hale processor. Also tolerating more than one faulty
processor preferably must be taken into account while system
design [30]. Since disks have low speed, using diskless
checkpointing schemas and storing checkpoints data on other
processors’ memory would help to decrease waste times [31].

A research on implementing a fault tolerance scheduler in
RTEMS RTOS has been presented in [32]. In addition to fault
tolerance, energy management and dynamic voltage scaling
issues could be considered in time analysis especially for
embedded systems [33].

E) Communications
In all operating systems, processes need to communicate with
each other through some mechanisms, such as message
passing or memory sharing. Message passing methods causes
to uncertainty in the system timing, because of systems
architecture features, i.e. it’s impossible to determine exactly
how long a message passing takes. In an RTOS the maximum
latency of message passing should be determined. To achieve
such determinacy some token based techniques such as Ring
and TDMA can be employed [34]. Moreover if the reliability
of communication channels is not 100%, some techniques
such as dynamic time redundancy in the lower levels of the
communication protocols or using QoS services could be
employed to increase the communication channels reliability
significantly [34].

In addition to physical and dynamic time redundancy,
there are other approaches and methodologies to increase the
reliability of inter-processes communications. For example in
[35] a facility has been introduced that provides supports for
fault-tolerant process groups by a family of reliable multicast
protocols that can be employed in fault-tolerant RTOSs. In
this facility a protocol that guaranties delivery orderings has
been introduced which ensures the processes belonging to a
fault-tolerant process group will see consistent orderings of
events that affect the system reliability including process
failures, recoveries, migration, and dynamic changes to group
properties like member rankings. This is done by using some
broadcast primitives, such as: group broadcast (GBCAST),
atomic broadcast (ABCAST) and causal broadcast
(CBCAST).

Similar to inter-process communications, inter-processors
communications should be reliable too. In [36] a subsystem
called Transis has been introduced that by using reliable
multicast message services, supports reliable communication
among processors. VxFusion is a run-time extension to
support inter-processor communication that is employed by
VxWorks RTOS [19]. In addition to the mentioned
mechanisms, there are different channel models that by using
appropriate encoders and decoders, guaranty cannels
reliability [37]. In order to select a model for a
communication, several factors must be considered. These
factors include the physical and statistical nature of the
channel disturbances, the information available to the
transmitter and receiver, the presence of any feedback link
from the receiver to the transmitter, and the availability of the
transmitter and receiver of a shared source (independent of the
channel disturbances) [37].

RPC is a remote communication method which in order to
meet requirements of fault-tolerant RTOSs, should be done in
a reliable manner. Sun Batching RPC is a variation of RPC

that performs reliable and dependable telecommunications. It
typically uses reliable byte stream protocols (like TCP) for its
transport [38] which in addition to guaranty reliable
communication, guaranties at-most-once semantics and
ordered delivery of messages. These features qualify Sun
Batching RPC to be employed by fault-tolerant RTOSs.

The implementation of a fault-tolerant RPC based grid
applications was discussed in [39].

F) I/O Management
RTOSs should manage the order of I/O accesses in a way that
interferences are prevented and also all tasks (especially hard
real-time tasks) could meet their timing constraints. In
addition to considering timing constraints, fault-tolerance
RTOSs must provide some fault tolerance techniques to
tolerate faulty I/O devices. There are many fault tolerance
techniques for I/O devices that are concerned to the target
device. Replication is the most common technique that can be
employed by duplicating I/O devices. The main I/O device is
called active (primary) and the replicated ones are called
backup. Once an active device fails and its failure is detected
by heartbeat messages, one of the backup devices must
perform the duties of active device from the fault point. Such
duplications via PCIs have been investigated in [40]. In order
to mitigate wasting times, it’s desired to design backups as
active redundancy. For example RAID is an example of
active redundancy in secondary storage devices [41].

Robustness is an important system quality feature which is
defined by the IEEE standard glossary of software
engineering terminology as: “The degree to which a system
or component can function correctly in the presence of invalid
inputs or stressful environmental conditions” [42]. Avizienis
et al. also define robustness as “dependability with respect to
erroneous input” [43]. When the input data are missed or
incorrect, robustness techniques try to fix or calculate the
exact or approximate value of the input data. One technique in
robustness is to request correct data from the sender or user by
considering correct data format which has been defined in a
predefined data pattern table. Another technique is to use last
correct data instead of the missed/incorrect input data or to
approximate correct value of the input data by applying some
machine learning algorithms to previous input data in similar
situations. Such techniques don’t guaranty a correct behavior
in the system, but they would alleviate the side effects of data
loss.

