
1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

Energy Reduction in Weakly Hard Real Time
Systems

Yashwant Singh, Mayank Popli, Shiv Shankar Prasad Shukla
Department of CSE & IT,

 Jaypee University of Information Technology
Waknaghat, HP, India.

yashu_want@yahoo.com, mayankpopli27@gmail.com, yash22222k1@yahoo.com

Abstract—Real Time Systems can be classified into Hard, Soft

and Firm Real Time Systems depending on the consequences of a

task missing its deadline. A Hard Real Time System produce

required results before the specified time bound. In Soft Real

Time Systems the few misses of deadline is acceptable if they

have no harm. The Generalized case of Real Time Systems is

Weakly Hard Real Time System which is motivation of the

observation for real time applications when some deadline misses

are acceptable as long as they are spaced evenly.

This paper is an attempt to provide a state-of-the-art review of

basic model of Real Time System, clock driven scheduling,

priority driven scheduling and proposes an Inverse Rate

Monotonic algorithm. The Inverse Rate Monotonic algorithm

effectively reduce the energy by 15% along with Dynamic

Voltage Scaling strategy which provides significant energy

savings while maintain real time deadline guarantee. A tool has

been created in C language to observe the scheduling and energy

consumption of task by Inverse Rate Monotonic.

Keywords-Hard Real Time Systems, Soft Real Time Systems,

Scheduling, Rate Monotonic, Deadline Monotonic, Dynamic

Voltage Scaling, Dynamic Power Down, Deeply Red Pattern, Mixed

Pattern.

I. INTRODUCTION

A real-time system is expected to respond not just quickly,
but also within a predictable period of time. A real time task is
one for which quantitative expression of time is needed to
describe its behavior. This quantitative expression of time
usually appears in the form of a constraint on the time at
which the task produces results. The most frequently occurring
time constraint is a deadline which is used to express that a
task is required to compute its results within tasks deadline
[1].

There are various applications of real time systems, which
includes Automated Car Assembly Plant, Temperature Control
in Chemical Plant, Robot used in Recovery, Cellular Systems,
Missile Guidance Systems, Car Braking System and Security
Systems. As depicted from the above listed wide range of
applications, real time systems can be classified into hard,
soft, and firm real time systems depending on the
consequences of a task missing its deadline.

A hard real time system is one that is constrained to
produce its results within a certain predefined time bounds.

The system is considered to have failed whenever any of its
hard real time tasks does not produce its required results
before the specified time bound. In soft real time systems the
few misses of deadline have no harm. It just decreases the
overall performance of the system. When a system is
considered soft real time system, there is some room for
lateness. The generalized case of real time systems is weakly
hard real time systems. It is motivation of observation for real
time applications, where some deadline misses are acceptable
as long as they are spaced evenly. The systems where missing
of few deadlines can be tolerated at the cost of compromising
quality of service limiting to the acceptable quality measured
as (m,k) model [13] known as weakly hard real time systems.

To achieve better quality of service in terms of tolerance
and energy consumption while honouring minimum tolerance
requirement, we need maximum energy available within strict
timing constraint. Reducing the energy consumption increases
the computation time which increase the chance of missing the
deadline i.e. energy and deadline are counterproductive. There
is a need for design of an efficient resource manager that
minimizes system energy consumption while giving better
tolerance to hard real time system with arbitrary deadline
exposed to transient faults. Thus, issues of energy and real
time constraints can be integrated into single framework to
achieve reduced system energy consumption within deadline
by the use of check pointing, tolerance patterns, pre-emption
control, speed fine tuning, delay start, speed patterns,
criticality and sensitivity.

