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ABSTARACT 

Graceful degradation is an approach for developing 

dependable safety-critical embedded applications, where 

redundant active or standby resources are used to cope with 

faults through system reconfiguration at run-time.  Compared 

to traditional hardware and software redundancy, it is a 

promising technique that may achieve dependability with a 

significant reduction in cost, size, weight, and power 

requirements. Checkpointing protocols, which are necessary 

components of degrading systems, support task migration 

through state preservation. They allow real-time embedded 

systems to recover from any failure by restarting from the last 

well-defined and consistent state, thus preserving the progress 

of computations that have been achieved. This paper 

demonstrates and applies the graceful degradation concept to 

achieve fault tolerance in an unmanned aerial vehicle (UAV) 

real-time embedded system.  A checkpointing protocol is used 

to reserve the state of the avionics of the UAV system. Faults 

were injected during run-time causing one of the system’s 

stability critical control tasks to fail. The system was able 

successfully to recover by restarting the affected critical task(s) 

on a different processor with last valid consistent state(s). This 

paper presents the architecture, fault injection scheme, and the 

results of the tests performed, which demonstrate the viability 

of graceful degradation in our tested UAV. 

I. INTRODUCTION 

Modern embedded systems are becoming increasingly 

distributed and include an interconnecting network to 

facilitate collaboration of a set of processors to achieve a 

common goal [1]. In safety-critical applications, the correct 

operation is vital, requiring the use of fault tolerant 

techniques in applications. Fault tolerance is the ability of a 

system to continue operation in presence of hardware and 

software faults [2]-[5]. It is typically achieved through 

redundancy in hardware and software to enable fault 

detection and recovery [2]-[4]. Explicit redundancy for a 

non-trivial system can however be complex and costly in 

terms of size, weight, price, and power consumption. 

Graceful degradation is a promising new concept to 

achieving capable fault tolerance at lower cost [6]-[11]. In 

presence of a fault, the system switches to an operating 

mode that uses remaining available resources to compensate 

for the failure or to a mode where the affected system 

functionality is dropped. Reconfiguration necessitates the 

preservation of the recent history for every software task 

that is responsible of certain functionality in order to be able 

to restart the task later from the point that it failed at. The 

recent history of all parameters of a certain task is called the 

state of that task. Saving the state of a task to stable storage 

is referred to as checkpointing the state of that task [12]. 

When a fault is detected, the stored information is used to 

restart a process at an acceptable intermediate point to 

reduce lost computation time [12]. 

In previous work, several checkpointing protocols were 

implemented and evaluated on a distributed embedded 

system for graceful degradation purposes [13]-[15]. A 

resource limited real-time distributed embedded test-bed 

system was constructed [16]. The system utilizes a 

Controller Area Network (CAN) for communication 

between processing elements (PEs). Two studies were 

performed to evaluate the checkpointing protocols. The first 

study included a simulated application executing on the PE 

test-bed, where tasks periods, message destinations, and 

message frequencies are set randomly. In the second study, 

the protocols were applied to a feedback-control system for 

an unmanned aerial vehicle (UAV). The periodicity 

property of embedded systems was also studied. 

This paper demonstrates the implementation and 

evaluation of a fully gracefully degrading avionics system.  

The avionics system of a quadrotor unmanned aerial vehicle 

is considered. All tasks of the attitude stability portion of the 

system as well as the tasks delivering the feedback 

information are checkpointed. A checkpointing protocol is 

used to checkpoint all state related parameters to a safe 

stable storage. A checkpointing protocol called BCS [17] 

was chosen due to the relatively low amount of overhead it 

induces compared to other checkpointing protocols.  A fault 

injection method is implemented to kill any computation 

task in the system. A system manager that is responsible for 

fault detection, rollback and recovery is implemented on a 

separate MCU. 

The paper is organized as follows: The next section 

overviews the test-bed vehicle. Section III discusses the 

avionics system design and implementation. The gracefully 

degrading avionics system and the recovery manager are 

overviewed in Sections IV and V respectively. Section VI 

shows the performance results. Finally, the paper is 

concluded in Section VII. 

II. THE TEST-BED  

 The quadrotor [18] test-bed system, shown in Figure 1, 

consists of two subsystems. The first is a ground station that  
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is responsible for flight control, data processing, 

reconfiguration control, and run-time monitoring. The other 

subsystem is the aerial vehicle which carries the avionics 

and payload systems. The two subsystems are connected by 

three wireless links: a 1.3 GHz link for video down-

streaming, a 75 MHz traditional R/C radio for manual flight 

control, and a bidirectional 2.4 GHz ZigBee link for 

telemetry and reconfiguration control. 

 The body of the quadrotor consists of a magnesium hub 

joining four carbon fiber arms. Mounted at the end of each 

arm is a magnesium motor mount that holds a brushless 

motor and propeller assembly. The avionics system’s 

hardware is shown in Figure 2. In addition to the processors, 

other hardware components include an IMU, altimeter, and 

a modular GPS unit for attitude, altitude, and position 

estimation, respectively. The ground station includes a 

navigation algorithm, target recognition software, and the 

graphical user interface (GUI) for parameter monitoring and 

reconfiguration purposes.   

