
FPGA Glitch Power Analysis and Reduction
Warren Shum and Jason H. Anderson

Department of Electrical and Computer Engineering, University of Toronto
Toronto, ON. Canada

{shumwarr, janders}@eecg.toronto.edu

Abstract—This paper presents a don’t-care-based synthesis
technique for reducing glitch power in FPGAs. First, an analysis
of glitch power and don’t-cares in a commercial FPGA is given,
showing that glitch power comprises an average of 26.0% of
total dynamic power. An algorithm for glitch reduction is then
presented, which takes advantage of don’t-cares in the circuit by
setting their values based on the circuit’s simulated glitch behavior.
Glitch power is reduced by up to 49.0%, with an average of 13.7%,
while total dynamic power is reduced by up to 12.5%, with an
average of 4.0%. The algorithm is applied after placement and
routing, and has zero area and performance overhead.

Index Terms – FPGA, glitch power, don’t-cares, SAT

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are highly desir-
able for the implementation of digital systems due to their
flexibility and low time-to-market. However, their programma-
bility comes at a cost to power consumption. Analyses show
an increase of as much as 10x the power of a functionally-
equivalent ASIC design [7]. This can be a barrier to FPGA use
in power-sensitive applications, such as mobile devices.

Power in FPGAs can be divided into two categories: static
power and dynamic power. Static power is due to current
leakage in transistors. Dynamic power is a result of signal
transitions between logic-0 and logic-1. These transitions can
be split into two types: functional transitions and glitches.
Functional transitions are those which are necessary for the
correct operation of the circuit. Glitches, on the other hand, are
transitions that arise from unbalanced delays to the inputs of
a logic gate, causing the gate’s output to transition briefly to
an intermediate state. Although glitches do not adversely affect
the functionality of a synchronous circuit (as they settle before
the next clock edge), they have a significant effect on power
consumption. The work in [8] estimates that glitch power in
FPGAs comprises from 4% to 73% of total dynamic power,
with an average of 22.6%. This is a significant motivator for
the reduction of glitch power.

Don’t-cares are an important concept in logic synthesis and
are frequently used for the optimization of logic circuits. A
don’t-care of a logic function within a larger circuit is an input
state for which the function’s output can be either logic-0 or
logic-1, without affecting the circuit’s correctness. Don’t-cares
can come from external constraints or from within the circuit
itself. An external constraint may be specified by the designer
(e.g. asserting that a certain input combination will never be
applied). A logic function within a circuit may also have don’t-
cares due to its surrounding logic, for example, if the logic
feeding the function’s fanins can never satisfy a certain input

combination, or if the function’s output does not affect the
circuit’s primary outputs under certain circumstances.

In this paper, we present a glitch reduction optimization
algorithm based on don’t-cares. It sets the output values for
the don’t-cares of logic functions in such a way that reduces
the amount of glitching. This process is performed after place-
ment and routing, using timing simulation data to guide the
algorithm. Relative to prior published FPGA glitch reduction
techniques, our approach is entirely new, and leverages the
ability to re-program FPGA logic functions without altering
the placement and routing. Since the placement and routing are
maintained, this optimization has zero cost in terms of area and
delay, and can be executed after timing closure is completed.

The paper is organized as follows: Section II provides related
work and background on glitches and don’t-cares. Section III
presents the motivation for this work and an analysis of the
glitch characteristics of circuits in a commercial 65nm FPGA,
which to our knowledge is the first study of its kind. Section IV
describes our glitch reduction algorithm. Section V describes
our experimental methodology and results, and Section VI
concludes the paper.

II. BACKGROUND

A. FPGA Architecture

Fig. 1(a) shows a section of a typical island-style FPGA
architecture. It is composed of logic blocks connected to one an-
other through a programmable routing network. Programmable
routing switches (shown as x’s in Fig. 1(a)) allow pins on
logic blocks to be programmably connected to pre-fabricated
metal wire segments, and also allow wire segments to be
programmably connected with one another to form routing
paths.

