Image Processing Applications on a Low Power Highly
Parallel SIMD Architecture

Amir Fijany
Italian Institute of Technology
Genova, Italy
amir.fijany @iit.it

Abstract—In this paper, we present and discuss high perfor-
mance implementation of a wide class of image processing
applications on a low-power massively parallel SIMD archi-
tecture, the ClearSpeed CSX700. We present parallel imple-
mentation results for four classes of image processing appli-
cations: feature detection (Harris Corner Detector), stereo
vision (a class of SSD like algorithms), model estimation
(RANSAC), and object detection (based on Histogram of
Oriented Gradient, HOG) on the CSX SIMD architecture.
Our results indicate that this SIMD architecture is indeed a
good candidate for achieving low-power supercomputing ca-
pability, as well as a rather satisfactory degree of flexibil-
ity for implementing various applications. We also compare
our results, when applicable, with similar implementations
on ASIC, FPGAs, and GPGPUs. This comparison cealrly
demonstrates that we achieve a much better absolute com-
putational performance than ASICs and FPGAs, with a bet-
ter relative performance per watt. Compared with GPGPUs,
we achieve similar (and for some cases better) computational
performance but with a significantly better relative perfor-
mance per watt. We show that, by designing appropriate
effient parallel algorithms, this highly parallel SIMD archi-
tecture can represent an excellent candidate for space-borne
applications wherein low-power, light weight, high perfor-
mance computation is a major requirement.

TABLE OF CONTENTS

1 INTRODUCTION t.tviueencensanssassocascescascnnes 1
2 CSX ARCHITECTURE AND ALGORITHMIC CHAL-
LENGES +iiuteuteetentontsscescoscosssssossnssnsons 2
3 TARGET APPLICATIONS ..vvererenncennccanncanas 4
4 RESULTS AND COMPARISON ...iveviecencescanans 8
5 CONCLUSION .iiutietenssssessssssscsscesccscnsans 10
REFERENCES ..uiutieiueneeraceacacacasescacannnes 10
BIOGRAPHY «eviuentneeeeeencncesesencacasasancans 12

1. INTRODUCTION

Currently, we are interested in mobile robots and humanoids
as an interesting and challenging example of emerging em-
bedded computing applications. On one hand, in order to
achieve a large degree of autonomy and intelligent behav-
ior, these systems require a very significant computational

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC Paper #1777, Version 3, Updated 26/10/2010.

Fouzhan Hosseini
Italian Institute of Technology
Genova, Italy

fouzhan.hosseini @iit.it

capability to perform various tasks. On the other hand, they
are severely limited in terms of size, weight, and particu-
larly power consumption of their embedded computing sys-
tem since they should carry their own power supply. More-
over, since these systems need to run various range of applica-
tions, their computing system should provide both flexibility
and high performance.

Various image processing applications are widely used in mo-
bile robots, for example, for 3D modeling of environment
[1], obstacle avoidance [2], navigation [3], object tracking
[4], etc. Conventional computing architectures, even fully ex-
ploiting their features, cannot provide adequate performance
for real-time computation [3] and/or in terms of low power re-
quirements. In fact, while conventional computing architec-
tures provide flexibility, their limitation for this type of appli-
cations is twofold: first, their low computing power, second,
their high power consumption.

Many aerospace applications share the same requirements, in
terms of computational capability, and limitations, in terms of
power consumption. In particular, they require high perfor-
mance image processing capability for various applications.
The NASA/JPL Mars Exploration Rovers (MERs) represent
salient examples of low power mobile robots that rely on their
on-board computing system to achieve local autonomy. Both
Spirit and Opportunity rovers rely on stereo vision compu-
tation for depth map estimation for autonomous navigation
[51, [6]. The rovers were designed to be, as much as possi-
ble, limited in terms of power consumption since they need
to produce energy by using their solar panels. Also the on-
board processor, the RAD6000, was designed to be very low
power. The RAD6000 processor is able to compute one depth
map each 30 seconds for images of resolution of 256x256 [5]
while consuming 7W. We mentioned these two examples of
Mars missions since they are severely limited in terms of en-
ergy while demanding a rather high computational capability.
In fact, they represent the prime examples of the need for
high computing power capabilities in very low power mobile
robots. On the other hand, emerging mobile robot applica-
tions will be expected to achieve the same, if not more, level
of local autonomy while relying on their embedded comput-
ing systems.

For image processing applications, in order to achieve bet-
ter performance and/or lower power consumption, two main
directions have been explored. In the first, ASICs and FP-

GAs are designed and deployed for specific application to
achieve better computational performance and much lower
power consumption than conventional computing architec-
tures. However, while ASIC and FPGA, due to their low
power consumption, are very suitable for embedded appli-
cations, they suffer from lack of flexibility. Furthermore, the
computational performance strongly depends on the level of
parallelism offered by both the application and the hardware.
Another direction is to use General Purpose Graphical Pro-
cessing Units (GPGPUs). GPGUs can theroretically offer
a significant computational power, due to their peak perfo-
prmance, but they are not suitable for embedded applications
due to their rather large power consumption. Also, they of-
fer some degree of flexibility and programmability for im-
plementation of various applications. However, for many ap-
plications involving complex data structure and dependency,
only a limited computational power of GPGPUs can be ex-
ploited.

Emerging highly parallel and low-power SIMD and MIMD
architectures, for example ClearSpeed CSX [7] and Tilera [8],
provide a unique opportunity to overcome the limitations of
conventional computing architectures as well as ASICs, FP-
GAs, and GPGPus. These parallel architectures provide a
much higher computing performance over conventional ar-
chitectures while consuming significantly less power, result-
ing in significantly better overall performance in terms of
GFLOPS or GOPS per watt. They also provide a large de-
gree of flexibility and programmability. However, the main
challenge in efficient exploitation of the capabilities of these
emerging parallel architecture is the design of appropriate al-
gorithm for the target application.

In this paper, we present and discuss high performance im-
plementation of four classes of image processing applications
on a highly parallel SIMD architecture, the ClearSpeed CSX
architecture. This architecture has two cores, each with 96
Processor Elements (PEs), with a peak computing power of
96 GFOLPS, while consuming less than 9 Watts. We present
parallel implementation results for four classes of image pro-
cessing applications: feature detection (Harris Corner Detec-
tor), stereo vision (a class of SSD like algorithms), model
estimation (RANSAC), and object detection (based on His-
togram of Oriented Gradient, HOG) on the CSX SIMD archi-
tecture. While these considered applications have rather sig-
nificantly different computational features in terms of granu-
larity, data dependency, pattern of communication, etc., our
implementation results clearly demonstrate that this archi-
tecture can provide excellent performance and flexibility in
computing these applications. We discuss challenges in ef-
ficient algorithms design and programming for this architec-
ture. We also compare our results, when applicable, with sim-
ilar implementations on ASIC, FPGAs, and GPGPUs. This
comparison cearly demonstrates that we achieve a much bet-
ter absolute computational performance than ASICs and FP-
GAs, with a better relative performance per watt. Compared
with GPGPUs, we achieve similar (and for some cases better)

128 K 128K
| SRAM SRAM]

M Core 1 Core 2 N
o < >
& &
8 Ins Mono Data Ins Mono Data (s}
- Cache Controller Cache Cache Controller Cache a
= =
S < * Y \lr ¥ Sma
> | Poly Controller 11 Poly Controller | g
S v ¥ Y ¥ 2 IS]
g Poly Execution Unit Poly Execution Unit 5
= =

| PE; 43 PE, 4Pt PEgs| a »‘ 4> PEqgs

Programmable /10~ |

PN Programmable /0" | ([1] [f

On Chip Network

Figure 1. Simplified CSX Chip Architecture

computational performance but with a significantly better rel-
ative performance per watt.

