
A Real-Time Gracefully Degrading Avionics System for Unmanned Aerial Vehicles

Belal H. Sababha

Computer Engineering Department

Princess Sumaya University for Technology

Amman, Jordan

b.sababha@psut.edu.jo

Osamah A. Rawashdeh and Waseem A. Sa’deh

Electrical and Computer Engineering Department

Oakland University

Rochester, Michigan, USA

{rawashd2, wasadeh}@oakland.edu

ABSTARACT

Graceful degradation is an approach for developing

dependable safety-critical embedded applications, where

redundant active or standby resources are used to cope with

faults through system reconfiguration at run-time. Compared

to traditional hardware and software redundancy, it is a

promising technique that may achieve dependability with a

significant reduction in cost, size, weight, and power

requirements. Checkpointing protocols, which are necessary

components of degrading systems, support task migration

through state preservation. They allow real-time embedded

systems to recover from any failure by restarting from the last

well-defined and consistent state, thus preserving the progress

of computations that have been achieved. This paper

demonstrates and applies the graceful degradation concept to

achieve fault tolerance in an unmanned aerial vehicle (UAV)

real-time embedded system. A checkpointing protocol is used

to reserve the state of the avionics of the UAV system. Faults

were injected during run-time causing one of the system’s

stability critical control tasks to fail. The system was able

successfully to recover by restarting the affected critical task(s)

on a different processor with last valid consistent state(s). This

paper presents the architecture, fault injection scheme, and the

results of the tests performed, which demonstrate the viability

of graceful degradation in our tested UAV.

I. INTRODUCTION

Modern embedded systems are becoming increasingly

distributed and include an interconnecting network to

facilitate collaboration of a set of processors to achieve a

common goal [1]. In safety-critical applications, the correct

operation is vital, requiring the use of fault tolerant

techniques in applications. Fault tolerance is the ability of a

system to continue operation in presence of hardware and

software faults [2]-[5]. It is typically achieved through

redundancy in hardware and software to enable fault

detection and recovery [2]-[4]. Explicit redundancy for a

non-trivial system can however be complex and costly in

terms of size, weight, price, and power consumption.

Graceful degradation is a promising new concept to

achieving capable fault tolerance at lower cost [6]-[11]. In

presence of a fault, the system switches to an operating

mode that uses remaining available resources to compensate

for the failure or to a mode where the affected system

functionality is dropped. Reconfiguration necessitates the

preservation of the recent history for every software task

that is responsible of certain functionality in order to be able

to restart the task later from the point that it failed at. The

recent history of all parameters of a certain task is called the

state of that task. Saving the state of a task to stable storage

is referred to as checkpointing the state of that task [12].

When a fault is detected, the stored information is used to

restart a process at an acceptable intermediate point to

reduce lost computation time [12].

In previous work, several checkpointing protocols were

implemented and evaluated on a distributed embedded

system for graceful degradation purposes [13]-[15]. A

resource limited real-time distributed embedded test-bed

system was constructed [16]. The system utilizes a

Controller Area Network (CAN) for communication

between processing elements (PEs). Two studies were

performed to evaluate the checkpointing protocols. The first

study included a simulated application executing on the PE

test-bed, where tasks periods, message destinations, and

message frequencies are set randomly. In the second study,

the protocols were applied to a feedback-control system for

an unmanned aerial vehicle (UAV). The periodicity

property of embedded systems was also studied.

This paper demonstrates the implementation and

evaluation of a fully gracefully degrading avionics system.

The avionics system of a quadrotor unmanned aerial vehicle

is considered. All tasks of the attitude stability portion of the

system as well as the tasks delivering the feedback

information are checkpointed. A checkpointing protocol is

used to checkpoint all state related parameters to a safe

stable storage. A checkpointing protocol called BCS [17]

was chosen due to the relatively low amount of overhead it

induces compared to other checkpointing protocols. A fault

injection method is implemented to kill any computation

task in the system. A system manager that is responsible for

fault detection, rollback and recovery is implemented on a

separate MCU.

The paper is organized as follows: The next section

overviews the test-bed vehicle. Section III discusses the

avionics system design and implementation. The gracefully

degrading avionics system and the recovery manager are

overviewed in Sections IV and V respectively. Section VI

shows the performance results. Finally, the paper is

concluded in Section VII.