Inside the logic blocks, logic functions are implemented
using look-up-tables (LUTs). An example is shown in Fig. 1(b).
A k-input LUT can implement any logic function of up to
k variables. In essence, a LUT is a hardware implementation
of a truth table, where the output value for each minterm is
held in an SRAM configuration cell (bit). A k-input LUT
requires 2k configuration bits. For this work, we target an
FPGA that contains 6-input LUTs, which are typical of modern
commercial FPGA architectures [2], [17].

B. Glitch Power in FPGAs

The dynamic power consumed by an FPGA can be modeled
by the formula

978-1-61284-660-6/11/$26.00 © 2011 IEEE 27

(a) (b)

Fig. 1. (a) Logic blocks and routing in an island-style FPGA architecture.
(b) Example of a 3-input LUT (look-up-table) with truth table in Table I.

Fig. 2. Example waveform showing a glitch on the output of a LUT f with
truth table given in Table I.

Pdyn =
1

2

n∑
i=1

SiCifV
2
dd (1)

where n is the number of nets in the circuit, Si is the
switching activity of net i, Ci is the capacitance of net i, f
is the frequency of the circuit, and Vdd is the supply voltage.
The glitch reduction algorithm presented in this paper aims to
lower the switching activity as a means of reducing dynamic
power.

As a result of the differences in delays through the rout-
ing network and LUTs themselves, signals arriving at LUT
inputs may transition at different times, leading to glitches.
An example is shown in Fig. 2. This LUT implements the
3-input function given in Table I. Consider the case where
the inputs transition from 000 → 111. Ideally, the output f
would remain constant at 0. However, varying arrival times
on the inputs may cause an input transition sequence such
as 000 → 100 → 110 → 111, causing f to make a
0 → 1 → 0 → 0 transition rather than remaining at 0.
This leads to extra power consumed by the LUT and any of
its fanouts that propagate the glitch. Furthermore, the glitch
is propagated through the FPGA interconnect which presents
a high capacitive load due to its long metal wire segments
and programmable (buffered) routing switches. Prior work has
shown, in fact, that interconnect accounts for 60% of total
FPGA dynamic power [14].

C. Glitch Reduction in FPGAs
Glitch reduction techniques can be applied at various stages

in the CAD flow. Since glitches are caused by unbalanced
path delays to LUT inputs, it is natural to design algorithms
that attempt to balance the delays. This can be done at the

abc f Care
000 0 Y
001 0 Y
010 0 Y
011 0 Y
100 1 N
101 1 Y
110 0 N
111 0 Y

TABLE I
GLITCH EXAMPLE TRUTH TABLE FOR A LOGIC FUNCTION WITH INPUTS abc

AND OUTPUT f . A POSSIBLE EXAMPLE OF CARES IS GIVEN (care = Y,
don’t-care = N)

technology mapping stage [3], in which the mapping is chosen
based on glitch-aware switching activities. Another approach
operates at the routing stage [5], in which the faster-arriving
inputs to a LUT are delayed by extending their path through
the routing network. Delay balancing can also be done at the
architectural level. The work in [8] inserts programmable delay
elements to balance the arrival times of signals at LUT inputs.
However, these approaches all incur an area or performance
cost.

Some works use flip-flop insertion or pipelining to break
up deep combinational logic paths which are the root of high
glitch power. Circuits with higher degrees of pipelining tend to
have lower glitch power because they have fewer logic levels,
thus reducing the opportunity for delay imbalance [16]. Flip-
flops with shifted-phase clocks can be inserted to block the
propagation of glitches [9]. Another work in [4] uses negative
edge-triggered flip-flops in a similar fashion, but without the
extra cost of generating additional clock signals. It is also
possible to apply retiming to the circuit by moving flip-flops to
block glitches [6].

Our work draws inspiration from hazard-free logic synthesis
techniques for asynchronous circuits, such as [10]. In asyn-
chronous circuits, glitches (hazards) cannot be tolerated because
they may produce incorrect behavior (consider, for example,
the disasterous effect of a glitch on a handshaking signal).
Our work is different in that while hazards are tolerable from
a functionality standpoint, it is beneficial to remove them to
reduce power consumption.

