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Abstract—Real Time Systems can be classified into Hard, Soft 

and Firm Real Time Systems depending on the consequences of a 

task missing its deadline. A Hard Real Time System produce 

required results before the specified time bound. In Soft Real 

Time Systems the few misses of deadline is acceptable if they 

have no harm. The Generalized case of Real Time Systems is 

Weakly Hard Real Time System which is motivation of the 

observation for real time applications when some deadline misses 

are acceptable as long as they are spaced evenly. 

This paper is an attempt to provide a state-of-the-art review of 

basic model of Real Time System, clock driven scheduling, 

priority driven scheduling and proposes an Inverse Rate 

Monotonic algorithm. The Inverse Rate Monotonic algorithm 

effectively reduce the energy by 15% along with Dynamic 

Voltage Scaling strategy which provides significant energy 

savings while maintain real time deadline guarantee. A tool has 

been created in C language to observe the scheduling and energy 

consumption of task by Inverse Rate Monotonic. 
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Scheduling, Rate Monotonic, Deadline Monotonic, Dynamic 

Voltage Scaling, Dynamic Power Down, Deeply Red Pattern, Mixed 
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I.  INTRODUCTION  

A real-time system is expected to respond not just quickly, 
but also within a predictable period of time. A real time task is 
one for which quantitative expression of time is needed to 
describe its behavior. This quantitative expression of time 
usually appears in the form of a constraint on the time at 
which the task produces results. The most frequently occurring 
time constraint is a deadline which is used to express that a 
task is required to compute its results within tasks deadline 
[1]. 

There are various applications of real time systems, which 
includes Automated Car Assembly Plant, Temperature Control 
in Chemical Plant, Robot used in Recovery, Cellular Systems, 
Missile Guidance Systems, Car Braking System and Security 
Systems. As depicted from the above listed wide range of 
applications, real time systems can be classified into hard, 
soft, and firm real time systems depending on the 
consequences of a task missing its deadline.  

A hard real time system is one that is constrained to 
produce its results within a certain predefined time bounds. 

The system is considered to have failed whenever any of its 
hard real time tasks does not produce its required results 
before the specified time bound. In soft real time systems the 
few misses of deadline have no harm.  It just decreases the 
overall performance of the system. When a system is 
considered soft real time system, there is some room for 
lateness. The generalized case of real time systems is weakly 
hard real time systems. It is motivation of observation for real 
time applications, where some deadline misses are acceptable 
as long as they are spaced evenly. The systems where missing 
of few deadlines can be tolerated at the cost of compromising 
quality of service limiting to the acceptable quality measured 
as (m,k) model [13] known as weakly hard real time systems. 

To achieve better quality of service in terms of tolerance 
and energy consumption while honouring minimum tolerance 
requirement, we need maximum energy available within strict 
timing constraint. Reducing the energy consumption increases 
the computation time which increase the chance of missing the 
deadline i.e. energy and deadline are counterproductive. There 
is a need for design of an efficient resource manager that 
minimizes system energy consumption while giving better 
tolerance to hard real time system with arbitrary deadline 
exposed to transient faults.  Thus, issues of energy and real 
time constraints can be integrated into single framework to 
achieve reduced system energy consumption within deadline 
by the use of check pointing, tolerance patterns, pre-emption 
control, speed fine tuning, delay start, speed patterns, 
criticality and sensitivity. 

In this paper we propose a general scheduling algorithm to 
minimize the energy consumption in weakly hard real time 
systems, i.e., the (m, k) model, which requires at least m out of 
k consecutive instances of a task meet their deadlines. Firstly, 
we proposed a strategy to partition real time jobs into 
mandatory and optional part in order to meet weakly hard real 
time constraint. Secondly, we introduce an approach which 
can effectively reduce the energy by 15% along with Dynamic 
voltage scaling (DVS) strategy which provides significant 
energy savings while maintaining real time deadline 
guarantees. We also ensure time constraints i.e. the completion 
of an operation after its deadlines is considered useless which 
may cause a complete failure, so the task has to be completed 
within a specified time limit otherwise it will cease to failure.  
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Remainder of this paper is organized as follows: section 2 
describes the basic model of a real time system and the various 
types of real time systems which consist of hard, soft and firm 
real time systems. Section 3 illustrates various types of 
scheduling and existing techniques for reducing energy 
consumption in real time systems as a part of our literature 
survey. Section 4 provides proposed approach for reduction of 
energy consumption in real time systems. The result is 
illustrated in section 5. Section 6 presents the conclusion and 
the future scope. 

