
ARINC 653 INTERFACE IN RTEMS

José Rufino1, Sérgio Filipe2, Manuel Coutinho1, Sérgio Santos2, and James Windsor3

1Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, E-mail: ruf@di.fc.ul.pt
2Skysoft Portugal, S.A. - Av. D. João II, Lote 1.17.02, 7, 1998-025 Lisboa, Portugal, E-mail: sergio.filipe@skysoft.pt

3European Space Agency, ESA/ESTEC, 2200 AG Noordwijk, The Netherlands, E-mail: James.Windsor@esa.int

ABSTRACT

The ARINC 653 specification is assuming a key role in
the provision of a standard operating system interface for
safety-critical applications in the aeronautic market and
it is foreseen to acquire a similar status on the space
market. The ARINC 653 application interface is inde-
pendent from the underlying hardware and from a given
operating system implementation. This paper describes
how RTEMS, the Real-Time Executive for Multiproces-
sor Systems, can be adapted to offer the application in-
terface and the functionality required by the ARINC 653
standard. The use of RTEMS is highly relevant given its
qualification for on-board software of unmanned space
programs.

Key words: ARINC 653; Real-Time Kernels; RTEMS;
Safety-critical embedded systems.

1. INTRODUCTION

The ARINC 653 standard [1] has its origin in the civil
aviation world and it aims to provide a standardized in-
terface between a given Real-Time Operating System
(RTOS) and the corresponding application software as
well as a set of functionalities aimed to improve the safety
and certification process of a safety-critical system. The
ARINC 653 specification [1] and its concept of parti-
tioning (spatial and temporal) are gaining increased im-
portance and acceptance in the realm of aeronautics and
space applications [2], as it happens within the scope of
the European Space Agency (ESA) Technology Harmo-
nization effort for space on-board software [3].

The adoption of the ARINC 653 concept in space on-
board software will provide the application developers
with an environment that is standard and independent
from any RTOS and the integrators with an easier inte-
gration environment together with portable applications
[4]. The partitioning concept makes it adequate to soft-
ware with different degrees of criticality [3].

The technological interest of ESA in the ARINC 653
standard was expressed in [5]. This paper discusses the

main results achieved under the scope of AIR, an inno-
vation initiative sponsored by ESA aiming the definition
and design of an ARINC 653 compliant system archi-
tecture based on RTEMS, the Real-Time Executive for
Multiprocessor Systems [6], a highly modular multitask-
ing kernel qualified for critical on-board software of un-
manned space programs [7].

2. ARINC 653 FUNDAMENTAL CONCEPTS

The ARINC 653 specification is one of the most impor-
tant blocks from the Integrated Modular Avionics defini-
tion [8], where the partitioning concept emerges as a way
to ensure protection and functional separation between
applications, usually for fault containment and ease of
verification, validation and certification [1, 2]. Similar
concerns do exist for space applications [3, 5, 4].

2.1. ARINC 653 System Architecture

The architecture of a standard ARINC 653 system is il-
lustrated in Figure 1. It comprises the application soft-
ware layer, with each application running in a confined
context, dubbed partition in ARINC 653 terminology [1].
The application software layer may include also a set of
optional system partitions intended to manage the inter-
actions with specific hardware devices. Appropriate sup-
port from the core software layer (e.g. hardware interfac-
ing and device drivers) is required.

Application partitions consist in general of one or more
processes and can only use the services provided by a log-
ical application executive (APEX) interface, as defined in
the ARINC 653 specification [1]. However, a system par-
tition may use also specific functions provided by the core
software layer, thus being allowed to bypass the standard
APEX interface.

The execution environment provided by the OS kernel
module must furnish a relevant set of operating system
services, such as process scheduling and management,
time and clock management as well as inter-process syn-
chronization and communication. Containment of pos-



����������	


�������	�


����������	


�������	�� �������


�������	�


�������


�������	��

�
����	�������

����������������

��	����	�
������	��

��������

Figure 1. Standard ARINC 653 System Architecture

sible faults inside the domain of each partition must be
ensured by the core software layer [1].

2.2. Spatial and Temporal Partitioning

Spatial partitioning ensures that it is not possible to an
application to access the memory space (both code and
data) of another application running on a different parti-
tion. Temporal partitioning ensures that the activities in
one partition do not affect the timing of the activities in
other partition. In ARINC 653, this is supported by a
fixed cycle based scheduling, where a major time frame
of fixed duration is periodically repeated throughout run-
time operation.

2.3. Health Monitoring

The Health Monitoring (HM) functions consist in a set of
mechanisms to monitor system resources and application
components. The HM helps to isolate faults and to pre-
vent failures from propagating. Within the scope of the
ARINC 653 standard specification the HM functions are
defined for process, partition and system levels [1]. The
fundamental issue regarding the migration of the HM ser-
vices from the aeronautic to the space environment is the
impossibility of providing human assistance on space de-
vices. As such the HM mechanisms on space must pro-
vide much stronger recovery mechanisms as to assure a
failure will not produce permanent losses.