A key feature of the work presented here is that it has
no impact on the rest of the design flow. It is applied after
placement and routing, and as a consequence, the algorithm has
no cost in terms of performance or area. Other methods incur
additional area/delay from the inclusion of delay elements,
registers and extra routing resources, as well as disrupting the
synthesis and layout of the circuit in an unpredictable way.
Our approach maintains the results of the existing compilation
while only making changes to the don’t-cares within LUT
truth table configuration bits. This zero-overhead method is a
highly desirable quality not shared by previous glitch reduction
approaches.

D. Don’t-Cares in Logic Circuits

To prevent glitches, we take advantage of don’t-cares. These
are entries in the truth table where a LUT’s output can be set as
either logic-0 or logic-1 without affecting the correctness of the

28

(a)

(b)

Fig. 3. (a) Example of SDCs (left) and ODCs (right).
(b) Miter circuit used in don’t-care analysis [11].

circuit. Don’t-cares fall into two categories: satisfiability don’t-
cares (SDCs) and observability don’t-cares (ODCs) [12]. SDCs
occur when a particular input pattern can never occur on the
inputs to a LUT. In the example shown in Fig. 3(a), the inputs
a = 0, b = 1 will never occur. ODCs occur when the output
of a LUT cannot propagate to the circuit’s primary outputs. In
the example, the output of f2 has no effect when c = 0.

In this work, we leverage the don’t-care analysis capabilities
of the ABC logic synthesis network developed at UC Berke-
ley [15]. ABC incorporates Boolean satisfiability (SAT)-based
complete don’t-care analysis that can be used to determine the
don’t-care minterms for a given LUT in a technology mapped
FPGA circuit [11]. To find the don’t-cares for a given LUT, f ,
ABC uses a miter circuit, as illustrated in Fig. 3(b). As shown,
two instances of LUT f and (some of) its surrounding circuitry
are created – the surrounding circuitry is shown as a shaded
region in the figure. In one instance, f ’s output is in true form;
in the other instance, f ’s output is inverted. The outputs of the
two instances are exclusive-OR’ed with one another, with the
XOR gate outputs being fed into a wide OR gate. The final OR
gate produces an output logic signal C(x) for a given input
vector x.

For an input vector x to the miter in Fig. 3(b), one can
compute a local input vector y to LUT f . For any such x
where C(x) is logic-1, y is a care minterm of LUT f ; that is,
LUT f affects the circuit outputs for input vector x. The basic
approach taken in [11] is to use a fast vector-based simulation
as well as SAT to find all vectors, x, where C(x) evaluates to
logic-1, yielding the complete care set for LUT f . This provides
a general picture of the don’t-care analysis approach and the
reader is referred to [11] for full details. Don’t-cares have
recently been used for area reduction in FPGA circuits [12].

III. GLITCH POWER AND DON’T-CARE ANALYSIS

A. Glitch Power

To motivate the need for glitch reduction, we examine the
amount of glitch power dissipated by 20 MCNC benchmark

Circuit % glitch Circuit % glitch
alu4 25.7 ex5p 41.6

apex2 29.2 frisc 10.7
apex4 30.3 misex3 25.4
bigkey 29.6 pdc 36.7
clma 24.2 s298 24.2
des 45.4 s38417 26.8

diffeq 5.8 s38584 1 11.4
dsip 29.9 seq 26.2

elliptic 12.2 spla 33.2
ex1010 35.0 tseng 17.5

Average 26.0

TABLE II
PERCENTAGE OF DYNAMIC POWER FROM GLITCHES.

Circuit % inputs DC Circuit % inputs DC
alu4 18.4 ex5p 36.2

apex2 7.4 frisc 5.2
apex4 17.8 misex3 17.0
bigkey 3.7 pdc 37.2
clma 32.4 s298 15.3
des 0.8 s38417 10.3

diffeq 3.9 s38584 1 3.1
dsip 4.6 seq 7.6

elliptic 0.7 spla 33.8
ex1010 34.6 tseng 12.4

Average 15.1

TABLE III
PERCENTAGE OF SIMULATED LOCAL LUT INPUT STATES CORRESPONDING

TO DON’T-CARES.

designs. These designs were fully compiled using Altera Quar-
tus 10.1, targeting 65nm Stratix III devices [1]. ModelSim 6.3e
was then used to perform a functional (zero-delay) and timing
simulation of each circuit using 5000 random input vectors,
producing two switching activity (VCD) files. The dynamic
power was then computed using Quartus PowerPlay – Altera’s
power analysis tool. The glitch power was computed as the
difference in dynamic power between the functional and timing
simulations.