II. A BASIC MODEL OF REAL TIME SYSTEM 

This figure shows a simple model of  a real time systems in 
terms of its functional blocks. The sensors are interfaced with 
the input conditioning block,which in turn is connected to the 
input interface. The output interface, output conditioning and 
the actuator are interfaced in a complementary manner. A 
sensor converts some physical characteristic of its 
enviornment into electrical signals. An actuator is any device 
that takes its input from the output interface of a computer and 
converts these electrical signal into some physical actions on 
its enviornment. A popular actuator is a motor. The computer 
signals usually need conditioning before they can be used by 
the actuator. This is called output conditioning.Few important 
conditions are Voltage Amplification , Voltage level shifting 
and Frequency range shifting,which is used to reduce the noise 
components in a signal [7]. 

 
 
 

Many types of noise occur in narrow bands, therefore the 
signal must be shifted from the noise bands so that noise can 
be filtered out. Interface actuators commands from the CPU 
are delivered to the actuator through an output interface. An 
ouput interface converts the stored voltage into analog form 
and then outputs this to the actuator. Digital computers can not 
process analog signals.  Therefore, analog signals need to be 
converted into digital. Sampling is done by a capacitor 
circutory that stores voltage levels. These voltage levels can be 
discretized after a sampling into a step waveform [2,3]. 

A. Hard real time system  

The completion of an operation after its deadlines is 
considered useless. When a process is considered hard real-
time, it must complete its operation by a specific time. If it 
fails to meet its deadline, its operation is without value and the 
system for which it is a component could face failure. One 
example of hard real time system is an anti missile system [7]. 

B. Soft real time system  

Soft real-time systems are systems where few misses of 
deadline does not leads to failure and just degrades the overall 
performance of the system, for instance web browsing. 

Fetching of web page may take few seconds or minutes, we 
still do not consider the system to have failed, but merely 
express that the performance of the system has degraded [7]. 

C. Weakly hard real-time system 

It is the generalized case of real time systems and is 
measured by a general model i.e. m-k model where it needs to 
meet at least m deadlines in every consecutive k jobs. Another 
example of a real-time task is a monitor. A task periodically 
performs a set of monitoring actions. The sampling period may 
be carefully computed or decided as a rule of thumb. Again 
missing an occasional deadline means that the action from 
monitoring will be delayed by some bounded period of time. 
Provided that the effect of such a delay can be tolerated and 
deadlines can be missed [4]. 

 

 

III. LITERATURE SURVEY  

A. Clock Driven Scheduling  

Clock driven schedulers make their scheduling decisions 
regarding which task to run next only at the clock interrupt 
points. Clock driven schedulers are also called off line 
schedulers because these schedulers fix the schedule before 
the system starts to run, i.e the scheduler pre- determines 
which task will run when. Therefore, these schedulers incur 
very little run time overhead. However, a prominent 
shortcoming of this class of schedulers is that they cannot 
satisfactorily handle aperiodic and sporadic tasks since the 
exact time of occurrences of these tasks cannot be predicted 
[5,6].  

B. Priority Driven Scheduling  

It is based on the priority of the jobs.  When the higher 
priority is ready it pre-empts the lower priority which is 
running. There are two approaches of priority driven 
scheduling:- 

a) STATIC APPROACH :  

 Priorities are assigned to tasks once for all and every job 
of a task will have same priority. 

I. Rate Monotonic Algorithm (RM) 

Rate monotonic algorithm [14] is a dynamic pre-emptive 
algorithm based on static priorities. The rate monotonic 
algorithm assigns static priorities based on task periods. Here 
task period is the time after which the tasks repeat and inverse 
of period is task arrival rate. For example, a task with a period 
of 10ms repeats itself after every 10ms. The task with the 

Fig. 1: Model of a real time system 

Point at which degradation starts 

Performance degraded 

Figure 2: Graph for hard and soft real time system 
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shortest period gets the highest priority, and the task with the 
longest period gets the lowest static priority. At run time, the 
dispatcher selects the task with the highest priority for 
execution [7,15].  