More details on this custom quadrotor system design 

and implementation can be found in previously published 

papers [18],[19]. The next section describes the avionics 

system in more detail. 

III. AVIONICS SYSTEM  

The avionics system is a triple-processor setup 

consisting of a telemetry processor, a sensor-actuator 

interface processor and a control processor. All three 

processors are Freescale HCS12 microcontrollers running 

µC/OS-II
TM

, the real-time operating system (RTOS).  The 

three HCS12 MCUs execute different UAV tasks.  The 

RTOS, µC/OS-II
TM

, manages the tasks on each of the three 

MCUs. All MCUs are connected to a CAN bus. A forth 

dedicated MCU collects checkpoints written by other MCUs 

from the CAN bus and stores them to stable storage. Figure 

3 shows the block diagram of the system.  

 

The control processor is responsible for vehicle stabilization 

and navigation. It achieves these functions by executing 

software tasks implementing the Proportional-Integral-

Differential (PID) control loops. In this project, four PID 

control loops are used to stabilize and control the vehicle as 

shown in Figure 4. The motor speed is controlled by the PID 

control loops according to the throttle, pitch, roll, and yaw 

values received by the IMU, GPS unit, and altimeter. In the 

PID control loops, the current errors are calibrated with PID 

gain constants Kp, Ki, and Kd to generate the proper motor 

adjusting values where Kp, Ki, and Kd are the proportional, 

integral, and differential gain constants respectively. The 

PID gains are found experimentally, and are wirelessly 

reconfigured by the reconfiguration host on the ground 

station to allow in-flight tuning. 

 

 

Figure 1. Oakland University quadrotor.  

 
Figure 2. The Quadrotor avionics block. 
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Figure 3: UAV Avionics System Block Diagram 
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The main tasks running on the control processor are: 

T_Comm, T_Roll, T_Pitch, T_Yaw. The T_Comm task forwards the 

current and desired attitude angles to the other three tasks 

through OS provided Mailboxes. T_Roll, T_Pitch, and T_Yaw 

implement the roll, pitch, and yaw stability PID controllers 

respectively. 

The telemetry processor is responsible for executing the 
TPWM task that captures PWM from the RC receiver and 
translates it into desired commands. The Sensor-Actuator 
Interface processor is responsible for executing the tasks that 
do the data collection from the sensors, as well as forwarding 
the control commands to the motor speed controllers. 

IV. THE GRACEFULLY DEGRADING AVIONICS SYSTEM 

The attitude stability tasks of the avionics system are the 
three PID control tasks described in Section III. Specifically 
the Roll, Pitch and Yaw PID control tasks. The control 
feedback task is the IMU task. The three PID tasks as well as 
the Motors Control (TMotors_Control) Task were chosen to be 
checkpointed because the computations they perform depend 
on historical data from previous computations. Figure 5 
shows the data communication pattern that is continuously 
repeated during the process of performing attitude stability 
control of the unmanned vehicle. 

The data checkpointed by each of the attitude stability 
PID tasks is composed of the accumulative error used in the 
integral (I) term of the PID controller as well as the previous 
error used by the differential (D) term of the PID controller 
for all three PID control tasks. The Motors Control 
(TMotors_Control) task, checkpoints the current corrections that 
are used to adjust the speed of the four motors propelling the 
quadrotor. 

Each infinite loop in the Roll PID, Pitch PID, Yaw PID 
and Motors Control tasks performs the following main 
functionalities: 

i. Transmits a Heart Beat message indicating that it is 

a live and performing its’ functionality. 

ii. Reads its’ mailboxes for any available messages. 

iii. Extracts the BCS induced control information 

(checkpoint index) as well as the application data. 

iv. Checks the BCS forced checkpoint condition 

depending on the received index and decides to take 

a forced checkpoint or not. 

v. Delivers the application data and performs the 

application specific computations and prepares the 

output that is going to be sent to other tasks in the 

distributed network. 

vi. Piggyback the checkpointing index over all 

application messages that are going to be sent out. 

vii. Send outgoing messages. 

viii. Depending on the required checkpoint frequency, 

take a Local checkpoint. 