In this paper we propose a general scheduling algorithm to
minimize the energy consumption in weakly hard real time
systems, i.e., the (m, k) model, which requires at least m out of
k consecutive instances of a task meet their deadlines. Firstly,
we proposed a strategy to partition real time jobs into
mandatory and optional part in order to meet weakly hard real
time constraint. Secondly, we introduce an approach which
can effectively reduce the energy by 15% along with Dynamic
voltage scaling (DVS) strategy which provides significant
energy savings while maintaining real time deadline
guarantees. We also ensure time constraints i.e. the completion
of an operation after its deadlines is considered useless which
may cause a complete failure, so the task has to be completed
within a specified time limit otherwise it will cease to failure.

1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

Remainder of this paper is organized as follows: section 2
describes the basic model of a real time system and the various
types of real time systems which consist of hard, soft and firm
real time systems. Section 3 illustrates various types of
scheduling and existing techniques for reducing energy
consumption in real time systems as a part of our literature
survey. Section 4 provides proposed approach for reduction of
energy consumption in real time systems. The result is
illustrated in section 5. Section 6 presents the conclusion and
the future scope.

II. A BASIC MODEL OF REAL TIME SYSTEM

This figure shows a simple model of a real time systems in
terms of its functional blocks. The sensors are interfaced with
the input conditioning block,which in turn is connected to the
input interface. The output interface, output conditioning and
the actuator are interfaced in a complementary manner. A
sensor converts some physical characteristic of its
enviornment into electrical signals. An actuator is any device
that takes its input from the output interface of a computer and
converts these electrical signal into some physical actions on
its enviornment. A popular actuator is a motor. The computer
signals usually need conditioning before they can be used by
the actuator. This is called output conditioning.Few important
conditions are Voltage Amplification , Voltage level shifting
and Frequency range shifting,which is used to reduce the noise
components in a signal [7].

Many types of noise occur in narrow bands, therefore the
signal must be shifted from the noise bands so that noise can
be filtered out. Interface actuators commands from the CPU
are delivered to the actuator through an output interface. An
ouput interface converts the stored voltage into analog form
and then outputs this to the actuator. Digital computers can not
process analog signals. Therefore, analog signals need to be
converted into digital. Sampling is done by a capacitor
circutory that stores voltage levels. These voltage levels can be
discretized after a sampling into a step waveform [2,3].

A. Hard real time system

The completion of an operation after its deadlines is
considered useless. When a process is considered hard real-
time, it must complete its operation by a specific time. If it
fails to meet its deadline, its operation is without value and the
system for which it is a component could face failure. One
example of hard real time system is an anti missile system [7].

B. Soft real time system

Soft real-time systems are systems where few misses of
deadline does not leads to failure and just degrades the overall
performance of the system, for instance web browsing.

Fetching of web page may take few seconds or minutes, we
still do not consider the system to have failed, but merely
express that the performance of the system has degraded [7].

C. Weakly hard real-time system

It is the generalized case of real time systems and is
measured by a general model i.e. m-k model where it needs to
meet at least m deadlines in every consecutive k jobs. Another
example of a real-time task is a monitor. A task periodically
performs a set of monitoring actions. The sampling period may
be carefully computed or decided as a rule of thumb. Again
missing an occasional deadline means that the action from
monitoring will be delayed by some bounded period of time.
Provided that the effect of such a delay can be tolerated and
deadlines can be missed [4].

III. LITERATURE SURVEY

A. Clock Driven Scheduling

Clock driven schedulers make their scheduling decisions
regarding which task to run next only at the clock interrupt
points. Clock driven schedulers are also called off line
schedulers because these schedulers fix the schedule before
the system starts to run, i.e the scheduler pre- determines
which task will run when. Therefore, these schedulers incur
very little run time overhead. However, a prominent
shortcoming of this class of schedulers is that they cannot
satisfactorily handle aperiodic and sporadic tasks since the
exact time of occurrences of these tasks cannot be predicted
[5,6].

B. Priority Driven Scheduling

It is based on the priority of the jobs. When the higher
priority is ready it pre-empts the lower priority which is
running. There are two approaches of priority driven
scheduling:-

a) STATIC APPROACH :

 Priorities are assigned to tasks once for all and every job
of a task will have same priority.