EXAMPLE: In this example we have three tasks T1, T2, T3 

                T1 (4, 1), T2 (5, 2), T3 (20, 5) 

Where 4, 5, 20 are the period and 1, 2, 5 are the execution 
time of the task. It has a hyper period 18 i.e.  The Total period 
of the task this is calculated by taking LCM of the periods. 

 

 
First we will release T1 because it has shorter period and 

after execution of first job of T1 we will release T2 who has 
next shorter period and its jobs execute in the background of 
T1 so for this reason the execution of the first job in T2 is 
delayed until the first job of T1 completes and the fourth job 
in T2 is pre-empted at the time 16 when the fifth job in T1 is 
released because here the job in T1 has a highest priority than 
T2  because T1 has shorter period than T2 so here instead of 
complete the fourth job in T2 we will complete the fifth job in 
T1 so T1 is pre-empted at time 16. Similarly T3 is executes in 
the background of T1 and T2. The jobs in T3 execute only 
when there is no job in the higher priority tasks ready for 
execution. Since there is always at least one job ready for 
execution until time 18 the processor never idles.  

Preemption: In case of preemption the execution of jobs 
can often be interleaved. The scheduler may suspend the 
execution of a less priority jabs and give the processor to more 
priority job. Later when the more priority job completes the 
scheduler returns the processor to less priority job so the job 
can resume execution. The interruption of job execution is 
called pre-emption. 

II. Deadline Monotonic Algorithm 

One of the problems with RM is that many systems will 
need job deadlines shorter than the job’s period which violates 
the assumption mentioned earlier. A solution to this problem 
arrived in 1982 with the introduction of the Deadline 
Monotonic (DM) algorithm [14, 15]. With DM, a job’s 
priority is inversely proportional to its relative deadline. That 
is to say, the shorter the relative deadline higher the priority. 

In this example we have three tasks T1, T2, T3 

                                   T1 (2, 0.6), T2 (2.5, 0.2), T3 (3, 1.2) 

Where 2, 2.5, 3 are the period which is same as the 
deadline of the task and 0.6, 0.2, 1.2 is the execution time of 
the task. It has a hyper period 10 i.e. total period of the task 
which is calculated by taking LCM of the periods. 

 

 

 

In this T1 has the higher priority because it has a shorter 
deadline, so first we release T1, when its execution time 
completes then we release T2 who has next higher priority. It 
job executes at the background of T1.So for this reason the 
execution of the first job in T2 is delayed until the first of T1 
completes. The 2nd job in T3 is pre-empted at time 4, when the 
3rd job in T1 is released because it has higher priority than T3. 
Similarly the 3rd job in T3 is pre-empted at time 7.5.Since there 
is always at least one job ready for execution until hyper 
period, the processor never get idle until that time. 

b) DYNAMIC APPROACH 

The priorities of tasks may change from request to request; 
different jobs will have different priorities. One of the 
dynamic approaches is: 

 

1) Earliest Deadline First (EDF) 
The algorithm is optimally used to schedule jobs on a 

processor as long as preemption is allowed and jobs do not 
have the resources [10]. It is based on absolute deadline where 
earlier the deadline, highest the priority. In EDF scheduling, at 
each of the point where scheduling is done the task having the 
shortest deadline is taken up for scheduling. 

 
 

In this we have two tasks 

                           T1 (2, 1), T2 (5, 3) 

Fig. 3: Example of RM 

Fig. 4: Example of DM 

Fig. 5: Example of EDF 
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 T1 has a higher priority because its deadline is earlier than 
T2 .First we release T1 when its execution will complete , then 
we release T2.At the time 0,first job J(1,1) and J(2,1) of both 
tasks are ready .But the absolute deadline of J(1,1,) is 2 while 
the absolute deadline of J(2,1) is 5 .So consequently J(1,1) has  
a higher priority and executes .When J(1,1) completes J(2,1) 
begins to execute. At time 2 the 2nd job T1 is released and its 
deadline is 4, earlier than the deadline of job 1 of T2. Here 2nd 
job of T1 pre-empts the first job of T2 and execute. When job 
2nd of T1 completes , the processor ten executes Job 1 of T2 .At 
time 4 job 3 of T1  is released its  deadline is  6 which is later 
than the deadline of job 1 of T2 , hence processor continue to 
execute the first job of  T2. At time 5 T2 has completed its first 
job now the deadline of T2 is 10 and deadline of T1 is 6. Here 
T1 has higher priority because it has deadline earlier than T2 so 
this way jobs continue to execute in tasks T1 and T2. 