II. THE TEST-BED

 The quadrotor [18] test-bed system, shown in Figure 1,

consists of two subsystems. The first is a ground station that

978-1-4673-2792-3/12/$31.00 ©2012 IEEE 171

is responsible for flight control, data processing,

reconfiguration control, and run-time monitoring. The other

subsystem is the aerial vehicle which carries the avionics

and payload systems. The two subsystems are connected by

three wireless links: a 1.3 GHz link for video down-

streaming, a 75 MHz traditional R/C radio for manual flight

control, and a bidirectional 2.4 GHz ZigBee link for

telemetry and reconfiguration control.

 The body of the quadrotor consists of a magnesium hub

joining four carbon fiber arms. Mounted at the end of each

arm is a magnesium motor mount that holds a brushless

motor and propeller assembly. The avionics system’s

hardware is shown in Figure 2. In addition to the processors,

other hardware components include an IMU, altimeter, and

a modular GPS unit for attitude, altitude, and position

estimation, respectively. The ground station includes a

navigation algorithm, target recognition software, and the

graphical user interface (GUI) for parameter monitoring and

reconfiguration purposes.

More details on this custom quadrotor system design

and implementation can be found in previously published

papers [18],[19]. The next section describes the avionics

system in more detail.

III. AVIONICS SYSTEM

The avionics system is a triple-processor setup

consisting of a telemetry processor, a sensor-actuator

interface processor and a control processor. All three

processors are Freescale HCS12 microcontrollers running

µC/OS-II
TM

, the real-time operating system (RTOS). The

three HCS12 MCUs execute different UAV tasks. The

RTOS, µC/OS-II
TM

, manages the tasks on each of the three

MCUs. All MCUs are connected to a CAN bus. A forth

dedicated MCU collects checkpoints written by other MCUs

from the CAN bus and stores them to stable storage. Figure

3 shows the block diagram of the system.

The control processor is responsible for vehicle stabilization

and navigation. It achieves these functions by executing

software tasks implementing the Proportional-Integral-

Differential (PID) control loops. In this project, four PID

control loops are used to stabilize and control the vehicle as

shown in Figure 4. The motor speed is controlled by the PID

control loops according to the throttle, pitch, roll, and yaw

values received by the IMU, GPS unit, and altimeter. In the

PID control loops, the current errors are calibrated with PID

gain constants Kp, Ki, and Kd to generate the proper motor

adjusting values where Kp, Ki, and Kd are the proportional,

integral, and differential gain constants respectively. The

PID gains are found experimentally, and are wirelessly

reconfigured by the reconfiguration host on the ground

station to allow in-flight tuning.

Figure 1. Oakland University quadrotor.

Figure 2. The Quadrotor avionics block.

TIMU TMotors Control

CAN_Tx CAN_RxTtranslate

TRoll TPitch

TComm Interface

CAN_TxCAN_Rx

TYawl

CAN BUS

Sensor – Actuator Interface Processor

Control Processor

TPWM

CAN_Tx

Ttranslate

Telemetry Processor

Network Interface Layer

Network Interface Layer

Network Interface Layer

Figure 3: UAV Avionics System Block Diagram

172

The main tasks running on the control processor are:

T_Comm, T_Roll, T_Pitch, T_Yaw. The T_Comm task forwards the

current and desired attitude angles to the other three tasks

through OS provided Mailboxes. T_Roll, T_Pitch, and T_Yaw

implement the roll, pitch, and yaw stability PID controllers

respectively.

The telemetry processor is responsible for executing the
TPWM task that captures PWM from the RC receiver and
translates it into desired commands. The Sensor-Actuator
Interface processor is responsible for executing the tasks that
do the data collection from the sensors, as well as forwarding
the control commands to the motor speed controllers.

IV. THE GRACEFULLY DEGRADING AVIONICS SYSTEM

The attitude stability tasks of the avionics system are the
three PID control tasks described in Section III. Specifically
the Roll, Pitch and Yaw PID control tasks. The control
feedback task is the IMU task. The three PID tasks as well as
the Motors Control (TMotors_Control) Task were chosen to be
checkpointed because the computations they perform depend
on historical data from previous computations. Figure 5
shows the data communication pattern that is continuously
repeated during the process of performing attitude stability
control of the unmanned vehicle.