I. Rate Monotonic Algorithm (RM)

Rate monotonic algorithm [14] is a dynamic pre-emptive
algorithm based on static priorities. The rate monotonic
algorithm assigns static priorities based on task periods. Here
task period is the time after which the tasks repeat and inverse
of period is task arrival rate. For example, a task with a period
of 10ms repeats itself after every 10ms. The task with the

Fig. 1: Model of a real time system

Point at which degradation starts

Performance degraded

Figure 2: Graph for hard and soft real time system

1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

shortest period gets the highest priority, and the task with the
longest period gets the lowest static priority. At run time, the
dispatcher selects the task with the highest priority for
execution [7,15].

EXAMPLE: In this example we have three tasks T1, T2, T3

 T1 (4, 1), T2 (5, 2), T3 (20, 5)

Where 4, 5, 20 are the period and 1, 2, 5 are the execution
time of the task. It has a hyper period 18 i.e. The Total period
of the task this is calculated by taking LCM of the periods.

First we will release T1 because it has shorter period and

after execution of first job of T1 we will release T2 who has
next shorter period and its jobs execute in the background of
T1 so for this reason the execution of the first job in T2 is
delayed until the first job of T1 completes and the fourth job
in T2 is pre-empted at the time 16 when the fifth job in T1 is
released because here the job in T1 has a highest priority than
T2 because T1 has shorter period than T2 so here instead of
complete the fourth job in T2 we will complete the fifth job in
T1 so T1 is pre-empted at time 16. Similarly T3 is executes in
the background of T1 and T2. The jobs in T3 execute only
when there is no job in the higher priority tasks ready for
execution. Since there is always at least one job ready for
execution until time 18 the processor never idles.

Preemption: In case of preemption the execution of jobs
can often be interleaved. The scheduler may suspend the
execution of a less priority jabs and give the processor to more
priority job. Later when the more priority job completes the
scheduler returns the processor to less priority job so the job
can resume execution. The interruption of job execution is
called pre-emption.

II. Deadline Monotonic Algorithm

One of the problems with RM is that many systems will
need job deadlines shorter than the job’s period which violates
the assumption mentioned earlier. A solution to this problem
arrived in 1982 with the introduction of the Deadline
Monotonic (DM) algorithm [14, 15]. With DM, a job’s
priority is inversely proportional to its relative deadline. That
is to say, the shorter the relative deadline higher the priority.

In this example we have three tasks T1, T2, T3

 T1 (2, 0.6), T2 (2.5, 0.2), T3 (3, 1.2)

Where 2, 2.5, 3 are the period which is same as the
deadline of the task and 0.6, 0.2, 1.2 is the execution time of
the task. It has a hyper period 10 i.e. total period of the task
which is calculated by taking LCM of the periods.

In this T1 has the higher priority because it has a shorter
deadline, so first we release T1, when its execution time
completes then we release T2 who has next higher priority. It
job executes at the background of T1.So for this reason the
execution of the first job in T2 is delayed until the first of T1
completes. The 2nd job in T3 is pre-empted at time 4, when the
3rd job in T1 is released because it has higher priority than T3.
Similarly the 3rd job in T3 is pre-empted at time 7.5.Since there
is always at least one job ready for execution until hyper
period, the processor never get idle until that time.

b) DYNAMIC APPROACH

The priorities of tasks may change from request to request;
different jobs will have different priorities. One of the
dynamic approaches is:

1) Earliest Deadline First (EDF)
The algorithm is optimally used to schedule jobs on a

processor as long as preemption is allowed and jobs do not
have the resources [10]. It is based on absolute deadline where
earlier the deadline, highest the priority. In EDF scheduling, at
each of the point where scheduling is done the task having the
shortest deadline is taken up for scheduling.