C. Power Consumption Reduction Techniques 

a) Dynamic Voltage Scaling(DVS) 

It is based on adjusting the processor voltage and 
frequency on the fly. Power requirement depends on operating 
frequency as well as voltage i.e. the dynamic processor power 
is strictly increasing convex function of the processor speed. 
The DVS reduce the processor speed to the extent it is 
possible to obtain higher energy saving. The speed of a 
frequency dependent component is said to be reduced if it is 
either operating at lower voltage or frequency. The task 
response time increases with the reduced processor speed 
leading of the following consequences: A release may miss its 
deadline when it is feasible at higher speed. The longer 
execution time will be able to decrease the dynamic energy 
consumption of the processor. Frequency is dependent 
component remains active for longer time and increase energy 
consumption. Longer execution time implies more losses in 
energy due to leakage current [8]. 

b) Dynamic Power Down 

The dynamic power down technique suggest to switching 
to sleep state (low energy consuming state) of the idle 
components to reduce the energy consumption. For switching 
from active state to sleep state and back from sleep state to 
active state will incur an overhead called the DPD overhead. 
Thus, switching to sleep state too often may be 
counterproductive and estimated a threshold value for shutting 
down the components by comparing the energy consumption 
required in idle state with energy consumption on power down 
state and wakeup. If the energy consumption for switching to 
sleep state is less than or equal to the energy consumption in 
idle time then switching to sleep state is preferred over leaving 
the component idle [8,9]. 

D. Partitioning Techniques 

The partitioning techniques are used in case of selection of 
m jobs from a window of k consecutive jobs for execution. 

a) Deeply Red Pattern(Red_ Pattern): 

This pattern was proposed by Koren & Shasha [12]where 
first  releases out of  consecutive releases of task  
are mandatory. Mathematically, this can be described as 

    

When is 1, release is mandatory while it is optional in case 
0 is assigned to. We refer this pattern as Red_Pattern. 
Advantage of applying this pattern to a task set for energy 
minimization is that it aligns the optional jobs together so that 
a component has a better opportunity to switch into sleep state 
to save energy. For a task whose critical speed is higher than 
or equal to the highest possible speed the operating speed 
should never be scaled down. Assigning Red_Pattern to such a 
task helps to extend the idle interval for switching to sleep 
state. However, for a task whose critical speed is lower than 

 Red_Pattern overloads the system leading to large size 
busy intervals and need more energy to be feasible. 

b) Evenly Distributed Pattern(Even_Pattern) 

In this evenly distributed pattern in which the first release 
is always mandatory and the distribution of mandatory and 
optional is even i.e., alternating [11].  Mathematically, this can 
be described as   

  

We refer it to as Even_Pattern.  

c) Reverse Evenly Distributed Pattern(Rev_Pattern) 

This pattern is a reverse of the Even_Pattern, hence the 
first release is always optional and the distribution of 
mandatory and optional is alternating [12]. Mathematically: 

  

We refer it as Rev_Pattern. 

d) Hybrid Pattern(Hyd_Pattern) 

In this instead of assigning same pattern to all the tasks in 
the task set, we assigned different type of patterns 
(Red_Pattern or Even_Pattern) to each task. For example, task 
is partitioned into mandatory and optional according to 
Red_Pattern while and could be assigned Red_Pattern or 
Even_Pattern. Thus, yielding possible combination of pattern 
assignment where is the number of the tasks in the task set 
[11].  

e) Mixed Pattern(Mix_Pattern) 

The hybrid pattern allows a task in the task set to be 
scheduled by Red_Pattern or Even_Pattern. In both cases at 
least the first release of each task is mandatory (if not more 
e.g., (m, k)  first two releases of both the task are mandatory 
with the Hyd_Pattern) and are in phase hence, will overload 
the system, forcing it to be feasible with high energy 
requirement. Therefore, to improve the performance of 
Hyd_Pattern suggested a mixed pattern (Mix_Pattern) which 
combines the Hyd_Pattern with the Rev_Pattern yielding 3n 

[12]. 