 

 

V. RECOVERY MANAGER 

As indicated in Section IV, each checkpointing task has a 
unique heart beat message broadcasted through the CAN 
network as long as it is functioning correctly. To simulate 
faulty tasks, a fault injection method is implemented through 
an external MCU connected to the CAN bus. With the aid of 
the fault injection MCU, it is possible to send a command to 
the RTOS running on any other MCU in the network to kill 
any specific task executed by that MCU. The recovery 
manager is also capable of sending a recover command to 
the RTOS running on any other MCU in the network. The 
recover command asks the RTOS to recreate a task and 
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Figure 5: Attitude Stability Control Communication Pattern 
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Figure 4. Control system diagram. 
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initialize it to a certain state (recovery state). The recovery 
state is sent in combination with the recover command. The 
recovery manager is composed of several smaller tasks that 
maintain the following responsibilities: 

i. Receive all checkpoints sent by all checkpointing 

tasks and save them to stable storage. 

ii. Live online computation of a recovery line 

(Consistent global checkpoint). 

iii. Perform fault detection by monitoring the heart 

beats of all checkpointing tasks. 

iv. In presence of a faulty checkpointing task, recover 

all tasks in the distributed network by restarting 

them from the recovered state. 

The data structures used to store the checkpoints are 
shown in Figure 6, where: 

 rollTable : is an array of checkpoints received from 

the Roll PID task.  

 pitchTable: is an array of checkpoints received from 

the Pitch PID task. 

 yawTable: is an array of checkpoints received from 

the Yaw PID task. 

 r: is a pointer to the rollTable’s next available entry 

to store a newly received checkpoint. 

 p: is a pointer to the pitchTable’s next available 

entry to store a newly received checkpoint. 

 y: is a pointer to the yawTable’s next available 

entry to store a newly received checkpoint. 

 i: is a pointer to the imuTable’s next available entry 

to store a newly received checkpoint. 

Figure 7, is a flowchart showing the flow for both the 
application tasks to be checkpointed as well as the recovery 
algorithm performed by the recovery manager. 

VI. PERFORMANCE RESULTS 

The stable memory available for checkpointing storage is 
around 1 Kbyte (exactly 1320 Bytes).  From an application 
point of view, to maintain a stable flight, the acceptable 
execution rates for the three attitude stability PID control 
loops are as follows: 

i. Roll PID: 20 ms (i.e. 50 Hz) 

ii. Pitch PID: 20 ms (i.e. 50 Hz) 

iii. Yaw PID: 60 ms (i.e. 16.7 Hz) 

An experiment was conducted by injecting a fault into the 
roll PID control task and measuring the time to recover the 
system. This experiment was performed on the avionics 
system with a varied checkpoint frequency for all 
checkpointing tasks from 1 local checkpoint per execution 
loop to 1 local checkpoint per 30 execution loops. Figure 8, 
plots the recovery time versus the local checkpoint 
frequency. 

 

  

 

 data   data   data   Data 

index I D  index I D  index I D  index RC PC YC 

                

                

                

rollTable  pitchTable  yawTable  imuTable  
 

 

         
    I: Accumulative error used in the Integral term of the PID controller  

    D: Previous error used in the differential term of the PID controller 

    RC: Roll correction 

    PC: Pitch correction 

    YC: Yaw correction 

 

 
Figure 6: Checkpointing storage data structure 
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From the figure, it can be observed that the recovery time 
decreases as the local checkpoint frequency increases. This is 
due to the following reason. The frequency of exchanging 
application messages in the distributed network is constant 

and does not change with the change of local checkpoint 
frequency. So, as the local checkpoint frequency increases 
the checkpoint indexes maintained by each of the 
checkpointing tasks increases rapidly. The exchange of 
application messages that piggyback these indexes does not 
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increase, hence reduced checkpoint synchronization. 
Furthermore, at the recovery manager’s side, more 
checkpoints are received and required to be stored to stable 
storage.  

 

However, the received checkpoints due to the lake of 
synchronization are more probable to not have the same 
index value, demanding more time to find a consistent 
recovery line by the recovery manager. On the other hand, as 
the local checkpointing frequency decreases, more 
application messages are available to synchronize the 
indexes among all checkpointing tasks. So the checkpoints 
received by the checkpointing manager are more probable to 
be synchronized, hence requiring less time to find a recovery 
line by the recovery manager, therefore less time to recover. 

From the study, the recovery time for the system at 1 
checkpoint per 30 execution loops was 120 ms. And because 
the execution rate for the fastest task in the system is 20ms, 
the system will miss 6 (120 ms/20 ms) execution loops, 
which is acceptable in these kinds of applications according 
to our flight testing. In general, to judge that a recovery time 
delay is acceptable or not depends on the application and 
how much execution loops it is going to lose during the 
recovery process. 

VII. CONCLUSION 

Graceful degradation is a promising technique that may 

achieve dependability with a significant reduction in cost, 

size, weight, and power requirements. This paper overviews 

a whole graceful degradation approach to achieve fault 

tolerance in resource constrained real-time embedded 

systems. The paper presented the development and 

implementation of an architecture for a complete gracefully 

degrading system that includes checkpointing coordination, 

checkpoint management, stable storage, and recovery 

management. The implementation was in form of an avionics 

system executing three control loops in parallel. Faults were 

injected during run-time causing the system’s stability 

control tasks to fail. The system was able to recover in a very 

short time (around 120 ms), which was acceptable for the 

application to stay stable according to our flight testing. 
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