In this we have two tasks

 T1 (2, 1), T2 (5, 3)

Fig. 3: Example of RM

Fig. 4: Example of DM

Fig. 5: Example of EDF

1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

 T1 has a higher priority because its deadline is earlier than
T2 .First we release T1 when its execution will complete , then
we release T2.At the time 0,first job J(1,1) and J(2,1) of both
tasks are ready .But the absolute deadline of J(1,1,) is 2 while
the absolute deadline of J(2,1) is 5 .So consequently J(1,1) has
a higher priority and executes .When J(1,1) completes J(2,1)
begins to execute. At time 2 the 2nd job T1 is released and its
deadline is 4, earlier than the deadline of job 1 of T2. Here 2nd
job of T1 pre-empts the first job of T2 and execute. When job
2nd of T1 completes , the processor ten executes Job 1 of T2 .At
time 4 job 3 of T1 is released its deadline is 6 which is later
than the deadline of job 1 of T2 , hence processor continue to
execute the first job of T2. At time 5 T2 has completed its first
job now the deadline of T2 is 10 and deadline of T1 is 6. Here
T1 has higher priority because it has deadline earlier than T2 so
this way jobs continue to execute in tasks T1 and T2.

C. Power Consumption Reduction Techniques

a) Dynamic Voltage Scaling(DVS)

It is based on adjusting the processor voltage and
frequency on the fly. Power requirement depends on operating
frequency as well as voltage i.e. the dynamic processor power
is strictly increasing convex function of the processor speed.
The DVS reduce the processor speed to the extent it is
possible to obtain higher energy saving. The speed of a
frequency dependent component is said to be reduced if it is
either operating at lower voltage or frequency. The task
response time increases with the reduced processor speed
leading of the following consequences: A release may miss its
deadline when it is feasible at higher speed. The longer
execution time will be able to decrease the dynamic energy
consumption of the processor. Frequency is dependent
component remains active for longer time and increase energy
consumption. Longer execution time implies more losses in
energy due to leakage current [8].

b) Dynamic Power Down

The dynamic power down technique suggest to switching
to sleep state (low energy consuming state) of the idle
components to reduce the energy consumption. For switching
from active state to sleep state and back from sleep state to
active state will incur an overhead called the DPD overhead.
Thus, switching to sleep state too often may be
counterproductive and estimated a threshold value for shutting
down the components by comparing the energy consumption
required in idle state with energy consumption on power down
state and wakeup. If the energy consumption for switching to
sleep state is less than or equal to the energy consumption in
idle time then switching to sleep state is preferred over leaving
the component idle [8,9].

D. Partitioning Techniques

The partitioning techniques are used in case of selection of
m jobs from a window of k consecutive jobs for execution.

a) Deeply Red Pattern(Red_ Pattern):

This pattern was proposed by Koren & Shasha [12]where
first releases out of consecutive releases of task
are mandatory. Mathematically, this can be described as

When is 1, release is mandatory while it is optional in case
0 is assigned to. We refer this pattern as Red_Pattern.
Advantage of applying this pattern to a task set for energy
minimization is that it aligns the optional jobs together so that
a component has a better opportunity to switch into sleep state
to save energy. For a task whose critical speed is higher than
or equal to the highest possible speed the operating speed
should never be scaled down. Assigning Red_Pattern to such a
task helps to extend the idle interval for switching to sleep
state. However, for a task whose critical speed is lower than

 Red_Pattern overloads the system leading to large size
busy intervals and need more energy to be feasible.

b) Evenly Distributed Pattern(Even_Pattern)

In this evenly distributed pattern in which the first release
is always mandatory and the distribution of mandatory and
optional is even i.e., alternating [11]. Mathematically, this can
be described as

We refer it to as Even_Pattern.

c) Reverse Evenly Distributed Pattern(Rev_Pattern)

This pattern is a reverse of the Even_Pattern, hence the
first release is always optional and the distribution of
mandatory and optional is alternating [12]. Mathematically:

We refer it as Rev_Pattern.