IV. PROPOSED MODIFICATION: INVERSE RM 

Our main focus is to reduce the energy consumption of a 
real time system and to enhance the performance of the 
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system. Reduction in energy consumption increases the 
computation time which therefore increases the chance of 
missing the deadline i.e. energy and deadline are 
counterproductive. So, we have introduced an approach which 
can effectively reduce the energy by 15% along with DVS 
strategy which provide significant energy savings while 
maintaining real time deadline guarantees. It is inverse of rate 
monotonic scheduling where shorter the period higher is the 
priority but in case of inverse RM higher is the period, higher 
is the priority of the task set. It includes peripheral devices and 
energy is calculated using the existing techniques such as DVS 
and DPD. Let’s observe the scheduling and energy 
consumption of task set T using Inverse RM: 

 

 

 

In this example we have three task set T1 ( 3, 10, 10 , 1,4 ) 
, T2 ( 4, 16, 16, 1, 1 ) ,  T3( 10 , 40, 40 , 1 ,1) which includes 
execution time e , period p, deadline d , m jobs which can miss 
deadline , k consecutive jobs. Here 3, 4, 10 are the execution 
time of the task T1 ,T2, T3 and 10, 16, 40 are the period and 
deadline of the tasks T1, T2, T3. It has the hyper period 80 i.e. 
total period of the task which is calculated by taking the 
L.C.M. of the periods. As release is available at time 0, three 
of the tasks are available but as T3 has the higher period so it 
will have the highest priority whereas T2 will have the 2nd 
priority and T1 had the 3rd priority. Now T3 will take 10 units 
of time, the first job of the task T3 is executed then T2 will 
start executing, it will execute till the next release of job. After 
the execution of task T2, T1 will execute its 2nd job as 1st job 
is set to be optional by using m-k model where m jobs can 
miss their deadlines accordingly. Since, 1st and the 4th release 
is made optional of the task T1, will execute 3 units of every 
job. It will reduce the energy consumption of the system.    

A. Calculation of Energy by Inverse RM 

 
A = { T1, T2, T3 } where Ti  = { (ei , pi , di , mi , ki ) } : { (3, 
10, 10, 1, 4) , (4, 16, 16, 1, 1) , (10, 40, 40, 1, 1)} 
Utilization of the Tasks:       

                                U= ei / pi 

                                                      T1 = 3/10 = .3; T2 = 4/16 = .25;  
  T3 = 10/40=.25 
 Total Utilization: 

                                .3+.25+.25 =   .80 <1  
                                 Energy =ei *[(γ p(Si)+ γd ]*n ......[8] 
             Where             ei = execution time of the task 
                                      Si = operating speed 

                                     γ p = speed of the processor 
                                      γd = speed of the device 
                                       n = no. of jobs  
                                    Power = Energy/ unit time:  eγ  ;      
Frequency scalable (Processor):  γp α S3  

 Where s : operating speed  
Dynamic voltage scaling DVS: γp (Si) α Si3   

Energy =ei *[(γ p(Si)+ γd ]*n 

T1 = 3*[(10)^3+50]*6 = 18900 
T2 = 4*[(10)^3+100]*5 = 22000 
T3 = 10*[(10)^3+150]*2 = 23000  
Total Energy = T1+T2+T3 = 63900  
 

B. Comparison between Inverse RM and RM 

 
Calculation of Energy by RM:  

    A = { T1, T2, T3 } where Ti  = { (ei , pi , di , mi , ki ) } : { (3, 
10, 10, 1, 4) , (4, 16, 16, 1, 1) , (10, 40, 40, 1, 1) }                                                   
Utilization of the Tasks:       

                                U= ei / pi  

                        T1 = 3/10 = .3;   T2 = 4/16 = .25;    
  T3 = 10/40=.25 

 Total Utilization:  