2.4. ARINC 653 Service Interface

The ARINC 653 service requests define the application
executive APEX interface layer (Figure 1) provided to
the application software developer and the facilities the
core executive shall supply. A required set of services

is mandatory to claim strict compliance with the ARINC
653 standard [1]. Those services are grouped in the fol-
lowing major categories: partition and process manage-
ment, time management, intra and inter-partition commu-
nications, and health monitoring.

2.5. ARINC 653 Implementations

At the present time the currently available ARINC 653
implementations are commercial and very expensive so-
lutions provided by major companies of the aeronautic
market.

The most relevant example is the Thales MACS2 OS cur-
rently installed on the new AIRBUS A380. Other ex-
amples are the LynxOS-178 ARINC 653 compliant that
shall be used as the RTOS for some of the Galileo ground
segment elements and Wind River Platform for Safety
Critical ARINC 653 which is already in use in some un-
manned aerial vehicle projects like the US Air Force test
aircraft X47B Pegasus.

The AIR innovation initiative represents a first but signif-
icant step toward the usage of off-the-shelf license-free
open-source RTOS kernels in the definition and design
of ARINC 653 based systems. In this context, a solu-
tion integrating RTEMS is particularly interesting given
its qualification for use in space on-board software devel-
opments [7].

3. THE RTEMS KERNEL

The RTEMS (Real-Time Executive for Multiprocessor
Systems) is a well-known, real-time multitasking kernel,
with a modular architecture, offering interesting charac-
teristics to support the development of real-time embed-
ded applications.

The RTEMS is designed to support applications with
real-time requirements while maintaining a compatible
interface with open standards. The set of features offered
by RTEMS includes:

• multitasking capabilities;

• event-driven, priority-based, preemptive scheduling;

• comprehensive mechanisms for inter-task communication
and synchronization;

• high degree of user configurability;

• support to homogeneous and heterogeneous multiproces-
sor system architectures.

Though not providing all the required mechanisms, the
RTEMS functionality is in conformity with the deploy-
ment of the ARINC 653 specification, in the sense
the standard specifically requires, among other features,
priority-based, preemptive task scheduling and a set of



inter-task communication and synchronization capabili-
ties.

The executive interface presented to the application is
formed by grouping directives into logical sets called
in RTEMS terminology, resource managers (Figure 2).
These managers provide a fundamental basis for the im-
plementation of the ARINC 653 services.

�������

���	��
���	���


���

�
���


����

��	�����	

���������

����	
�����


���	�	���

������

���
����	���

������

� !"�	�
������

��	��

����	����

��
	�����������

Figure 2. The RTEMS resource managers

From the point-of-view of its internal architecture,
RTEMS can be viewed as a set of layered components
that provide a set of services to real-time applications.

The RTEMS is considered a robust multitasking operat-
ing system kernel, supporting a wide range of proces-
sors through the encapsulation of hardware dependent
features in an adaptation layer, known as board support
package (BSP). This includes processor architectures as
diverse as: the Intel IA-32 family [9]; SPARC architec-
tures, such as the radiation-hardened fault-tolerant LEON
and ERC32 processor cores [10].

4. AIR - ARINC 653 INTERFACE IN RTEMS

This section describes the fundamental ideas on how
the Real-Time Executive for Multiprocessor Systems
(RTEMS) [6] can be adapted in order to offer the ap-
plication interface and the functionality required by the
ARINC 653 specification [1].

4.1. AIR System Architecture

A simple solution for providing the ARINC 653 func-
tionality missing in off-the-shelf RTOS kernels, such as
RTEMS, implies to encapsulate those functions in com-
ponents with a well-defined interface and add them to the
bare operating system architecture.

The design of the AIR architecture in essence preserves
the hardware and RTOS independence defined within the
scope of the ARINC 653 specification [1, 4]. The AIR
specific modules (cf. Figure 3) that need to be added to

the RTOS kernel (e.g. RTEMS) do concern both spatial
and temporal partitioning and do include the provision of
the following functions:

• AIR partition scheduler, selecting at given times
which partition owns system resources, namely the
processing infrastructure. It secures temporal segre-
gation using a single fixed cyclic scheduler.

• AIR partition dispatcher, which has the responsi-
bility of saving the execution context of the running
partition and of restoring the execution context for
the heir partition. It secures the management of all
provisions required to guarantee spatial segregation.

• AIR inter-partition communication module, al-
lowing the exchange of information between differ-
ent partitions without violating spatial segregation
constraints.