d) Hybrid Pattern(Hyd_Pattern)

In this instead of assigning same pattern to all the tasks in
the task set, we assigned different type of patterns
(Red_Pattern or Even_Pattern) to each task. For example, task
is partitioned into mandatory and optional according to
Red_Pattern while and could be assigned Red_Pattern or
Even_Pattern. Thus, yielding possible combination of pattern
assignment where is the number of the tasks in the task set
[11].

e) Mixed Pattern(Mix_Pattern)

The hybrid pattern allows a task in the task set to be
scheduled by Red_Pattern or Even_Pattern. In both cases at
least the first release of each task is mandatory (if not more
e.g., (m, k) first two releases of both the task are mandatory
with the Hyd_Pattern) and are in phase hence, will overload
the system, forcing it to be feasible with high energy
requirement. Therefore, to improve the performance of
Hyd_Pattern suggested a mixed pattern (Mix_Pattern) which
combines the Hyd_Pattern with the Rev_Pattern yielding 3n

[12].

IV. PROPOSED MODIFICATION: INVERSE RM

Our main focus is to reduce the energy consumption of a
real time system and to enhance the performance of the

1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

system. Reduction in energy consumption increases the
computation time which therefore increases the chance of
missing the deadline i.e. energy and deadline are
counterproductive. So, we have introduced an approach which
can effectively reduce the energy by 15% along with DVS
strategy which provide significant energy savings while
maintaining real time deadline guarantees. It is inverse of rate
monotonic scheduling where shorter the period higher is the
priority but in case of inverse RM higher is the period, higher
is the priority of the task set. It includes peripheral devices and
energy is calculated using the existing techniques such as DVS
and DPD. Let’s observe the scheduling and energy
consumption of task set T using Inverse RM:

In this example we have three task set T1 (3, 10, 10 , 1,4)
, T2 (4, 16, 16, 1, 1) , T3(10 , 40, 40 , 1 ,1) which includes
execution time e , period p, deadline d , m jobs which can miss
deadline , k consecutive jobs. Here 3, 4, 10 are the execution
time of the task T1 ,T2, T3 and 10, 16, 40 are the period and
deadline of the tasks T1, T2, T3. It has the hyper period 80 i.e.
total period of the task which is calculated by taking the
L.C.M. of the periods. As release is available at time 0, three
of the tasks are available but as T3 has the higher period so it
will have the highest priority whereas T2 will have the 2nd
priority and T1 had the 3rd priority. Now T3 will take 10 units
of time, the first job of the task T3 is executed then T2 will
start executing, it will execute till the next release of job. After
the execution of task T2, T1 will execute its 2nd job as 1st job
is set to be optional by using m-k model where m jobs can
miss their deadlines accordingly. Since, 1st and the 4th release
is made optional of the task T1, will execute 3 units of every
job. It will reduce the energy consumption of the system.

A. Calculation of Energy by Inverse RM

A = { T1, T2, T3 } where Ti = { (ei , pi , di , mi , ki) } : { (3,
10, 10, 1, 4) , (4, 16, 16, 1, 1) , (10, 40, 40, 1, 1)}
Utilization of the Tasks:

 U= ei / pi

 T1 = 3/10 = .3; T2 = 4/16 = .25;
 T3 = 10/40=.25
 Total Utilization:

 .3+.25+.25 = .80 <1
 Energy =ei *[(γ p(Si)+ γd]*n[8]
 Where ei = execution time of the task
 Si = operating speed

 γ p = speed of the processor
 γd = speed of the device
 n = no. of jobs
 Power = Energy/ unit time: eγ ;
Frequency scalable (Processor): γp α S3

 Where s : operating speed
Dynamic voltage scaling DVS: γp (Si) α Si3

Energy =ei *[(γ p(Si)+ γd]*n

T1 = 3*[(10)^3+50]*6 = 18900
T2 = 4*[(10)^3+100]*5 = 22000
T3 = 10*[(10)^3+150]*2 = 23000
Total Energy = T1+T2+T3 = 63900