This paper is organized as follows. In Section 2, we briefly
discuss the CSX architecture and challenges for effiecient al-
gorithms design. In Section 3, we discuss the four class of im-
age processing applications and their parallel implementation
on the CSX architecture. In Section 4, we present and discuss
our parallel implementations results and compare them with
other implementations. Finally, some concluding remarks are
made in Section 5.

2. CSX ARCHITECTURE AND ALGORITHMIC
CHALLENGES

Architecture Overview

In this section, we briefly review the ClearSpeed CSX 700
architecture with emphasis on some of its salient features that
have been exploited in our implementations (see, for exam-
ple, [7], [9] for more detailed discussion). As illustrated in
Fig. 1, CSX700 has two similar cores, each core has a DDR2
memory interface and a 128KB SRAM, called external mem-
ory. Each core also has a standard, RISC-like, control unit,
also called mono execution unit, which is coupled to a highly
parallel SIMD architecture called poly execution unit.

Poly execution unit consists of 96 processing elements (PEs)
and performs parallel computation (see Fig. 2). Each PE
has a 128 bytes register file, 6KB of SRAM, high speed I/O
channels to two adjacent PEs, as well as external I/O. It also
includes an ALU, an integer multiply-accumulate (MAC)
unit, and an IEEE 754 compliant floating point unit (FPU)
with dual issue pipelined add and multiply, as well as sup-
port for floating point division and square root. The com-
putational units within each PE can operate both in parallel
and pipelined fashion. However, in order to better exploit
these parallel and pipeline capabilities, specific instructions
set called vector type operations should be used.

Poly execution unit includes a Programmable I/O (PIO) unit
(Fig. 2) which is responsible for data transfer between exter-
nal memory and PEs’ memories, called poly memory. The

128 e

Poly Execution Unit
PE; PEi.1 PE; PE;. 4 PEgs
31250
(= iz (2
ala|S|=|<
W a
64 |64 64
e, 184 Register File 64 PR
128 bytes
A
SRAM
32— (6 Kbytes)
(P10 Uit 1/0 Buffer
(64 bytes)
PIO 128
<P Engine & P>

Figure 2. Simplified CSX Core Architecture

PIO unit serially transfers data form each of 96 PEs’ mem-
ories to the external memory and vice versa. As shown in
Fig. 2, the PIO unit consists of a PIO engine and 96 1/O
buffers. Each I/O buffer is connected to the register file and
memory of a PE. In fact, serial data transfer is performed
to/from each PE’s I/O buffer. It is important to note that this
architecture enables the computational units and the PIO unit
to work in parallel, thus enabling overlapping of communica-
tion with computation. This feature is fully exploited in our
implementations to reduce I/O overhead.

Moreover, each PE is capable of communicating with its two
neighboring PEs by using a dedicated bus called swazzle path.
As shown in Fig. 2, swazzle path connects the register file
of each PE to the register files of its left and right neigh-
bors. Consequently, on each cycle, PEs are able to perform
a register-to-register data transfer to either their left or right
neighbor, while simultaneously receiving data from the other
neighbor. The swazzle path can work in a pipeline fashion.
And, in fact, there are some assembly instructions that allow
swazzling of sizes up to 32 bytes much faster than calling the
swazzle functions on multiple of 8-byte objects. The swaz-
zle path provides the facility for parallel data communication
among PEs.

Furthermore, the CSX architecture provides two mechanisms
for global broadcasting of data. In the first mechanism, as-
suming that the data is already resident in the register file of
the mono execution unit, it can then be transfered from mono
register file to all PEs’ register files using a single fast move
instruction. Prior to this operation, data could have been
transfered either from external memory (data cache) to mono
register file or it could have been the result of some prior oper-
ations. In the second mechanism, global broadcasting can be
performed by the PIO unit. For sending the same data to all
PEs, i.e. global broadcasting of data, PIO unit performs one
external memory read, and then distribute the data to all PE’s
I/0 buffers 3. The actual realistic cost of performing the PIO

3When same data is transfered to multiple PEs, the PIO unit attempts to
minimize the number of external memory accesses. However, in practice,
there is no guarantee that the minimum possible number will actually be
achieved.

operations when data is in external memory and needs to be
operated on that in poly registers also involves overhead for
the load operations. Although the first mechanism is faster,
it requires coding in assembly to get the best performance.
Moreover, the benefit of using the PIO over move instruction
by mono is that the PIO controller is a separate functional
unit so the computational units can still be doing useful work
while the PIO unit is transferring data.

Challenges for Efficient Algorithms Design

In order to fully exploit the features of the CSX architecture,
any parallel algorithm design should consider the following
specific issues.

Efficient use of PEs—The excellent performance per watt of
the CSX architecture is achieved by integrating a large num-
ber of rather slow PEs. Therefore, any algorithm design
should attempt to exploit a high degree of parallelism in the
computation so that the 192 PEs are used as much as pos-
sible. Our proposed algorithms for the class of considered
image processing applications indeed achieve a high degree
of PEs utilization. In fact, as will be discussed in Section 3,
for the multi-scale computation of HOG, such an efficient us-
age strategy can even require the solution of an optimization
problem.

External Memory Communication Overhead—As mentioned
before, PIO unit serially transfers data from external mem-
ory to each of 96 PEs’ memories and vice versa. Here, care
should be taken, otherwise communication could become a
significant part of total running time. For example, as re-
ported in [10] for an application on the CSX architecture,
the external memory communications take 80% of total time.
Such a significant communication overhead represents a ma-
jor obstacle for achieving any optimal performance by using
the CSX architecture. An alternative, when possible, is to re-
duce this overhead by overlapping communication with com-
putation. We have extensively used such an overlapping of
the computation with external memory communication in our
algorithm design. For the CSX architecture, in order to fully
utilize the underlying bus bandwidth, at each communication
step the data size has to be at least 32 bytes, i.e. the time re-
quired to transfer 32 byte data or less is almost the same. For
image processing applications wherein pixels are represented
with 8 bit data, this means that at each communication step,
32 pixels could be transfered to each PE. Consequently, the
overhead of external memory communication is not signifi-
cant. However, we further improved the performance of im-
plemented applications with a maximum overlapping of com-
putation with communication.