The results are shown in Table II. The percentage of dynamic
power due to glitches ranges from 5.8% to 45.4%, with an
average of 26.0%, which is similar to that reported in the
academic FPGA context [8]. This makes glitches an attractive
target for power reduction in commercial FPGAs. We do not
believe any prior published work has analyzed glitch power in
a commercial FPGA.

B. Analysis of Don’t-Cares

In order to evaluate the potential for a don’t-care-based glitch
reduction algorithm, we analyzed every local input vector seen
by each LUT in each circuit across its simulation. The percent-
age of such LUT input states which were don’t-cares is shown
in Table III. The percentages vary from 0.8% to 37.2%, with an
average of 15.1%. This tells us that not only do circuits contain
an abundance of don’t-cares, but also that, surprising, these
don’t-cares are often traversed in circuit operation. In other
words, a LUT’s don’t-care minterms are frequently “visited”
under vector stimulus. The visits to such don’t-care minterms
may potentially lead to additional unnecessary toggles on LUT
outputs. We can thus potentially reduce glitches through don’t-
care settings, which is the core idea of our approach.

29

Algorithm 1 Glitch reduction algorithm.
Input: a netlist G(V, E) with simulation vectors S
Output: a netlist with modified LUT functions
1: for each LUT n ∈ V in order of priority do
2: {1. Compute the don’t-cares of the LUT}
3: DC = compute dont cares(n)
4: {2. Scan the input vectors}
5: for i = 0 to size(Sn) do
6: if Sn[i] ∈ DC then
7: prev ← previous care output
8: next← next care output
9: if prev = 0 and next = 0 then

10: V otes0(Sn[i])← V otes0(Sn[i]) + 1
11: else if prev = 1 and next = 1 then
12: V otes1(Sn[i])← V otes1(Sn[i]) + 1
13: end if
14: end if
15: end for
16: {3. Set the values of the don’t-cares and update netlist}
17: for each don’t-care d ∈ DC do
18: if V otes0(d) > V otes1(d) then
19: assign 0 as the output of d
20: else if V otes1(d) > V otes0(d) then
21: assign 1 as the output of d
22: end if
23: end for
24: end for

IV. ALGORITHM

The glitch reduction algorithm (Algorithm 1) takes a placed
and routed netlist as its input. We represent the netlist as a
graph G(V,E), where V is the set of vertices (LUTs) and E
is the set of edges (routing wires). The algorithm also takes a
value change dump (VCD) file containing the results of a timing
simulation of the circuit. The simulation vectors are denoted as
S, where the ith local input vector to LUT n is denoted as
Sn[i]. A timing simulation is needed rather than a functional
one because glitches arise from delay mismatches, which will
only appear under timing simulation.

The algorithm iterates through each LUT in the netlist,
progressing from shallower levels to deeper ones. This order
is used because glitches prevented on shallower LUTs will be
prevented from propagating to deeper LUTs, thus saving more
power. Within each level, the LUTs are examined in descending
order of power consumption. This prioritizes the LUTs with the
greatest potential savings. For each LUT, the following steps
are performed:

1) Compute the don’t-cares of the LUT.
2) Scan the input vectors.
3) Set the values of the don’t-cares.

A. Computing the Don’t-Cares for a LUT
As described above in Section II-D, we use ABC’s

SAT-based don’t-care analysis to compute the inputs states
(minterms) for the particular LUT which are don’t cares (Al-
gorithm 1, line 3). DC is the set of don’t-care input states.