B. Comparison between Inverse RM and RM

Calculation of Energy by RM:

 A = { T1, T2, T3 } where Ti = { (ei , pi , di , mi , ki) } : { (3,
10, 10, 1, 4) , (4, 16, 16, 1, 1) , (10, 40, 40, 1, 1) }
Utilization of the Tasks:

 U= ei / pi

 T1 = 3/10 = .3; T2 = 4/16 = .25;
 T3 = 10/40=.25

 Total Utilization:

 .3+.25+.25 = .80 <1
 Energy =ei *[(γ p(Si)+ γd]*n
 Where ei = execution time of the task
 Si = operating speed

 γ p = speed of the processor
 γd = speed of the device
 n = no. of jobs
Power = Energy/ unit time: eγ ;
Frequency scalable (Processor): γp α S3 where s : operating
speed
Dynamic voltage scaling DVS: γp (Si) α Si3

Energy =ei *[(γ p(Si)+ γd]*n
T1 = 18900
T2 = 39358
T3 = 41147
Total Energy = T1+T2+T3 = 99405

By implementing inverse RM, total energy is 63900 therefore
energy consumption is reduced by 35.7%. Hence proved
algorithm is feasible.

V. RESULTS AND DISCUSSION

Our experimental results demonstrate that our approach can
greatly reduce the number of idle intervals and thus the power
consumption, while still providing (m, k)-firm guarantee. We
also propose a novel pre-emption control scheme, which can
be well incorporated into our dynamic scheduling algorithm.
Extensive experiments have been performed and demonstrate
the effectiveness of our approach.
Our results indicate that the energy-consumption of the real
time systems along with the greedy algorithms when the
system is significantly energy-constrained is reduced by 15%
and enhance the performance.
Energy Consumption in case of RM and IRM in case of T1
and T2 fixed and varying the time period of T3.

Optional job Optional job

Fig. 6: Example of IRM

1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

Example I

Task 1: (3,10,10,1,4); Task 2: (4,16,16,1,1); Task 3:
(10,40,40,1,1)
Energy consumed by task 1 by rm: 18900
Energy consumed by task 2 by rm: 39358
Energy consumed by task 3 by rm: 41147
Total energy consumption by rm is: 99405
Energy consumed by task 1 by irm: 18900
Energy consumed by task 2 by irm: 22000
Energy consumed by task 3 by irm: 23000
Total energy consumption by irm is: 66200
A linear increase as period of task 3 is changed, while the
periods of task1 and task 2 remain fixed, as shown in the
graph.

Example II

Task 1: (5,15,15,1,1); Task 2: (7,20,20,1,1); Task 3:
(8,60,60,1,1)

Energy consumed by task 1 by rm: 21000
Energy consumed by task 2 by rm: 41325
Energy consumed by task 3 by rm: 16458
Total energy consumption by rm is:78783
Energy consumed by task 1 by irm: 21000
Energy consumed by task 2 by irm: 23100
Energy consumed by task 3 by irm: 9200
Total energy consumption by irm is: 53300

A linear increase as period of task 3 is changed, while the
periods of task1 and task 2 remain fixed, as shown in the
graph.

VI. CONCLUSION AND FUTURE SCOPE

The system consists of a core processor a number of
peripheral devices, which have different power characteristics.
Energy consumption is critical in the design of pervasive real-
time computing platforms. The power consumption for
peripheral devices, as a significant part of the overall power
consumption, must be taken into consideration to reduce the
system wide power consumption. Along with the adopted
single known mandatory/optional partitioning strategy, we
propose to incorporate different partitioning strategies based
on the power characteristics of the devices as well as the
application specifications. We introduce a feasibility
condition, and based on which, we propose an algorithm to
performance the mandatory/optional job partitions. In this , we
presented a dynamic DPD and DVS approach(calculation) to
reduce the system wide energy consumption while
guaranteeing the QoS requirement, which are modelled as the
(m,k)-constraints. The energy saving performance of our
approach comes from the facts that we dynamically change the
mandatory/optional job settings, and merge the idle intervals
effectively by delaying the execution for mandatory jobs.