PE’s Memory Size—An important consideration for the CSX
architecture is the size of PE’s memory which is rather lim-
ited. Consequently, PEs might need to receive data from
external memory or other PEs. Data transfer from external
memory to PEs’ memory (poly memory) is much more ex-
pensive than inter-PE communication via swazzling path.

Vector Operations— The CSX700 has a clock cycle of
250M Hz[11]. Considering one add and one multiply float-
ing point units working in parallel and generating one result
per clock cycle, the peak performance of each PE is then 500
MFOPS, leading to a peak performance of 48 GFLOPS for
one core and 96 GFLOPS for two cores (one chip). However,
sequential (i.e., scalar) operations, wherein single add or mul-
tiply is performed, take 4 clock cycles to be performed [11].
This results to a sequential peak performance of 62.5 MFOPS
for each PE, 8 GFLOPS for one core, and 12 GFLOPS for two
cores (one chip). This indeed represents a drastic reduction in
the peak, and hence, achievable performance. However, vec-
tor instructions which operate on sets of 4 data are executed
much faster, e.g, vector add or multiply instructions take 4
cycles to be completed [11]. Therefore, vector instructions
allow greater throughput for operations. In addition to the
use of vector instruction, we have also used assembly coding
to further improve the performance.

Compiler—The code generated by compiler may not be opti-
mized. Therefore, in order to make sure the best performance
is achieved, we have also written part of our codes in assem-
bly language of the CSX.

3. TARGET APPLICATIONS

we have considered high performance implementation of four
classes of image processing applications: feature detection
(Harris Corner Detector), stereo vision (a class of SSD like
algorithms), model estimation (RANSAC), and object detec-
tion (based on Histogram of Oriented Gradient, HOG) on the
CSX architecture. In this section, we briefly describe the al-
gorithms and discuss their parallel implementation.

Harris Corner Detector

Harris Corner Detector (HCD) [12] is a popular corner detec-
tor due to its invariance to rotation, scale, illumination varia-
tion and image noises. To detect corners in a given image, the
HCD algorithm [12] proceeds as the following. Let I(z,y)
denote the intensity of a pixel located at row = and column y
of the image.

1. For each pixel (x,y) in the input image compute the ele-
9zxz YGzy
Jzy yy

= g : R w
oz = or
ol oI ®
zy — | &34 w
Jzy Jzx Oy
or\?

Gyy = (6y) @ w, (1)
where ® denotes convolution operator and w is the Gaussian

filter.
2. For all pixel (x,y), compute Harris’ criterion:

c(x,y) = det(G) — k(trace(@))?)

ments of the Harris matrix G = as follows:

where det(G) = goz-Gyy — gfcy, k is a constant which should
be determined empirically, and trace(G) = gz + Gyy-

3. Choose a threshold T empirically, and set all ¢(x, y) which
are below 7 to zero.

4. Non-maximum suppression, i.e. extract points (x,y),
which have the maximum ¢(z, y) in a window neighborhood.
These points represents the corners.

Fast implementations of HCD on various architectures have
been considered in the literature including Application Spe-
cific Integrated Circuit (ASIC) [13], Field Programmable
Gate Array (FPGA) [14], Graphics Processing Units (GPU)
[15], and Cell processor [16]. A performance comparison of
these implementations is given in Section 4.

Parallel Implementation on the CSX Architecture. Con-
sidering the SIMD architecture of CSX, we have employed
data parallel model of computation. The first issue in any data
parallel implementation is an efficient data distribution, i.e.,
assigning data to PEs, scheme. Having an image and an array
of PEs, various data distributions schemes could be consid-
ered. The most obvious schemes are row (column)-stripe dis-
tribution, block distribution, and row (column)-cyclic distri-
bution. Let p indicate the number of PEs. Also let ¢ and r de-
note the number of image columns and rows, respectively. In
block distribution scheme, the image is divided into p = d* s
blocks, with each block having ¢/d columns and r/s rows.
The first block is assigned to the first PE, the second one to
the second PE, and so on. In row-strip distribution, the first
r/p rows are assigned to the first PE, the second r/p rows are
assigned to the second PE, and so on. Finally in row-cyclic
scheme, the first row is assigned to the first PE, the second
row to the second PE, and so on.

An important consideration for implementing HCD on the
CSX architecture is the size of PE’s memory which is rather
limited. For the CSX architecture, various data distributions
should be compared in terms of the following parameters:
(a) required memory space for each PE; (b) redundant exter-
nal memory communication; and (c) inter-PE communication
time. We have analyzed the computation of HCD and have
shown that row-cyclic data distribution scheme is the most
efficient for parallel implementation of HCD on the CSX ar-
chitecture [17]. In fact, Row-cyclic distribution needs less
poly memory space and no redundant external memory com-
munication.

As mentioned in Section 2, each CSX core includes 96 PEs.
To apply the row-cyclic distribution scheme for computation,
the input images are divided into groups of 96 rows and the
computation is performed in several iterations (sweeps), de-
noted as outer loop iteration. In each iteration, operations are
performed on a group of 96 rows. To handle boundary condi-
tions, two consecutive iterations are overlapped.

Also to overcome the overhead of external memory com-
munication, communication and computation overlapping is

greatly exploited in our implementation. To achieve maxi-
mum overlapping, each row is divided into a set of segments
of size m. The computation for each row is then performed in
several iterations (sweeps), denoted as inner loop iterations.
In each inner loop iteration, the computation is performed for
a segment of data, i.e., m pixels.

SSD-Based Stereo Vision

The purpose of stereo vision computation is to estimate the
depth map of a 3D environment from two images captured at
the same time and with slightly different viewpoints. Stereo
vision has been extensively investigated and a great variety
of algorithms have been developed [18]. The SSD algorithm
[18] is a window-based approach to obtain the disparity map
on a pair of rectified stereo images. To describe the algo-
rithm, let Tr(4,7) and Iy (4,7) denote the intensity of pixels
located at row ¢ and column j in the right and left images,
respectively. The input parameters of the algorithm are w, the
window size, and (, the maximum disparity. Assuming the
right image as reference, the disparity for each pixel (4, j) in
the right image is calculated as follow:

« Consider a window centered at (7, j) in the right image

« Consider a window centered at (¢, j + k) in the left image
where j <k <j+p

« Calculate convolution of the windows in the left and right
images as

e i b)
SGik = > > [Iem) - Ie(tm+ k)
l=i— w 1 m= _7 w 1
(3)
o The pixel that minimizes S(, j, k) is the best match. So,
k= in S(i, k), 4
8 iy S0 v

d(i, j) = k*

Briefly, the SSD algorithm consists of the following three
steps:

1. Calculating the squared differences of intensity values for
a given disparity

2. Summing the squared differences over square windows

3. Finding the pixels with the minimum sum of squared dif-
ferences.

An extensive overview of stereo vision algorithms, with em-
phasis on application for intelligent vehicles, is presented in
[3]. The results in [3] demonstrate that using a local method
such as Sum of Squared Difference (SSD) algorithm along
with a robust error rejection scheme, such as left-right check
(i.e., using both images as reference) and multiple window
computation, can lead to the best results. However, based on
the results reported in [3] and [19], the conventional archi-
tectures, even fully exploiting their features, cannot provide
adequate performance for real-time implementation of partic-
ularly more advance and hence more accurate stereo vision

algorithms. For example, the implementation results reported
in [3] are far from achieving a real time performance even for
a512x512 image.