The data checkpointed by each of the attitude stability
PID tasks is composed of the accumulative error used in the
integral (I) term of the PID controller as well as the previous
error used by the differential (D) term of the PID controller
for all three PID control tasks. The Motors Control
(TMotors_Control) task, checkpoints the current corrections that
are used to adjust the speed of the four motors propelling the
quadrotor.

Each infinite loop in the Roll PID, Pitch PID, Yaw PID
and Motors Control tasks performs the following main
functionalities:

i. Transmits a Heart Beat message indicating that it is

a live and performing its’ functionality.

ii. Reads its’ mailboxes for any available messages.

iii. Extracts the BCS induced control information

(checkpoint index) as well as the application data.

iv. Checks the BCS forced checkpoint condition

depending on the received index and decides to take

a forced checkpoint or not.

v. Delivers the application data and performs the

application specific computations and prepares the

output that is going to be sent to other tasks in the

distributed network.

vi. Piggyback the checkpointing index over all

application messages that are going to be sent out.

vii. Send outgoing messages.

viii. Depending on the required checkpoint frequency,

take a Local checkpoint.

V. RECOVERY MANAGER

As indicated in Section IV, each checkpointing task has a
unique heart beat message broadcasted through the CAN
network as long as it is functioning correctly. To simulate
faulty tasks, a fault injection method is implemented through
an external MCU connected to the CAN bus. With the aid of
the fault injection MCU, it is possible to send a command to
the RTOS running on any other MCU in the network to kill
any specific task executed by that MCU. The recovery
manager is also capable of sending a recover command to
the RTOS running on any other MCU in the network. The
recover command asks the RTOS to recreate a task and

Telemetry Task

PID API Task

 m
5

Roll PID Task

m1 Desired Roll

m2 Desired Pitch

m3 Desired Yaw

m4 Desired Throttle

m5 Routed Desired Roll

m6 Routed Desired Pitch

m7 Routed Desired Yaw

m8 Current Roll

m9 Current Pitch

m10 Current Yaw

m11 Routed Current Roll

m12 Routed Current Pitch

m13 Routed Current Yaw

m14 Yaw Correction

m15 Pitch Correction

m16 Roll Correction

Pitch PID Task

Yaw PID Task

IMU Task

 m
2

 m
3

 m
4

 m
6

 m
7

 m
8

 m
9

 m
1
0

 m
1

 m
1
1
 m

1
2
 m

1
3

 m
1
4

 m
1
5

 m
1
6

Figure 5: Attitude Stability Control Communication Pattern

PID Control

PID Control

PID Control

-

+

-

+

+

+

+

+

 Motor(F)

Motor(B)

Motor(R)

Motor(L)

Actual Roll

Desired Roll

Actual Pitch

Desired Pitch

Actual Altitude

Desired Altitude

PID Control
Actual Yaw

Desired Yaw

+

+

-

-

Figure 4. Control system diagram.

173

initialize it to a certain state (recovery state). The recovery
state is sent in combination with the recover command. The
recovery manager is composed of several smaller tasks that
maintain the following responsibilities:

i. Receive all checkpoints sent by all checkpointing

tasks and save them to stable storage.

ii. Live online computation of a recovery line

(Consistent global checkpoint).

iii. Perform fault detection by monitoring the heart

beats of all checkpointing tasks.

iv. In presence of a faulty checkpointing task, recover

all tasks in the distributed network by restarting

them from the recovered state.

The data structures used to store the checkpoints are
shown in Figure 6, where:

 rollTable : is an array of checkpoints received from

the Roll PID task.

 pitchTable: is an array of checkpoints received from

the Pitch PID task.

 yawTable: is an array of checkpoints received from

the Yaw PID task.

 r: is a pointer to the rollTable’s next available entry

to store a newly received checkpoint.

 p: is a pointer to the pitchTable’s next available

entry to store a newly received checkpoint.

 y: is a pointer to the yawTable’s next available

entry to store a newly received checkpoint.

 i: is a pointer to the imuTable’s next available entry

to store a newly received checkpoint.

Figure 7, is a flowchart showing the flow for both the
application tasks to be checkpointed as well as the recovery
algorithm performed by the recovery manager.