• ARINC 653 application executive interface
(APEX), for each partition in the system, defin-
ing the services in strict conformity with the AR-
INC 653 standard and designed as much as possi-
ble by mapping the ARINC 653 service primitives
into the native and/or POSIX primitives of RTEMS
[1, 6, 11].

4.2. AIR Partitioning Support Mechanisms

This section discusses the design and the attributes of the
specific mechanisms introduced in the AIR architecture
to secure ARINC 653 functionality.

Design Principles

To ensure flexibility and modularity, instead of modifying
the RTOS scheduler to extend it to the partitioning con-
cept, the approach followed in the AIR architecture uses
one instance of the native RTOS scheduler (as provided
by the RTEMS kernel, in the example illustrated in Fig-
ure 3) for process priority-based preemptive scheduling
inside each partition. This is in conformity with the AR-
INC 653 specification [1]. No fundamental modification
is needed to the functionality of the RTOS process sched-
uler for its integration in the AIR system. In fact, this
two-level hierarchical scheduler approach secures parti-
tion and process scheduler decoupling, thus allowing the
use of different operating systems in different partitions
(e.g. RTEMS [6], eCos [12],...).

Dependability Attributes

The use of a RTOS kernel instance per partition is also
useful to guarantee a set of safety and security-related at-
tributes, given it restricts code, data, configuration and
execution context references to the confined and pro-
tected scope of a partition (cf. Figure 3).



��������	��
�� �


�
�

�
�
��

�
��
�
�


������
���


�
������� 
�
������� 
�
������� 
�
�������

���������
���

��������	��
�� �


�
�

�
�
��

�


�
��
�
�
��
��


�


������
�� 


�
������ 
�
������ 

���������
�� 

��������	��
�� �


�
�

�
�
��

�


�
��
�
�
��
��


�


������
��!


�
������! 
�
������! 
�
������!

���������
��!

�


�
�

�
�
��

�
��
�
�


�
�������"�������#��������"��

���������$
������
���
%%�������
�

����
������
����"������

�


�
��
�
�
��
��


�

�
��
�
�

�
��
�
�

�


�
��
�
�
��
��


�

�&�'��(�����


�
�������"�������#��������"��

�&�'��(�����


�
�������"�������#��������"��

�&�'��(�����

����
������
���������"��

�
��
�

�
��
��
�

�
�'
�
�
�
�
�
%
�
�
�

Figure 3. Overview of the AIR System Architecture

Securing Spatial Segregation

An effective support to ARINC 653 spatial partitioning
requires the use of specific memory protection mecha-
nisms usually implemented in a hardware memory man-
agement unit (MMU). This comprises not only the pro-
tection of partition memory addressing spaces but also
a functional protection concerning the management of
privilege levels and restrictions to the execution of priv-
ileged instructions. Though there is room for enhance-
ments, a basic set of such mechanisms do exist in the
Intel IA-32 architecture and, in a given extent, in the
SPARC LEON and ERC32 processor cores. Inside each
partition, i.e. at the process level, a flat memory address-
ing scheme fully compliant with the ARINC 653 require-
ments is specified for the AIR architecture [1, 4].

Securing Temporal Segregation

The ARINC 653 standard specification [1] restricts the
processing time assigned to each partition, in conformity
with given configuration parameters. This means a sin-
gle partition cannot monopolize the usage of the proces-
sor infrastructure thus preventing the applications in other
partitions of being executed.

����

������	
���
�������	
�

����
�
���� ����
�
���� ����
�
����

����������
������� ��� ���� ���� ���� ���� ����

Figure 4. Example of a AIR partition scheduling

The scheduling of partitions defined by the ARINC 653
standard is strictly deterministic over time. Each partition
has a fixed temporal window in which it has control over
the computational platform. Each partition is scheduled
on a fixed, cyclic basis. A Major Time Frame (MTF) of
fixed duration, defined off-line, is periodically repeated
throughout runtime operation [1]. An example of tempo-
ral partitioning is provided in Figure 4.

In the AIR architecture, temporal segregation is ensured
by the AIR partition scheduler.

Additional Dependability Mechanisms

The AIR architecture also includes a set of advanced con-
trol mechanisms related with both spatial and temporal
partitioning, such as: interrupt management and control
of interrupt servicing on a per partition basis; optimal ser-
vicing of global system clock interrupts, allowing the use
of precise timing references. In addition, the AIR archi-
tecture may include a set of extensions to the ARINC 653
standard intended to enhance system dependability and
determinism. For example, the utilization of specific
timeliness control mechanisms, enforcing bounded pro-
cessing times: in the servicing of external/internal asyn-
chronous events (e.g. interrupts) [13]; in the management
of ARINC 653 services.

4.3. AIR APEX Interface

In strict conformity with the ARINC 653 specification
[1], the AIR architecture furnishes at the application ex-
ecutive (APEX) interface the following set of services:

• partition management;

• process management;

• time management services;

• inter-partition communication services;

• intra-partition communication services;

• health monitoring.