In order to achieve real-time performance, a variety of ap-
proaches for implementation of stereo vision on special-
purpose and high performance architectures have been pro-
posed [20], [21], [22], [23]. Most of the special-purpose
architectures proposed for fast and real-time computation
of stereo vision have been focused on the implementation
of SSD algorithm and for, most cases, rather small image
sizes. However, the more accurate is the depth estimation, the
greater is the computational complexity of the algorithm. Us-
ing a left-right check scheme increases the computation by a
factor of two, while using multiple window schemes not only
increases the computational cost but also leads to more com-
plex data communication patterns, making the design of effi-
cient special-purpose architectures more difficult. The com-
putation cost also increases with the image size. In fact, it
seems that efficient implementation for emerging larger im-
age sizes, such as HDTV with a resolution of 1280 x 720,
has not been extensively considered in the literature.

Parallel Implementation on CSX Architecture. We have
analyzed the computation of SSD algorithm and showed that
row-cyclic data distribution scheme is the most efficient for
implementing SSD algorithm (and also for the two variations
of SSD, multiple window and left-right extensions) on the
CSX architecture [24], [25]. In fact, Row-cyclic distribu-
tion needs less poly memory space and no redundant exter-
nal memory communication. The implementation of SSD al-
gorithms on the CSX architecture consists of outer loop and
inner loop iterations as described in HCD implementation.

RANSAC

The RANSAC (RANdom SAmple Consensus) algorithm,
originally developed by Fishler and Bolles [26], has become
a fundamental tool for robust model estimation in computer
vision and image processing applications [27].

RANSAC is an iterative method to estimate parameters of
a certain mathematical model from a set of data which
may contain a large number of outliers. Each iteration of
RANSAC consists of the following two steps.

o Model Generation Step: A minimal sample set (MSS) is
randomly selected from the dataset. Cardinality of MSS is
smallest sufficient number of data to determine model param-
eters. Then, parameters of the model are computed, using
only MSS elements .

o Model Verification Step: RANSAC determines the set of
data in entire dataset which are consistent with the model and
parameters estimated from MSS in previous step. This set of
data is called consensus set (CS).

These steps are performed iteratively until the probability
of finding a better CS drops below a certain threshold and

RANSAC terminates.

To describe RANSAC more formally, assume that dataset,
consisting of N elements, is indicated by D =
{d,d2,--- ,dN} and € denotes the parameter vector. Let
S denote a selected MSS, and err(6,d') be an appropri-
ate function which indicates the error of fitting datum d'
in the model with parameter vector 8. RANSAC algorithm
proceeds as following. First, S is randomly selected from
dataset D, and the model parameters 6 are computed based
on the elements in S (model generation step). In the next
step, RANSAC checks which elements in D fit in the model.
Each datum d! is considered to fit the model, if its fitting er-
ror, err(6, di), is less than a threshold J. If this is the case,
then the datum is added to the consensus set, C'S (model ver-
ification step). After that, the C'S is compared with the best
consensus set C'S* obtained so far. If C'S is ranked better
than C'S™, best consensus set and best model parameters are
updated.

For many applications a real-time implementation of
RANSAC is indeed desirable. However, its computational
complexity represents a major obstacle for achieving such
a real-time performance. The computational complexity of
RANSAC is a function of the number of required iterations,
i.e., the number of generated hypothetical models, and the
size of data set. In fact, RANSAC can often find the cor-
rect model even for high levels of outliers [28]. However, the
number of hypothetical models required to achieve such an
exact model increases exponentially, leading to a substantial
computational cost [28]. Consequently, there has been sig-
nificant effort in improving the performance of RANSAC by
either reducing the number of models, e.g. [29], [30], [31],
or by reducing the size of data set for model evaluation [27],
[32], [33].

An efficient alternative to improve the performance of
RANSAC is to speed up the computation by exploiting paral-
lelism. To our knowledge, such a parallel implementation has
not been extensively and rigorously considered in the litera-
ture. In fact, it seems that the only reported work on parallel
implementation of RANSAC is by Iser et al. [34] wherein a
very limited parallelism has been exploited. In [34] the imple-
mentation of pPRANSAM algorithm, a limited parallelization
of the RANSAM algorithm [35], on an Intel multi-processor
chip has been considered.

Parallel Implementation on the CSX Architecture. One
can consider a rather straightforward parallel implementation
of RANSAC by exploiting parallelism in each iteration. Note
that at each iteration, a same model is evaluated for all the
elements of the data set. This represents a data parallel com-
putation since the evaluation for all the elements of the data
set can be performed in parallel. However, this approach has
certain limitations. First, model estimation is performed se-
rially, i.e. PEs are idle during model estimation. Also, the
utilization of PEs depends on data set size.

AN
AN VAN
xX

NN
R DU VAN VAN

Figure 3. Division of the Image in Cells and Blocks for
Calculating HOG Descriptor

Our parallel implementation of RANSAC denoted as P-
RANSAC can be considered as a multi-stage process
wherein, at each stage, a large number of models are gen-
erated and evaluated in parallel. The checking is then per-
formed at the end of each stage to determine whether more
stages are needed. This approach is motivated by the sim-
ple observation that the iterations of RANSAC are, to a large
degree, independent and can be performed in parallel.

Note that, while this strategy provides a massive degree of
parallelism in the computation, all the processors need to have
access to the whole set of data. On the CSX architecture this
can be efficiently achieved by using the global broadcasting
capability since the elements of the data set can be broadcast
to all PEs. Interestingly, the PEs do not even need to store
the data set. In fact, for many practical applications, the size
of the data set can be even bigger than the available mem-
ory space in the PEs! As was discussed before, this global
broadcasting can be fully overlapped with the PEs computa-
tion and thus do not at all degrade the performance. The main
advantage of this strategy is that it provides a massive degree
of parallelism with a minimum overhead.

Histogram of Oriented Gradient

Histogram of Oriented Gradient (HOG) descriptor [36] is be-
ing widely used in computer vision for object detection, due
to its excellent performance.