VI. PERFORMANCE RESULTS

The stable memory available for checkpointing storage is
around 1 Kbyte (exactly 1320 Bytes). From an application
point of view, to maintain a stable flight, the acceptable
execution rates for the three attitude stability PID control
loops are as follows:

i. Roll PID: 20 ms (i.e. 50 Hz)

ii. Pitch PID: 20 ms (i.e. 50 Hz)

iii. Yaw PID: 60 ms (i.e. 16.7 Hz)

An experiment was conducted by injecting a fault into the
roll PID control task and measuring the time to recover the
system. This experiment was performed on the avionics
system with a varied checkpoint frequency for all
checkpointing tasks from 1 local checkpoint per execution
loop to 1 local checkpoint per 30 execution loops. Figure 8,
plots the recovery time versus the local checkpoint
frequency.

 data data data Data

index I D index I D index I D index RC PC YC

rollTable pitchTable yawTable imuTable

 I: Accumulative error used in the Integral term of the PID controller

 D: Previous error used in the differential term of the PID controller

 RC: Roll correction

 PC: Pitch correction

 YC: Yaw correction

Figure 6: Checkpointing storage data structure

174

From the figure, it can be observed that the recovery time
decreases as the local checkpoint frequency increases. This is
due to the following reason. The frequency of exchanging
application messages in the distributed network is constant

and does not change with the change of local checkpoint
frequency. So, as the local checkpoint frequency increases
the checkpoint indexes maintained by each of the
checkpointing tasks increases rapidly. The exchange of
application messages that piggyback these indexes does not

Listen for Heart

Beats

Recovery Manager

Heart Beat not

present or delayed

Read Recovery

Line

Send out Recovery

Command along

with the recovery

data

Receive

Checkpoints

Store

Checkpoints to

stable storage

Compute

recovery

line

For ever

For ever
For ever

Send Heart Beat

Application Task

Read Mailboxes

Message

Received?

Received

Index > local

index

Local index=

Received index

Take Forced

Checkpoint

Do application

specific

processing

Piggyback local

index over

outgoing msgs

Send out

application

messages

No

Depending on the

local checkpoint

frequency: take

local checkpoint

Increment local

index

For ever

Is it time to take a

local checkpoint

Yes

No

Figure 7: Application Tasks and Recovery Manager

175

increase, hence reduced checkpoint synchronization.
Furthermore, at the recovery manager’s side, more
checkpoints are received and required to be stored to stable
storage.

However, the received checkpoints due to the lake of
synchronization are more probable to not have the same
index value, demanding more time to find a consistent
recovery line by the recovery manager. On the other hand, as
the local checkpointing frequency decreases, more
application messages are available to synchronize the
indexes among all checkpointing tasks. So the checkpoints
received by the checkpointing manager are more probable to
be synchronized, hence requiring less time to find a recovery
line by the recovery manager, therefore less time to recover.

From the study, the recovery time for the system at 1
checkpoint per 30 execution loops was 120 ms. And because
the execution rate for the fastest task in the system is 20ms,
the system will miss 6 (120 ms/20 ms) execution loops,
which is acceptable in these kinds of applications according
to our flight testing. In general, to judge that a recovery time
delay is acceptable or not depends on the application and
how much execution loops it is going to lose during the
recovery process.

VII. CONCLUSION

Graceful degradation is a promising technique that may

achieve dependability with a significant reduction in cost,

size, weight, and power requirements. This paper overviews

a whole graceful degradation approach to achieve fault

tolerance in resource constrained real-time embedded

systems. The paper presented the development and

implementation of an architecture for a complete gracefully

degrading system that includes checkpointing coordination,

checkpoint management, stable storage, and recovery

management. The implementation was in form of an avionics

system executing three control loops in parallel. Faults were

injected during run-time causing the system’s stability

control tasks to fail. The system was able to recover in a very

short time (around 120 ms), which was acceptable for the

application to stay stable according to our flight testing.

REFERENCES

[1] Koopman, P., "Embedded System Design Issues -- The Rest of the

Story", Proceedings of the 1996 International Conference on
Computer Design, Austin, October 7-9 1996.

[2] A. Avizienis and J. Laprie, ``Dependable Computing: From Concepts
to Design Diversity,'' Proc. IEEE, vol.74, no.5, pp.629-638, May
1986.

[3] A. Avizienis, J.-C. Laprie and B. Randell, "Fundamental Concepts of
Dependability," Research Report No. 1145, LAAS-CNRS, April
2001.

[4] A.K. Somani and N.H. Vaidya, ``Understanding fault-tolerance and
reliability,'' IEEE Computer, vol.30, no.4, pp.45-50, Apr. 1997.