B. Scanning the Input Vectors
The sequence of local input vectors to the LUT (denoted Sn)

is extracted from the timing simulation VCD file. These input
vectors are examined in order (line 5). When an input vector
Sn[i] corresponding to a don’t-care is reached (line 6), we look
at the closest states in the past and future that correspond to

care input vectors (lines 7-8). We use this information to decide
whether this don’t-care should be set to a logic-0, logic-1, or
whether there is no preference. If the closest past and future
cares are identical (both logic-0 or both logic-1) then the don’t-
care should be set to the same value. Otherwise, there is no
preference. For each don’t-care minterm, a count of “votes” is
kept, indicating how many times in the simulation it would
be beneficial to set it to a logic-0 or logic-1 (lines 9-12).
This process is repeated for each input vector Sn[i] in the full
simulation time (lines 5-15).

Consider again the example shown in Fig. 2 and Table I.
Suppose that for input Sn[i] = 100, the LUT output is a don’t-
care. This means that even though it is assigned to logic-1 in
the truth table, we can assign it to logic-0 or logic-1 without
affecting the functionality of the circuit. In this case, we see a
glitch on f making a 0 → 1 → 0 → 0 transition as the inputs
transition 000 → 100 → 110 → 111. Looking at the closest
care states before and after input 100, we see that they both
output a logic-0. Therefore, the algorithm votes for the output
of 100 to be logic-0.

It is possible that the simulation data may include a long
contiguous cluster of don’t-cares. In these cases, the more
desirable state could be the opposite of the one that would be
chosen by this algorithm. For example, it may be beneficial
to set a particular don’t-care to logic-0 within a cluster of
logic-0’s (don’t-cares) in between two logic-1’s (cares) rather
than attempting to set the entire cluster to logic-1. However,
experimental data shows that such long clusters are uncommon.
The average length of don’t-care clusters in the benchmark set
is 3.5. This justifies our use of the closest care input vectors.

C. Setting the Don’t-Cares

When the end of the input vectors is reached, each don’t-
care is set to the value with more votes (unless the votes are
tied, in which case nothing is done). The loop at lines 17-23
walks through each don’t-care d ∈ DC and checks whether
logic-0 or 1 has a majority of votes. The netlist is updated
accordingly before proceeding to the next LUT. This is critical
because changing the logic function of one LUT can affect
the don’t-cares of other LUTs, due to incompatibility between
don’t-cares [12]. By ensuring that the don’t-cares are computed
using the most recent information, the circuit is guaranteed to
remain functionally-equivalent to the original.

D. Iterative Flow

Following the modification of the circuit, the simulation
results become outdated, due to the changes to the LUT func-
tions. Therefore, we repeat the simulation using the modified
circuit after performing glitch reduction on the full circuit. The
algorithm is then repeated. In practice, the majority of the glitch
reduction occurs within the first three iterations.

It is important to note that the loop of the iterative flow does
not involve re-running placement and routing. This is vital for
two main reasons. First, the results of the existing compilation
will be preserved, so there is no interference with timing
closure. Second, the delays within the circuit will be kept the
same, thus minimizing the amount of change to the simulation
vectors. This allows the algorithm to converge quickly.

30

Fig. 4. Experimental flow.

The algorithm runtime is on the order of minutes for the
benchmarks used. Although the iterative process employs a
timing simulation, the fact that this algorithm is performed after
place-and-route mitigates the issue of runtime. We envision a
usage scenario in which the designer runs this algorithm as part
of a final pass after timing closure has been achieved. Since no
modifications are made to the circuit’s timing characteristics,
timing closure is preserved.

V. EXPERIMENTAL STUDY

We perform our glitch reduction algorithm on 20 MCNC
benchmark circuits. The experimental methodology was chosen
to include commercial CAD tools wherever possible, to evaluate
the efficacy of the algorithm on real-world FPGAs. The flow is
shown in Fig. 4. We perform a full compilation using Quartus
II 10.1 (synthesis, placement and routing) targeting the Altera
Stratix III 65nm FPGA family [1]. This is followed by a timing
simulation using ModelSim SE 6.3e. For each circuit, 5000
random input vectors are applied. We use a set of custom
scripts to transform the simulation netlist generated by Quartus
into BLIF format, which can then be read into ABC, where
the glitch reduction is performed. Combinational equivalence
checking (command cec in ABC [13]) is used after the glitch
reduction step to ensure that the functionality of the circuit
remains the same. The output from ABC is used to modify
the configuration bits in the simulation netlist, thus ensuring
that the placement and routing remain identical. Three passes
of the optimization loop are performed. Experiments show that
very few changes, if any, are made after this point. The power
measurements are performed using Quartus PowerPlay.