To calculate HOG descriptor, the image is first divided into
small spatial regions called cells and the histogram of gradi-
ent orientation is calculated for each cell. Each cell is con-
sidered as a 2D array of m x m pixels. Then, histograms are
normalized over groups of cells, called blocks. Every block
is a 2D array of n x n cells. There is overlapping among the
blocks since each cell participates in several blocks (Fig. 3).

Calculation of HOG descriptor consists of three steps: first,
the magnitude and the orientation of gradient is calculated for
each pixel in the image. To see this, let I (z, y) be the intensity
of pixel located at row = and column y. Then, the magnitude
of gradient, m(z,y), and the orientation of gradient, 6(z,y)

are calculated by:

m(e,y) = L2, 9)? + I, (2, y)? 5)
Iy(xv y)

, 6
I (z,y) ©

where I,(.,.) and I, (., .) denote the partial derivation of I in
direction = and y, respectively.

O(x,y) = arctan

Second, the histograms are calculated for each cell. To cal-
culate histograms, the orientation bin are evenly spaced over
0° — 180° or 0° — 360° into ¢ bins. Each pixel calculates
a vote for the histogram bin based on the orientation of gra-
dient on that pixel, #(x,y). The vote is also a function of
gradient magnitude at that pixel, m(x,y). Also to improve
performance, the contribution of each pixel in cell histogram
is weighted by a Gaussian function centered in the middle of
the block. Moreover, weighted votes are interpolated trilin-
early between the neighboring bin centers in both orientation
and position, to reduce aliasing effect. For more details on
interpolation see [37].

Finally, for each block, the histogram of its cells are com-
bined and normalized to form the HOG descriptor of that
block. For human detection L2-norm is used.

To detect objects, a sliding window based algorithm is used.
First, a detection window is defined as a grid of blocks. The
detection windows are overlapping since a given block can
belong to several detection windows. The descriptor of the
detection window is then obtained by combining the vectors
of HOG descriptors of its blocks. For object detection, the
detection window is scanned across the image at all positions
and scales and the resulting descriptors are fed into a pre-
trained linear SVM classifier to score each descriptor.

Dalal and Triggs [36] have shown that HOG descriptors out-
perform existing descriptors for human detection. However,
a major bottleneck in real-time applications of HOG descrip-
tor is its computational complexity. In fact, in the first origi-
nal implementation of the HOG descriptor on a conventional
computer only a performance of 1 frame per second (fps), for
a rather small image of 320x240 resolution and with a rather
small number of detection window of 800, could be achieved.

Cao et al. [38] have studied implementation of HOG-based
human detector on FPGA. However, they considered some
modifications and simplifications to the original algorithm
since HOG descriptors are not suitable for FPGA implemen-
tation due to their rather complex communication and data
dependency patterns. Implementation of HOG descriptor has
also been considered on General Purpose Graphic Processing
Units (GPGPU) [39], [40]. The comparison of the results are
given in Section 4.

Parallel Implementation on the CSX Architecture For par-
allel computation of HOG-based object detection, the chal-
lenges are complex data dependency pattern, varying granu-

larity (pixel, cell, block, and detection window), and multi-
scale computation. Multi-scale computation represents re-
peated computation of the same problem but with reducing
size. Finding a mapping of computation on a SIMD architec-
ture, which is efficient for various problem sizes, is challeng-
ing.

The computation for object detection by using HOG descrip-
tor can be analyzed at four levels of operations: (a) pixel level,
(b) cell level, (c) block level, and (d) detection level. Thus, the
computation involves several level of operations with differ-
ent granularity. Therefore, the first critical decision to achieve
optimal performance is the choice of grain size. For our par-
allel implementation on the CSX SIMD architecture, we have
shown that a choice of block as the main computation unit is
the most efficient in terms of reducing the redundancy in the
computation and communication [41].

With a block level granularity, the input image is subdivided
into blocks and PEs are assigned to compute the HOG de-
scriptor of blocks. Since, the number of blocks is greater
than the number of PEs (96), each PE has to calculate the
HOG descriptor of several blocks. Hence, the next decision
is to determine the assignment of the blocks to PEs. Since
HOG descriptors of blocks are used as the input for the de-
tection level, this assignment also affects the computation at
the detection level. We have shown that the optimal scheme
for assignment of blocks to PEs is column-wise scheme, i.e.
the blocks in the first m columns are assigned to the first PE,
the blocks in the second m columns are assigned to the sec-
ond PE, and so on [41]. This scheme of assigning blocks
to PEs enable an efficient implementation of detection level
computation.

Therefore, the number of required PEs to perform HOG cal-
culation for one scale of image is determined by number of
image columns. Consequently, if the number of required PEs
is less than 96, some PEs will be idle. Moreover, the compu-
tation time is determined by number of image rows. Conse-
quently, the computation of various scales can be considered
as a set of tasks with different computation time and required
execution recourse (PEs).

So far we have discussed the parallel implementation of
HOG-based object detection on one scale of image. The same
approach can be applied for all scales in several rounds where
in each round the computation is performed for one scale of
image. However, such a straightforward approach would be
inefficient since the number of idle PEs increases as the scale
of the image decreases. A consequence of our parallelization
strategy is that regular operations are performed for all blocks
by all PEs. Therefore, it is possible to perform the computa-
tion on several scales of input image simultaneously in each
round to reduce the number of idle PEs and hence the total
computation time. The key issue is then to find an optimal
scheme for mapping the computations of various scales on
the fixed number of PEs to minimize the total computation

time. This optimization problem is indeed equivalent to the
solution of the strip packing problem.

Strip packing problem consists of packing a set of rectangular
items of width at most W on a strip of fixed width W and
of infinite height (see, for example, [42]). The items may
neither overlap nor be rotated. The objective is to minimize
the height used.

Since each CSX700 core has 96 PEs, it can be considered as
a strip of width 96. Also, as shown in Fig. 4(a), the computa-
tion for scale s of input image can be considered as a rectan-
gle item of width P and height I, where I, and P denote
the number of iterations and the number of PEs required for
computation of scale s, respectively. The objective is to min-
imize the computation time which could be considered as the
height used to place all the rectangles (i.e, the computation of
all different scales of image) into a strip (one CSX700 core).

The strip packing problem is NP-Hard [42]. A class of com-
monly used heuristic algorithms for strip packing problems
are level algorithms. We have used a best-fit decreasing
height (BFDH) heuristic to solve the mapping problem [41].
An example of the packing scheme produced by the BFDH
algorithm is illustrated in Fig. 4(b). In this example, com-
putation is performed on 28 scales of the input image. Each
level in the produced packing represents one round of com-
putation, i.e. all scales of input image which are placed in one
level are computed in one round.