                                .3+.25+.25 =   .80 <1  
                                 Energy =ei *[(γ p(Si)+ γd ]*n 
             Where         ei = execution time of the task 
                                  Si = operating speed 

                                  γ p = speed of the processor 
                                  γd = speed of the device 
                                  n = no. of jobs 
Power = Energy/ unit time:  eγ  ;      
Frequency scalable (Processor):  γp α S3  where s : operating 
speed  
Dynamic voltage scaling DVS: γp ( Si) α Si3   

Energy =ei *[(γ p(Si)+ γd ]*n 
T1 = 18900 
T2 = 39358 
T3 = 41147  
Total Energy = T1+T2+T3 = 99405 

By implementing inverse RM, total energy is 63900 therefore 
energy consumption is reduced by   35.7%. Hence proved 
algorithm is feasible. 

V. RESULTS AND DISCUSSION 

Our experimental results demonstrate that our approach can 
greatly reduce the number of idle intervals and thus the power 
consumption, while still providing (m, k)-firm guarantee. We 
also propose a novel pre-emption control scheme, which can 
be well incorporated into our dynamic scheduling algorithm. 
Extensive experiments have been performed and demonstrate 
the effectiveness of our approach. 
Our results indicate that the energy-consumption of the real 
time systems along with the greedy algorithms when the 
system is significantly energy-constrained is reduced by 15% 
and enhance the performance. 
Energy Consumption in case of RM and IRM in case of T1 
and T2 fixed and varying the time period of T3. 

Optional job Optional job 

Fig. 6: Example of IRM 
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Example I 

Task 1: (3,10,10,1,4); Task 2: (4,16,16,1,1); Task 3: 
(10,40,40,1,1)  
Energy consumed by task 1 by rm: 18900 
Energy consumed by task 2 by rm: 39358 
Energy consumed by task 3 by rm: 41147 
Total energy consumption by rm is: 99405 
Energy consumed by task 1 by irm: 18900 
Energy consumed by task 2 by irm: 22000 
Energy consumed by task 3 by irm: 23000 
Total energy consumption by irm is: 66200 
A linear increase as period of task 3 is changed, while the 
periods of task1 and task 2 remain fixed, as shown in the 
graph. 
 

 

 

Example II 

Task 1: (5,15,15,1,1); Task 2: (7,20,20,1,1); Task 3: 
(8,60,60,1,1)  
 

 
 
Energy consumed by task 1 by rm: 21000 
Energy consumed by task 2 by rm: 41325 
Energy consumed by task 3 by rm: 16458 
Total energy consumption by rm is:78783 
Energy consumed by task 1 by irm: 21000 
Energy consumed by task 2 by irm: 23100 
Energy consumed by task 3 by irm: 9200 
Total energy consumption by irm is: 53300 

A linear increase as period of task 3 is changed, while the 
periods of task1 and task 2 remain fixed, as shown in the 
graph. 

VI. CONCLUSION AND FUTURE SCOPE 

The system consists of a core processor a number of 
peripheral devices, which have different power characteristics. 
Energy consumption is critical in the design of pervasive real-
time computing platforms. The power consumption for 
peripheral devices, as a significant part of the overall power 
consumption, must be taken into consideration to reduce the 
system wide power consumption. Along with the adopted 
single known mandatory/optional partitioning strategy, we 
propose to incorporate different partitioning strategies based 
on the power characteristics of the devices as well as the 
application specifications. We introduce a feasibility 
condition, and based on which, we propose an algorithm to 
performance the mandatory/optional job partitions. In this , we 
presented a dynamic DPD  and DVS approach(calculation ) to 
reduce the system wide energy consumption while 
guaranteeing the QoS requirement, which are modelled as the 
(m,k)-constraints.  The energy saving performance of our 
approach comes from the facts that we dynamically change the 
mandatory/optional job settings, and merge the idle intervals 
effectively by delaying the execution for mandatory jobs.  

In the future, we would like to expand this work beyond 
the deterministic/absolute real-time paradigm presented here. 
In particular, we will investigate other scheduling technique   
with probabilistic or statistical deadline guarantees. We will 
also explore integration with other energy conserving 
mechanisms.  
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