The robustness of an OS would be measured by the ability
of its APIs in handling exceptional input parameters which
consists of detecting invalid parameters and tolerating them
[44]. Experiments on 233 functions of 13 POSIX OSs reveals
a 6% to 19% robustness failure rate for single-OS tests that by
employing N-version technique this rate was reduced to 3.8%.

The desired robustness model should be selected while the
system development. Based on study in [45], almost 47% of
researches consider robustness in verification & validation
phase of the system development and only 35% of researches
consider it in the system design phase. Other researches do it
in different phases.

G) Interrupt Handling
OSs have several types of interrupts with different priorities
and execution times. Interrupts with higher priority need a
faster response time. When internal data structures are being
manipulated by and during service calls, other interrupts
especially timer’s scheduler should be disabled because
otherwise a related service call may be executed and cause an
access to inconsistent data. In fact in order to handle lower
priority interrupts reliably, the higher priority interrupts are

discarded or hindered unboundedly which cause to
indeterminacy in timing system calls that is undesired for
RTOSs [12]. A static analysis approach to obtain the WCET
of system calls in RTEMS RTOS has been introduced in [46].

Fault-tolerant RTOSs should guaranty both predictability
and reliability while handling interrupts. To achieve these
goals, all kernel service calls should be revertible, so that the
RTOS can preempt the service call, restore carried out
operations and restart it later. Therefore the time to get back
to the scheduler may take by a few instructions and the higher
priority interrupts are always executed with an absolute
minimum latency. This method improves system
predictability and reliability in terms of avoidance of access to
inconsistent data.

H) Programming Languages
Since fault-tolerant RTOSs have special requirements, in
order to meet them special programming languages should be
employed as well. Some features of traditional programming
languages are prone to problems that using them in fault-
tolerant RTOSs is discouraged, such as: pointers, dynamic
memory allocation and de-allocation, unstructured
programming, multiple entry points and exit points, variant
data, implicit declaration and implicit initialization,
procedural parameters, recursion, concurrency and race, and
interrupts aware programming [47]. In addition to considering
these programming features, real-time applications has to
guaranty correct responses within strict timing constraints. In
other words the maximum required time to respond to a
request or to complete a work by a process should be
accountable. To attain this time, the maximum time that each
part of a program takes should be determined explicitly.
Hence for example in the real-time programming, variable
loops with undetermined or unbounded iteration are not
acceptable.

In general, real-time programming languages are
employed in three real-time programming models as
synchronous, scheduled, and timed that differ in time they
take to complete and in their compiler to meet corresponding
requirements [48]. In addition to considering these models,
programming languages employed in fault-tolerant RTOSs
should support some error detection and error correction
techniques. Ada is one of the most widely used programming
language in fault-tolerant real-time domains because of its
major strengths, such as: the well-defined language semantics,
the strong type checking, structuring mechanisms like
packages and supporting the development of code analysis,
verification and testing tools [49]. Euclid is another fault-
tolerant real-time programming language that employs
exception handlers and import/export lists to provide
comprehensive error detection, isolation, and recovery. The
philosophy of this language is that every exception detectable
by the hardware or the software should have an exception
handler associated with it. Moreover, Euclid forces everything
in the language to be time- and space-bounded [50]. Using
such programming languages would cause to improve the
system reliability [51].

IV. CONCLUSION

Real-time operating systems are widely used in safety-critical
domains to interact with controlled objects in the external
environment and should provide correct and valid results in a
bounded and predetermined time. In these domains, the costs
of a system failure leads to catastrophe and exceeds the initial
investment in the computer and in the controlled object. To
prevent such failures, system designer must guaranty that the
system can meet requirements as specified in the domains of

both value and time during all anticipated operational
situations, even when an error occurs. To attain this goal, the
employed RTOS should be able to tolerate faults and errors
appear in the system.

Similar to traditional operating systems, RTOSs have
some primitive features that are essential for a basic RTOSs to
meet value and time domains requirements. Implementing
fault tolerance techniques on these features would cause to
improve the reliability of the RTOS and the whole system as
well.

In this paper first some definitions of RTOSs along with
their requirements was reviewed followed by investigating
some primitive features of an RTOS such as Memory
Management, Kernel Considerations, Process and Thread
Management, Communications, I/O Management, Interrupt
Handling and Programming Languages. Then a number of
fault tolerance techniques that could be applied to each
mentioned features were presented. This paper in fact
categorizes several fault tolerance techniques applicable to
RTOSs based on some primitive features of operating
systems. Some techniques could only deal with transient
faults and some could tolerate both transient and permanent
faults. Some techniques are only software-based and some
rely on the involved hardware. In order to have a fault-tolerant
RTOS, the system designer has to consider the requirements
of the intended fault tolerance techniques in the requirement
analysis and system design phases while developing system.