It should be emphasized that the computations of rounds are
totally independent and hence they can be performed in any
order. If more than one CSX700 is used, rounds are divided
into groups, and each group is assigned to one core. Number
of groups is equal to number of available cores.

4. RESULTS AND COMPARISON

In this section, the performance of four implemented appli-
cations discussed in Section 3 on CSX architecture are pre-
sented and compared with the other works in literature.

Harris Corner Detector

We have implemented the following variants of HCD algo-
rithm on the CSX700 architecture: HC D3y3 and HC D55
by using a 3 x 3 and 5 x 5 Gaussian kernel, respectively. Since
our proposed parallel approach provides flexibility, it can be
easily applied to images with different sizes, and to various
sizes of Gaussian filter or non-maximum suppression win-
dow. The performance of implemented algorithms in terms
of latency, frame per second (fps), and sustained GFLOPS
for different image resolutions are summarized in Table 1.
As Table 1 shows, for all tested image resolutions, even for
resolution of 1280x720, our implementation is much faster
than real-time.

Table 2 compares our implementation results with those re-

Is S
<« Py —»
(@)
%21 5127 Slzs S|22
[T IJ wiil l
| 14__824
S16 ST 14+—S,;
Sni | 1— S
SlO J—l'—813
So —S14
Ss [—S1s
S7 —S,,
Se H —S18
Ss “T—Sx
il —S23
S
1 —S2s
S
S

(b)

Figure 4. HOG-based Object Detection (a) Computation
for each scale of image can be presented by a rectangular of
width Ps (number of required PEs) and Height Ig (computa-
tion time) (b) An Example of Packing Produced by the BFDH
Algorithm

ported in the literature. As can be seen, our approach provides
much better performance in terms of latency or frame per sec-
ond while providing a high degree of flexibility in terms of
problem size and parameters.

SSD-Based Stereo Vision

We have implemented following stereo vision algorithms on
the CSX architecture: (a) SSD: basic SSD (b) SSD_MVS5:
SSD with 5 windows (c) SSD_LR: SSD with left-right check

Table 3 presents the performance of implemented stereo
vision algorithms in terms of latency, fps, and sustained
GFLOPS for images of 640x480 and 1280x720 resolutions.
As shown in this table, we achieve real-time, and for most
cases even faster than real-time, performance for all consid-
ered problem instances except for 1280x720 images with dis-
parity of 32, for which only SSD algorithm achieves the real-
time performance.

Another important observation is that, as our practical results
demonstrate, the computation time of different algorithms

Table 1. Performance of HCD on CSX700 Architecture Using 3 x 3 and 5 x 5 Gaussian Filter

) Latency (ms) fps Sustained GFLOPS
Image Resolution
HCDs3y3 | HCDsy5 | HCD3yx3 | HCDsyx5 | HCD3x3 | HC D55

128x128 .165 224 6060 4464 3.97 4.68
352x288 .8 1.22 1250 819 5.06 5.31
512x512 1.74 2.63 574 380 6.02 6.37
640x480 2.15 3.28 465 304 5.71 5.99
1280x720 7.04 10.89 142 91 523 541

Table 2. Comparison of HCD Implementation on CSX

Table 5. Performance in One Stage: for Homography

With Other Implementations in the Literature Estimation ~Number of Data=1024, Number of Model=192
Image Resolution fps reported fps achieved by Steps Latency (ms) | Sustained GFLOPS
in [ref] our approach Model Generation 2.053 4.22
128x128 1367 (ASIC) [13] 4464 Model Verification .2286 20.21
352x288 60 (FPGA) [14] 819 Memory Overhead .00052 -
640x480 99 (GPU) [15] 304 Total 2.282 5.82

Table 4. Comparison of Stereo Vision implementation on
CSX and Conventional Architecture

Algorithm | MPDs reported | MPDs reported
in [3] in [25]
SSD 143 1032
SSD_-MWS5 75 442
SSD_LR 114 501

closely correlate with their computation cost in terms of the
disparity range. That is, the computation time almost linearly
increases with the disparity range, e.g. the computation times
almost doubles for a factor of 2 increase in the disparity range.
This would enable the prediction of the performance for any
disparity. This close correlation is due to the fact that the
disparity range only directly affects the amount of the com-
putation performed by each PE.

Table 4 compares the performance of stereo vision algorithms
implemented on CSX architecture and on conventional archi-
tecture by exploiting SSE instructions [3]. The mega-pixel
disparities per second (MPDs) are obtained by multiplying 4
values : number of image columns, number of image rows,
maximum disparity, and fps.

RANSAC

We have applied the P-RANSAC for the example of estimat-
ing parameters of a homography transform. Homography is
a linear transformation in projective space which relates two
images of a planner scene taken from different view by pin-
hole camera. In the field of computer vision, homography

Table 6. Performance of HOG-base Human detection on
One core and Two Core of CSX

’ \ Latency (ms) \ fps \ Sustained GFLOPS

292.03 34 1.51
146.23 6.8 3

1 core
2 core

transformation has many applications, such as image recti-
fication, image registration, and structure form motion. We
refer the reader to [43] for more details on using RANSAC to
estimate homography transform.

The performance of P-RANSAC in terms of latency and sus-
tained GFLOPS for estimating homography transform are il-
lustrated in Table 5.

As was discussed in Section 2, the CSX architecture allows
overlapping the computation of each PE with the data trans-
fer to and from its memory. We have extensively exploited
this capability in our parallel implementation of RANSAC.
As can be seen from table 5, the external memory communi-
cation overhead takes only .52 us, representing just .02% of
the total computation time.

Histogram of Oriented Gradient

We have implemented our proposed parallel algorithm for
HOG-based human detection on the CSX700 SIMD architec-
ture. By using both cores of the CSX700 processor, we have
achieved a performance of 6.8 fps. Table 6 compares our im-
plementation of one and two cores of CSX700. Our results
illustrates that using both cores of CSX700, we achieved a
near perfect speedup of two.

Table 3. Performance of implemented Stereo Vision algorithms on CSX700 Architecture

. . Latency (ms) fps GFLOPS
Image Resolution | Algorithm
B=16|p=32|p=16|p3=32[p=16]p=232
SSD 5.57 10.56 179 94 6.17 6.51
DM 12. 24.51 4 4.71 4.81

640x480 SS W5 5 5 80 0 7 8

SSD_LR 11.05 21.07 90 47 3.58 3.74

SSD 14.72 28.04 67 35 7.01 7.36

SSD_MW5 33.2 65.18 30 15 5.32 542
1280x720

SSD_LR 29.51 56.58 33 17 4.02 4.18

Table 7. Comparison of HOG implementation on CSX
Architecture with Other Implementations in the Literature

Latency | Peak Performance | fps/ watt
(ms) (GFLOPS)
CSX [41] | 146.23 96 5
GPU [39] 99 384 .06
GPU [40] 67 1788.48 .05

Table 7 compares our implementation of HOG-based human
detection on CSX architecture with those reported in the lit-
erature by using GPGPUs. Although, our implementation,
by using only one CSX architecture, is slower than those on
the GPGPUs in terms of computation time, but, in terms of
power consumption and particularly fps per watt, it achieves
a much better performance. To achieve better performance
in terms of computation times, more CSX700 processors can
be used. As discussed in Section 3, the multi-scale computa-
tion can be divided among more cores, i.e. by using multiple
CSX700, enabling almost a linear speedup. For example, by
using 4 CSX boards a performance of about 25 fps can be
achieved while consuming 36 watts.