[5] I. Koren and C. M. Krishna, Fault-Tolerant Systems, Morgan-
Kaufman, San Francisco, CA, 2007.

[6] Strunk, Elisabeth A., John C. Knight, and M. Anthony Aiello,
"Distributed Reconfigurable Avionics Architectures," 23rd Digital
Avionics Systems Conference, Salt Lake City, UT, October 2004.

[7] R. P. Dick, N. K. Jha. “CORDS: Hardware-Software Co-Synthesis of
Reconfigurable Real-Time Distributed Embedded Systems.”
IEEWACM International Conference on Computer Aided Design,
pages 62-68, San Jose, California, November, 1998.

[8] R. Feldmann, C. Haubelt, B. Monien, and J. Teich. “Fault Tolerance
Analysis of Distributed Reconfigurable Systems Using SAT-Based
Techniques,” In P. Y. K. Cheung, G. A. Constantinides, and J. T. de
Sousa, editors, Field-Programmable Logic and Applications, Lecture
Notes in Computer Science (LNCS), volume 2778, pages 478–487,
Berlin, Heidelberg, Sept. 2003. Springer.

[9] Rawashdeh, O., and Lumpp, J., “Run-Time Behavior of Ardea: A
Dynamically Reconfiguring Distributed Embedded Control
Architecture,” IEEE Aerospace Conference, IEEEAC Paper# 1516,
March 2006.

[10] M.Eisenring, M.Platzner, “A framework for run-time reconfigurable
systems”, The Journal of Supercomputing, v.21, pp.145–159, 2002

[11] Thilo Streichert, Dirk Koch, Christian Haubelt, and Jrgen Teich,
“Modeling and design of fault-tolerant and self-adaptive
reconfigurable networked embedded systems,” EURASIP Journal on
Embedded Systems, Special Issue on Field-Programmable Gate
Arrays in Embedded Systems., 2006.

[12] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-min Wang and David
B. Johnson, “A Survey of Rollback-Recovery Protocols in Message-
Passing Systems,” ACM Computing Surveys, vol. 34, No. 3, pp. 375–
408, September 2002.

[13] Belal H. Sababha and Osamah Rawashdeh, “Evaluation of
Communication Induced Checkpointing in Resource Constrained
Embedded Systems,” The 7th International ASME/IEEE Conference
on Mechatronics & Embedded Systems & Applications (MESA
2011) August 28-31, 2011, Washington, DC, USA.

[14] Belal H. Sababha and Osamah A. Rawashdeh, "Evaluation of
Communication Induced Checkpointing on a CAN-Based Distributed
System," The 40th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2010), Chicago, IL, June
29, 2010.

[15] Belal Sababha and Osamah Rawashdeh, "Evaluation of
Communication Induced Checkpointing Approaches for
Reconfiguration-Based Fault-Tolerance in Embedded Systems,"
Journal on Computing (JoC), vol. 1, no.4, January 2012.

[16] Belal H. Sababha, Osamah A. Rawashdeh, and Guangzhi Qu, “A
Test-Bed for Reconfiguration-Based Fault-Tolerance in Distributed
Embedded Systems,” The International Conference on Information
and Communications Systems (ICICS2009), Paper # 500, Amman,
Jordan, Dec 20, 2009.

Figure 8: Recovery time at different checkpointing

frequencies

176

[17] D. Briatico, A. Ciuffoloetti, and L. Simoncini, “A Distributed
Domino-Effect Free Recovery Algorithm,” Proc. IEEE Fourth Symp.
Reliability in Distributed Software and Database Systems, pp. 207-
215, 1984.

[18] Hong Yang, Rami AbouSleiman, Belal Sababha, Ermal Gjioni,
Daniel Korff, and Osamah Rawashdeh, "Implementation of an
Autonomous Surveillance Quadrotor System," Proc. of AIAA
Unmanned Unlimited Conference, Paper # 2009-2047, Seattle, WA,
April 6, 2009.

[19] O. A. Rawashdeh, H.C. Yang, R. AbouSleiman, and B. H. Sababha,
"Microraptor: A Low-Cost Autonomous Quadrotor System," Proc. of
the 2009 ASME/IEEE International Conference on Mechatronic and
Embedded Systems and Applications (MESA09), DETC2009-86490,
San Diego, CA, Sep 1, 2009.

177