V. REFERENCES

[1] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts: J.
Wiley & Sons, 2009.

[2] J. S. Ostroff, "Formal methods for the specification and design of real-time
safety critical systems," Journal of Systems and Software, vol. 18, pp. 33-60,
1992.

[3] L. L. Pullum, Software fault tolerance techniques and implementation: Artech
House Publishers, 2001.

[4] P. J. Denning, "Fault tolerant operating systems," ACM Computing Surveys
(CSUR), vol. 8, pp. 359-389, 1976.

[5] J. A. Stankovic and R. Rajkumar, "Real-time operating systems," Real-Time
Systems, vol. 28, pp. 237-253, 2004.

[6] P. A. Laplante, "Real-Time Systems Design and Analysis," 1993.
[7] R. Brega, "A real-time operating system designed for predictability and run-

time safety," in Proceedings of The Fourth International Conference on Motion
and Vibration Control (MOVIC), 1998, pp. 379-384.

[8] H. Kopetz, Real-time systems: design principles for distributed embedded
applications vol. 25: Springer, 2011.

[9] M. Masmano, I. Ripoll, A. Crespo, and J. Real, "TLSF: A new dynamic
memory allocator for real-time systems," in Real-Time Systems, 2004. ECRTS
2004. Proceedings. 16th Euromicro Conference on, 2004, pp. 79-88.

[10] H. Li and C. Yin, "Analysis and Improvement of RTEMS Memory
Management," in Education Technology and Computer Science, 2009.
ETCS'09. First International Workshop on, 2009, pp. 107-111.

[11] R. Yerraballi, "Real-time operating systems: An ongoing review," in
Proceedings of the 21st IEEE Real-Time Systems Symposium (RTSS'2000), WIP
Section, Orlando Fl, 2000.

[12] David Kleidermacher and M. Griglock, "Real-time Operating System
Requirements for Use in Safety Critical Systems," Green Hills Software,
Inc2001.

[13] K. S. Gray, "Memory redundancy techniques," ed: Google Patents, 2002.
[14] E. J. Williams, "Memory management in fault tolerant computer systems," ed:

EP Patent 0,817,053, 2003.
[15] F. Qin, S. Lu, and Y. Zhou, "Safemem: Exploiting ECC-memory for detecting

memory leaks and memory corruption during production runs," in High-
Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on, 2005, pp. 291-302.

[16] C. Borchert, H. Schirmeier, and O. Spinczyk, "Generative software-based
memory error detection and correction for operating system data structures," in
Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on, 2013, pp. 1-12.

[17] S. K. Reinhardt and S. S. Mukherjee, "Transient fault detection via
simultaneous multithreading," in ACM SIGARCH Computer Architecture News,
2000, pp. 25-36.

[18] M. M. Swift, B. N. Bershad, and H. M. Levy, "Improving the reliability of
commodity operating systems," ACM Transactions on Computer Systems
(TOCS), vol. 23, pp. 77-110, 2005.

[19] A. K. Sood, "Digging Inside the VxWorks OS and Firmware (The Holistic
Security)," SecNiche Security Labs.

[20] I. Koren and C. M. Krishna, Fault-tolerant systems: Morgan Kaufmann, 2010.

[21] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
"Construction of a highly dependable operating system," in Dependable
Computing Conference, 2006. EDCC'06. Sixth European, 2006, pp. 3-12.

[22] A. Mancina, D. Faggioli, G. Lipari, J. N. Herder, B. Gras, and A. S.
Tanenbaum, "Enhancing a dependable multiserver operating system with
temporal protection via resource reservations," Real-Time Systems, vol. 43, pp.
177-210, 2009.

[23] A. Specification, "653," Avionics Application Software Interface, Annapolis,
MD, 1997.

[24] J. Rufino, S. Filipe, M. Coutinho, S. Santos, and J. Windsor, "ARINC 653
interface in RTEMS," in Proc. DASIA, 2007.

[25] C. L. Liu and J. W. Layland, "Scheduling algorithms for multiprogramming in
a hard-real-time environment," Journal of the ACM (JACM), vol. 20, pp. 46-61,
1973.

[26] M. L. Dertouzos and A. K. Mok, "Multiprocessor online scheduling of hard-
real-time tasks," Software Engineering, IEEE Transactions on, vol. 15, pp.
1497-1506, 1989.