Most of these services can be implemented by map-
ping the ARINC 653 functionality into the native and/or
POSIX primitives of RTEMS [6, 11]. The exceptions do
concern:



• some details of partition management (e.g. partition
status), which must be furnished by the AIR Parti-
tion scheduling/dispatcher components;

• inter-partition communication services, which are
almost directly mapped into the functionality pro-
vided by the AIR inter-partition communication
module.

In respect to health monitoring functions and in contrast
with the avionics requirements where maintenance is pro-
vided when the aircraft is on ground and is mostly done
off-line, in the space environment maintenance must be
provided during system operation, defining a major con-
straint to system requirements. Hence, on the space en-
vironment, the health monitoring services should have
major adaptations and added complexity as human assis-
tance is probably not available.

5. CONCLUDING REMARKS

The AIR architecture aims to provide the developers and
the integrators of space on-board software with an envi-
ronment that is standard and in strict conformity with the
ARINC 653 specification [1]. The AIR solution is hard-
ware and operating system independent and it exploits
the usage of conventional off-the-shelf license-free open-
source RTOS kernels, such as RTEMS [6], a real-time
multitasking kernel qualified for use in space on-board
software developments [7].

The paper discusses the definition and design of the AIR
architecture and how its fundamental components can be
integrated in a multi-executive core layer structure, which
uses a RTOS kernel instance per partition. Partitions are
the units of protection and functional separation of appli-
cations in both spatial and temporal domains. The AIR
architecture enforces the concept of partitioning and pro-
vides all the ARINC 653 services and functionally with-
out making significant changes to the bare RTOS kernel.
RTEMS is being used in the engineering of an AIR proof
of concept prototype applied to Intel IA-32 processors
and (possibly) to a SPARC LEON/ERC32 processor core
(synthetic target).

REFERENCES

[1] Airlines electronic engineering committee (AEEC),
avionics application software standard interface
(ARINC specification 653-1). ARINC, Inc., 2003.

[2] J. Rushby. Partitioning in avionics architectures:
Requirements, mechanisms and assurance. Tech-
nical Report NASA CR-1999-209347, SRI Interna-
tional, California, USA, June 1999.

[3] P. Plancke and P. David. Technical note on on-board
computer and data systems. European Space Tech-
nology Harmonisation, Technical Dossier on Map-
ping, TOS-ES/651.03/PP, ESA, February 2003.

[4] N. Diniz and J. Rufino. ARINC 653 in space. In
Proceedings of the DASIA 2005 ”DAta Systems In
Aerospace” Conference, Edinburgh, Scotland, June
2005. EUROSPACE.

[5] J-L. Terraillon and K. Hjortnaes. Technical note
on on-board software. European Space Technol-
ogy Harmonisation, Technical Dossier on Mapping,
TOSE-2-DOS-1, ESA, February 2003.

[6] OAR - On-Line Applications Research Corpora-
tion. RTEMS C Users Guide, August 2003. Edition
4.6.6, for RTEMS 4.6.6 edition.

[7] J. Seronie-Vivien and C. Cantenot. RTEMS op-
erating system qualification. In Proceedings of
the DASIA 2005 ”DAta Systems In Aerospace”
Conference, Edinburgh, Scotland, June 2005. EU-
ROSPACE.

[8] Airlines electronic engineering committee (AEEC),
design guidance for integrated modular avionics
(ARINC specification 651). ARINC, Inc., 1991.

[9] OAR - On-Line Applications Research Corpora-
tion. RTEMS Intel i386 Applications Supplement,
August 2003. Edition 4.6.6, for RTEMS 4.6.6 edi-
tion.

[10] OAR - On-Line Applications Research Corpora-
tion. RTEMS SPARC Applications Supplement, Au-
gust 2003. Edition 4.6.6, for RTEMS 4.6.6 edition.

[11] OAR - On-Line Applications Research Corpora-
tion. RTEMS POSIX API Users Guide, August
2003. Edition 4.6.6, for RTEMS 4.6.6 edition.

[12] A. Massa. Embedded Software Development with
eCos. Prentice-Hall, 2002. ISBN 0130354732.

[13] M. Coutinho, J. Rufino, and C. Almeida. Control
of event handling timeliness in RTEMS. In Pro-
ceedings of the 17th IASTED International Confer-
ence on Paralel and Distributed Computing Systems
- PDCS 2005, Phoenix, Arizona, USA, November
2005. IASTED.

[14] IEEE Std 1003.1 - standard for information technol-
ogy portable operating system interface (POSIX)
system interfaces, 2004.

[15] IEEE Std 1003.13 - standard for information tech-
nology - standardized application environment pro-
file (AEP) - POSIX real-time and embedded appli-
cation support, 2003.