5. CONCLUSION

We presented and discussed high performance implementa-
tion of four classes of image processing applications on the
highly paralle]l CSX SIMD architecture. We presented paral-
lel implementation results for feature detection (Harris Cor-
ner Detector), stereo vision (a class of SSD like algorithms),
model estimation (RANSAC), and object detection (based on
Histogram of Oriented Gradient, HOG) on the CSX SIMD ar-
chitecture. As discussed, these considered applications have
rather significantly different computational features in terms
of granularity, data dependency, pattern of communication,
etc.. For example, our parallel implementation for HCD and
SSD represents a rather fine grain computation (parallelism is
exploited at the pixel level) while for HOG is a medium grain
computation (parallelism is exploited at the block level) and
for RANSAC is rather coarse grain (parallelism is exploited
at model generation and validation level). Furthermore, they

10

involve different pattern of data communication, including
global communication for RANSAC. Our implementation re-
sults clearly demonstrate that this architecture can provide ex-
cellent performance and flexibility in computing these appli-
cations.

Currently there is a lot emphasis on the use of FPGA and
GPGPUs for image processing applications. However, the
comparison of our implementation results with the similar
ones on the ASIC and FPGA for HCD and SSD computa-
tion clearly demonstrated that we achieved a much better ab-
solute computational performance than ASICs and FPGAs,
with a better relative performance per watt. Compared with
GPGPU, we achieved a lower computational performance for
HOG but much higher for HCD computation while for both
cases we achieved a significantly better relative performance
per watt. We believe that such results can indeed further moti-
vate the investigation and application of emerging highly par-
allel, low power, SIMD and MIMD architectures for future
aerospace applications.

REFERENCES

[1] S.Fleck, F. Busch, P. Biber, W. Strafler, and H. Andreas-
son, “Omnidirectional 3d modeling on a mobile robot
using graph cuts,” in IEEE International Conference on
Robotics and Automation (ICRA’0S5),, 2006, pp. 1748—

1754.

L. Nalpantidis, I. Kostavelis, and A. Gasteratos,
“Stereovision-based algorithm for obstacle avoidance,”
in 2nd International Conference on Intelligent Robotics
and Applications (ICIRA °09), 2009, pp. 195-204.

W. van der Mark and D. M. Gavrila, “Real-time dense
stereo for intelligent vehicles,” IEEE Trans. on Intelli-
gent Transport System, vol. 7, no. 1, pp. 38-50, 2006.

(2]

(3]

[4] F. Tang, M. Harville, H. Tao, and I. Robinson, “Fusion
of local appearance with stereo depth for object track-
ing,” in Computer Vision and Pattern Recognition Work-

shops(CVPRW’08), 2008, pp. 142-149.

L. Matthies, M. Maimone, A. Johnson, Y. Cheng,
R. Willson, C. Villalpando, S. Goldberg, A. Huertas,
A. Stein, and A. Angelova, “Computer vision on mars,”

(5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Int. J. Comput. Vision, vol. 75, no. 1, pp. 67-92, 2007.

M. Maimone, A. Johnson, Y. Cheng, R. Willson, and
L. Matthies, “Autonomous navigation results from the
mars exploration rover (mer) mission,” in 9th Int. Symp.
on Experimental Robotics(ISER), June 2004.

Clearspeed Whitepaper: CSX Processor Architecture,
ClearSpeed, www.clearspeed.com, 2007.

http://www.tilera.com/.

CSX600 Hardware Programming Manual, ClearSpeed,
www.clearspeed.com, Jan 2008, document No. 06-RM-
1305 Revision: 1.A.

V. Heuveline and J.-P. Wei(3, “Lattice boltzmann meth-
ods on the clearspeed advanceT™ accelerator board,”
The European Physical Journal-Special Topics, vol.
171, no. 1, pp. 31-36, 2009.

CSX600/CSX700 Instruction Set Reference Manual,
ClearSpeed, www.clearspeed.com, August 2008, 06-
RM-1137 Revision: 4.A.

C. Harris and M. Stephens, “A combined corner and
edge detector,” in 4th Alvey Vision Conference, 1988,
pp. 147-151.

C.-C. Cheng, C.-H. Lin, C.-T. Li, S. C. Chang, and L.-
G. Chen, “iVisual: an intelligent visual sensor SoC with
2790fps CMOS image sensor and 205GOPS/W vision
processor,” in 45th annual Design Automation Confer-
ence(DAC "08), 2008, pp. 90-95.

B. Dietrich, “Design and implementation of an FPGA-
based stereo vision system for the EyeBot M6,” Univer-
sity of Western Australia, 2009.

L. Teixeira, W. Celes, and M. Gattass, “Accelerated
corner-detector algorithms,” in /9¢th British Machine Vi-
sion Conference(BMVC "08), 2008, pp. 625-634.

T. Saidani, L. Lacassagne, S. Bouaziz, and T. M. Khan,
“Parallelization strategies for the points of interests al-
gorithm on the cell processor,” in 5th International sym-
posium on Parallel and Distributed Processing and Ap-
plications (ISPA’07), 2007, pp. 104-112.

F. Hosseini, A. Fijany, and J.-G. Fontaine, “Highly par-
allel implementation of harris corner detector on CSX
SIMD architecture,” in 4th Workshop on Highly Paral-
lel Processing on a Chip (HPPC’10) in conjunction with
Euro-par, 2010.

D. Scharstein and R. Szeliski, “A taxonomy and eval-
uation of dense two-frame stereo correspondence al-
gorithms,” International Journal of Computer Vision,
vol. 47, pp. 7-42, 2001.

L. Di Stefano, M. Marchionni, and S. Mattoccia, “A pc-
based real-time stereo vision system,” Int. Journal of
Machine Graphics & Vision, vol. 13, no. 3, pp. 197—
220, 2004.

N. Chang, T. Lin, T. Tsai, Y. Tseng, and T. Chang,
“Real-time dsp implementation on local stereo match-

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

ing,” in IEEE International Conference on Multimedia
and Expo, 2007, pp. 2090-2093.

Y. Jia, X. Zhang, M. Li, and L. An, “A miniature
stereo vision machine MSVM-III for dense disparity
mapping,” in 17th International Conference on Pattern
RecognitionICPR’04, vol. 1, 2004, pp. 728-731.