A. Results

The leftmost bars in Fig. 5(a) (vs. baseline) represent the
percentage reduction in total core dynamic power after per-
forming the glitch reduction algorithm. The average reduction is
4.0%, with a peak of 12.5%. Fig. 5(b) shows the corresponding
reduction in glitch power. The average reduction is 13.7%, with
a peak of 49.0%. Naturally, the amount of power reduction
possible is based on the amount of glitching present and the
number of don’t-cares available. While the overall average
power reductions are relatively modest, we believe they will
interest FPGA vendors and power-sensitive FPGA customers,
as they come at no cost to performance or area. For some
circuits, over 10% power reduction can be achieved essentially
for “free”.

(a)

(b)

Fig. 5. (a) Dynamic power reduction vs. baseline (default) don’t-care settings
and worst-case settings. (b) Glitch power reduction vs. baseline (default) don’t-
care settings and worst-case settings.

It is also interesting to look at the optimized power vs. the
worst case don’t-care settings possible, as illustrated by the
rightmost bars in Fig. 5 (vs. worst-case). In this experiment, we
set the don’t-cares to the opposite of how they would normally
be set by our optimization algorithm, to examine the potential
worst-case glitch power arising from don’t-cares. Here, we see
an average total dynamic power savings of 9.8% and a peak
savings of 30.8% (Fig. 5(a)). These results show that don’t-care
settings can potentially have a large impact on power if set to
sub-optimal values.

The varied results in Fig. 5 can be correlated with the glitch
power and don’t-care data in Tables II and III. For instance,
des had a high glitch power in Table II, yet we did not
observe a significant power reduction for this circuit. However,
in Table III, we see that it had only 0.8% of LUT inputs
as don’t-cares, thus reducing the number of opportunities for
optimization. On the other hand, pdc had a high amount of
glitching as well as ample don’t-cares, thus allowing it to be
greatly improved by the algorithm – 12.5% dynamic power
reduction.

The relationship between don’t-cares, power and fanout
presents a challenge to the glitch reduction algorithm. Fanout is
closely related to interconnect capacitance, and interconnect can
represent 60% of total FPGA dynamic power, on average [14].
Fig. 6(a) shows logic signal power consumption versus fanout,
averaged across all signals in all circuits. Observe that, as

31

(a)

(b)

Fig. 6. (a) Power per signal vs. fanout. (b) Normalized don’t-cares per node
vs. fanout.

Fig. 7. Average vote bias.

expected, average signal power increases with fanout, due to
the increase in capacitance. We also examined, for each signal,
the fraction of minterms in its driving LUT that were don’t-
cares, and averaged this across all signals of a given fanout in
all circuits. The results are shown in Fig. 6(b). While the results
are “noisy” for high fanout (due to a small sample size for such
fanouts), we see that, in general, high fanout signals have fewer
don’t-cares in their driving LUTs than low fanout signals. The
rationale for this is that high fanout signals are more likely to
be used by at least one of their fanouts, decreasing ODCs for
such signals. Essentially, we have two competing trends in that
it is desirable to reduce the power of high fanout signals (as
they consume significant power), yet such signals exhibit fewer
don’t-care opportunities.