In the future, we would like to expand this work beyond
the deterministic/absolute real-time paradigm presented here.
In particular, we will investigate other scheduling technique
with probabilistic or statistical deadline guarantees. We will
also explore integration with other energy conserving
mechanisms.

REFERENCES

[1] B.Dasarathy, “Timing constraints of real time systems: Constructs for
expressing them, methods for validating them,” IEEE Transactions on

Software Engineering, Vol. 11(NO.1), pp 80-86, January 1985.
[2] Steve Health, “Embedded Systems Design,” Elsevier, 2003.
[3] Brian Santo, “Embedded Battle Royale,” IEEE Spectrum, pp 36-42,

December 2001
[4] G. Bernat, A. Burns, and A. Llamosi, “Weakly Hard Real-Time Systems,”

IEEE Transactions on Computers, vol. 50, no. 4, pp. 308 –321, Apr. 2001.
[5] C Liu. and J.W. Layland, “Scheduling Algorithms for Multiprogramming

in Hard Real-Time Environment,” Journal of ACM, Vol. 20(1), pp 46-61,
1973.

[6] C. M. Krishna and K.G. Shin, “Real-Time Systems,” Tata McGraw-Hill,

1997.
[7] Jane W. S. Liu, “Real-Time Systems,” University of Ilinois at Urbana-

Champaign, ISBN-10: 0130996513 Prentice Hall, 2000.
[8] Smriti Agrawal, Rama Shankar Yadav, Ranvijay, “A Preemption Control

Technique for System Energy Minimization of Weakly Hard Real-Time
Systems”, in the International Conference on Software , Artificial

Intelligence, Networking and Parallel/Distributed (SNPD-2008),
[9] Smriti Agrawal, Rama Shankar Yadav, Ranvijay, “A Speed Fine Tuning

Techniques for System Energy Minimization of Weakly Hard Real-Time
Systems”, accepted for publication in International Journal of Computer

and Application, ACTA Press Publication, Canada, 2009.
[10]Smriti Agrawal, Rama Shankar Yadav, Ranvijay, “ a preemption control

approach for energy aware fault tolerant real-time systems” International

journal of recent trend in engineering, Vol. 1, No. 1, PP. 381-386, ISBN:
1797-9617

[11] M.Hamdaoui and P. Ramanathan, "A dynamic priority assignment
technique for streams with (m,k)-firm deadlines," IEEE Transaction on

Computers, vol.44, no.4, pp. 1443-1451, 1999.
[12] G.Koren and D. Shasha, “D-over: An optimal on-line scheduling

algorithm for overloaded real-time systems,” in proc. 13th IEEE Real Time

Systems Symposium, Phoenix, Arizona, USA, pp.290-300, December
1992,

[13] Moncef Hamdaoui and Parameswaran Ramanathan, “A dynamic priority
assignment technique for streams with (m,k)-firm deadlines,” IEEE

Fig. 8: Graph for RM and IRM for Task 3

Fig. 7: Graph for RM and IRM for Task 3.
Series 1: IRM and Series 2: RM

1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |

978-1-4577-0697-4/12/$26.00 ©2012 IEEE

Transactions on Computers, vol. 44, no. 12, pp. 1443 1451, December
1995.

[14] Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkumar, “Rate-
monotonic analysis for real-time industrial computing,” Computer, pp.25-

32, 1994.

[15] J.P. Lehoczky, L. Sha, and Y. Ding, "The rate monotonic scheduling
algorithm: Exact characterization and average case behaviour,” In

Proceedings of 10th IEEE Real-Time Systems Symposium, pp. 166-171,
1989.