[27] Y. Zhang and K. Chakrabarty, "A unified approach for fault tolerance and
dynamic power management in fixed-priority real-time embedded systems,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, pp. 111-125, 2006.

[28] I. J. Bate, "Scheduling and timing analysis for safety critical real-time
systems," Ph.D., University of York Department Of Computer Science-
Publications-Ycst, 1999.

[29] G. Bournoutian and A. Orailoglu, "Dynamic transient fault detection and
recovery for embedded processor datapaths," in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, 2012, pp. 43-52.

[30] X. Ping and Z. Xingshe, "Security-Driven Fault Tolerant Scheduling
Algorithm for High Dependable Distributed Real-Time System," in Parallel
Architectures, Algorithms and Programming (PAAP), 2011 Fourth
International Symposium on, 2011, pp. 29-33.

[31] G.-M. Chiu and J.-F. Chiu, "A new diskless checkpointing approach for
multiple processor failures," Dependable and Secure Computing, IEEE
Transactions on, vol. 8, pp. 481-493, 2011.

[32] B. Zhang, X. Xu, and B. Li, "Research on the design of software fault
tolerance based on RTEMS," in Computer, Mechatronics, Control and
Electronic Engineering (CMCE), 2010 International Conference on, 2010, pp.
402-405.

[33] T. Wei, P. Mishra, K. Wu, and J. Zhou, "Quasi-static fault-tolerant scheduling
schemes for energy-efficient hard real-time systems," Journal of Systems and
Software, vol. 85, pp. 1386-1399, 2012.

[34] A. S. Tanenbaum, Modern operating systems vol. 2, 1992.
[35] K. P. Birman and T. A. Joseph, "Reliable communication in the presence of

failures," ACM Transactions on Computer Systems (TOCS), vol. 5, pp. 47-76,
1987.

[36] Y. Amir, D. Dolev, S. Kramer, and D. Malki, "Transis: A communication
subsystem for high availability," in Fault-Tolerant Computing, 1992. FTCS-22.
Digest of Papers., Twenty-Second International Symposium on, 1992, pp. 76-
84.

[37] A. Lapidoth and P. Narayan, "Reliable communication under channel
uncertainty," Information Theory, IEEE Transactions on, vol. 44, pp. 2148-
2177, 1998.

[38] R. Thurlow, "RPC: Remote procedure call protocol specification version 2,"
2009.

[39] Y. Tanimura, T. Ikegami, H. Nakada, Y. Tanaka, and S. Sekiguchi,
"Implementation of fault-tolerant GridRPC applications," Journal of Grid
Computing, vol. 4, pp. 145-157, 2006.

[40] S. L. Blinick, J. C. Elliott, and E. Q. Garcia, "Redundant and fault tolerant
control of an I/O enclosure by multiple hosts," ed: Google Patents, 2011.

[41] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
"RAID: High-performance, reliable secondary storage," ACM Computing
Surveys (CSUR), vol. 26, pp. 145-185, 1994.

[42] J. Radatz, A. Geraci, and F. Katki, "IEEE standard glossary of software
engineering terminology," IEEE Std, vol. 610121990, p. 121990, 1990.

[43] A. Avizienis, J.-C. Laprie, and B. Randell, Fundamental concepts of
dependability: University of Newcastle upon Tyne, Computing Science, 2001.

[44] P. Koopman and J. DeVale, "Comparing the robustness of POSIX operating
systems," in Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth
Annual International Symposium on, 1999, pp. 30-37.

[45] A. Shahrokni and R. Feldt, "A systematic review of software robustness,"
Information and Software Technology, 2012.

[46] A. Colin and I. Puaut, "Worst-case execution time analysis of the RTEMS
real-time operating system," in Real-Time Systems, 13th Euromicro Conference
on, 2001., 2001, pp. 191-198.

[47] I. I. P. Ltd., "An Introduction to Safety Critical Systems," 1997.
[48] C. M. Kirsch, "Principles of real-time programming," in Embedded Software,

2002, pp. 61-75.
[49] T. S. Taft and R. A. Duff, Ada 95 Reference Manual. Language and Standard

Libraries: International Standard ISO/IEC 8652: 1995 (E) vol. 1246: Springer,
1997.

[50] E. Kligerman and A. D. Stoyenko, "Real-time Euclid: A language for reliable
real-time systems," Software Engineering, IEEE Transactions on, pp. 941-949,
1986.

[51] V. Barr and S. Montenegro, "BOSS/Ada: An Open Source Ada 95 Safety Kit
A Dependable open source embedded operating system for GNAT," Ada
Deutschland Tagung, pp. 53-66, 2002.