We also examined the bias of votes cast on each don’t-care
minterm in each LUT in each circuit. The average results are
shown in Fig. 7. The bias is defined as the percentage of votes
that were cast for the more popular setting, whether logic-0 or
logic-1. As shown in the figure, the bias value tends to be in

the 80-100% range, indicating that there usually exists a highly
preferable setting for a particular don’t-care minterm in a LUT.
This is an important observation because it indicates that our
don’t-care settings are providing a benefit most of the time
(as opposed to the case of a bias around 50%, which would
imply that selecting either logic-0 or logic-1 for the don’t-
care minterm is equally good). These observations suggest that
one can pick don’t-care logic values with a high degree of
confidence.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an analysis of glitch power in
FPGAs and a method for glitch reduction using don’t-cares in
logic synthesis. We showed that glitch power is a significant
portion of total power, and that there exist ample opportunities
for don’t-care-based optimizations. A novel glitch reduction
technique was presented that sets don’t-cares in FPGA con-
figuration bits in order to avoid glitch transitions. This method
is performed after placement and routing, and has no effect on
circuit area or performance. The algorithm was evaluated with
a commercial 65nm FPGA architecture using a commercial
tool flow. The algorithm achieved an average total dynamic
power reduction of 4.0%, with a peak reduction of 12.5%; glitch
power was reduced by up to 49.0%, and 13.7% on average.
Future work will involve integrating the algorithm into a fully
power-aware FPGA CAD flow, and investigating whether other
stages of the CAD flow could improve its effectiveness. For
instance, the synthesis stage could be modified to create more
opportunities for this optimization. Also, runtime could be
reduced by integrating the algorithm with an incremental timing
simulation.

REFERENCES

[1] Altera. Stratix III Device Handbook. http://www.altera.com/literature/lit-stx3.jsp.
[2] Altera. Stratix V Device Handbook. http://www.altera.com/literature/lit-stratix-v.jsp.
[3] L. Cheng, D. Chen, and M. Wong. GlitchMap: An FPGA technology mapper for

low power considering glitches. In ACM/IEEE DAC, pages 318 –323, 2007.
[4] Tomasz S. Czajkowski and Stephen D. Brown. Using negative edge triggered FFs

to reduce glitching power in FPGA circuits. In ACM/IEEE DAC, pages 324–329,
2007.

[5] Q. Dinh, D. Chen, and M. Wong. A routing approach to reduce glitches in low
power FPGAs. In ACM ISPD, pages 99–106, 2009.

[6] R. Fischer, K. Buchenrieder, and U. Nageldinger. Reducing the power consumption
of FPGAs through retiming. In IEEE Engineering of Computer-Based Systems,
pages 89 – 94, 2005.

[7] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE TCAD,
26(2):203 –215, 2007.

[8] J. Lamoureux, G. Lemieux, and S. Wilton. GlitchLess: Dynamic power minimization
in FPGAs through edge alignment and glitch filtering. IEEE TVLSI, 16(11):1521
–1534, Nov. 2008.

[9] H. Lim, K. Lee, Y. Cho, and N. Chang. Flip-flop insertion with shifted-phase clocks
for FPGA power reduction. In IEEE/ACM ICCAD, pages 335–342, 2005.

[10] B. Lin and S. Devadas. Synthesis of hazard-free multilevel logic under multiple-
input changes from binary decision diagrams. IEEE TCAD, 14(8):974 –985, Aug
1995.

[11] A. Mishchenko and R. Brayton. SAT-based complete don’t-care computation for
network optimization. In ACM/IEEE DATE, pages 412–417, 2005.

[12] A. Mishchenko, R. Brayton, J. Jiang, and S. Jang. Scalable don’t-care-based logic
optimization and resynthesis. In ACM FPGA, pages 151–160, 2009.

[13] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een. Improvements to combina-
tional equivalence checking. In IEEE/ACM ICCAD, pages 836–843, 2006.

[14] L. Shang, A. Kaviani, and K. Bathala. Dynamic power consumption in Virtex-II
FPGA family. In ACM FPGA, pages 157–164, 2002.

[15] Berkeley Logic Synthesis and Verification Group. ABC: A system for sequential
synthesis and verification, Release 00406. http://www.eecs.berkeley.edu/∼alanmi/
abc/.

[16] S. Wilton, S. Ang, and W. Luk. The impact of pipelining on energy per operation in
field-programmable gate arrays. In Proc. Intl. Conf. on FPL, pages 719–728, 2004.

[17] Xilinx. 7 Series FPGAs Overview. http://www.xilinx.com/support/documentation/
7 series.htm.

32