J. Woodfill, G. Gordon, and R. Buck, “Tyzx deepsea
high speed stereo vision system,” in [EEE Conf. on
Computer Vision and Pattern Recognition, 2004, pp.
41-45.

F. Gurkaynak, M. Kuhn, S. Moser, O. Isler, A. Burg,
N. Felber, H. Kaeslin, and W. Fichtner, “Efficient ASIC
implementation of a real-time depth mapping stereo vi-
sion system,” in PROCEEDINGS OF THE IEEE MID-
WEST SYMPOSIUM ON CIRCUITS AND SYSTEMS,
vol. 46, no. 3, 2003, p. 1478.

F. Hosseini, A. Fijany, S. Safari, R. Chellali, and J.-
G. Fontaine, “Real-time parallel implementation of ssd
stereo vision algorithm on CSX SIMD architecture,”
in 5th International Symposium on Advances in Visual

Computing (ISVC °09), 2009, pp. 808-818.

F. Hosseini, A. Fijany, S. Safari, and R. Chellali, “Fast
implementation of dense stereo vision algorithms on a
highly parallel SIMD architecture,” Submitted to Real-
Time Image Processing.

M. A. Fischler and R. C. Bolles, “Random sample con-
sensus: a paradigm for model fitting with applications to

image analysis and automated cartography,” Commun.
ACM, vol. 24, no. 6, pp. 381-395, 1981.

O. Chum and J. Matas, “Randomized RANSAC with
Ty.q test,” in Proc. British Machine Vision Conference
(BMVC’02), Sep. 2002, pp. 448-457.

R. Raguram, J.-M. Frahm, and M. Pollefeys, “A com-
parative analysis of RANSAC techniques leading to
adaptive real-time random sample consensus,” in Proc.
of the 10th European Conference on Computer Vision

(ECCV *08), 2008, pp. S00-513.

O. Chum and J. Matas, “Matching with PROSAC - pro-
gressive sample consensus,” in Proc. International Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1, June 2005, pp. 220-226.

B. J. Tordoff and D. W. Murray, “Guided-MLESAC:
Faster image transform estimation by using matching
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 10, pp. 1523-1535, 2005.

D. R. Myatt, P. H. S. Torr, S. J. Nasuto, J. M. Bishop,
and R. Craddock, “NAPSAC: High noise, high dimen-
sional robust estimation,” in Proc. British Machine Vi-
sion Conference (BMVC’02), Sep 2002, pp. 458-467.

D. Nistér, “Preemptive RANSAC for live structure and

motion estimation,” Mach. Vision Appl., vol. 16, no. 5,
pp- 321-329, 2005.

J. Matas and O. Chum, “Randomized RANSAC with

[34]

[35]

[36]

[37] N

[38]

[39]

[40]

[41]

[42]

[43]

sequential probability ratio test,” in Proc. IEEE Interna-
tional Conference on Computer Vision (ICCV’05), Oct
2005, pp. 1727-1732.

R. Iser, D. Kubus, and F. M. Wahl, “An efficient parallel
approach to random sample matching (PRANSAM),”

in Proc. International Conference of Robotics and Au-
tomation(ICRA’09), May 2009, pp. 1199-1206.

S. Winkelbach, S. Molkenstruck, and F. M. Wahl, “Low-
cost laser range scanner and fast surface registration
approach,” in 28th Annual Symposium of the German
Association for Pattern Recognition (DAGM’06), Sep
2006, pp. 718-728.

N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in Proc. International Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1, Jun 2005, pp. 886—893.

. DALAL, “Finding people in images and videos,”
Ph.D. dissertation, National Polytechnic Institute of
Grenoble, July 2006.

T. P. Cao, G. Deng, and D. Mulligan, “Implementation
of real-time pedestrian detection on FPGA,” in 23rd In-
ternational Conference on Image and Vision Computing
New Zealand(IVCNZ’08), Nov 2008, pp. 1-6.

C. Wojek, G. Dorkd, A. Schulz, and B. Schiele,
“Sliding-windows for rapid object class localization: A
parallel technique,” in Proc. of the 30th DAGM sympo-
sium on Pattern Recognition, Jun 2008, pp. 71-81.

V. Prisacariu and I. Reid, “fastHOG - a real-time gpu
implementation of HOG,” Department of Engineering
Science, Oxford University, Tech. Rep. 2310/09, 2009.

F. Hosseini and A. Fijany, “Fast parallel implementa-
tion of hog-based human detection on a highly parallel,
low power, SIMD architecture,” Submitted to 25th IEEE
International Parallel & Distributed Processing Sympo-
sium(IPDPS ’11).

N. Ntene and J. H. van Vuuren, “A survey and compar-
ison of guillotine heuristics for the 2d oriented offline
strip packing problem,” Discrete Optimization, pp. 174—
188, 2009.

R. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd ed. = Cambridge University
Press, 2003.

12

BIOGRAPHY

Amir Fijany is a Senior Researcher
in the TeleRobotics and Applications
(TERA) Department of the Italian Insti-
tute of Technology (IIT). He joined IIT
in June 2008. Prior to joining IIT, he was
an Associated Tech Fellow at Northrop
" Grumman Corp. (January 2008-June

: | 2008) and a Principal Research Scientist
in and Technical Group supervisor of the Advanced Com-
puting Algorithms and ISHM Technologies Group at the Jet
Propulsion Laboratory, California Institute of Technology
(July 1987-January 2008). He received his BS and MS de-
grees in Electrical Engineering from School of Engineering,
Tehran University, and DEA and PhD degrees in Computer
engineering from University of Paris XI (Orsay). His re-
search interests include model-based diagnosis, sensor place-
ment, new computing devices and paradigms, advanced al-
gorithms for highly parallel computation, and quantum in-
formation processing. He is the author/coauthor of over 80
scientific and technical papers, and research monographs. He
holds 11 patents (three pending) on model-based diagnosis,
new computing devices, and advanced architectures for signal
processing and robotics applications. He has received over 30
NASA Technical Innovation Awards.

Fouzhan Hosseini is a PhD candidate in
Tele Robotics and Applications (TERA)
at Italian Institute of Technology (IIT).
She joined IIT in February 2009. She is
currently working on the programming
models and parallel algorithms suitable
for emerging low-power highly parallel
.4 J computer architectures to provide super-
comp 1ng level capability for robotic systems and other em-
bedded image processing applications. She received the B.S.
and M.S. degrees in computer engineering from School of
Electrical and Computer Engineering, University of Tehran,
in 2006 and 2008, respectively. Her research activities
include parallel algorithms, parallel programming models,
computer architectures, and autonomous and embedded sys-
tems. She was ranked as second best student among computer
engineering students of University of Tehran, in 2006. She is
the recipient of Tehran University award for the best student
in 2005.

