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Abstract— Nowadays, Real-Time Operating Systems (RTOSs) 
are often adopted in order to simplify the design of safety-critical 
applications. However, real-time embedded systems are sensitive 
to transient faults that can affect the system causing scheduling 
dysfunctions and consequently changing the correct system 
behavior. In this context, we propose a new hardware-based 
approach able to detect faults that change the tasks’ execution 
time and/or the tasks’ execution flow in embedded systems based 
on RTOS. To demonstrate the effectiveness and benefits of using 
the proposed approach, we implemented a hardware prototype 
named Hardware-Scheduler (Hw-S) that provides real-time 
monitoring of the Plasma Microprocessor's RTOS in order to 
detect the above mentioned types of faults. The Hw-S has been 
evaluated in terms of the introduced area overhead and fault 
detection capability. 
 

Keywords- Hardware-Scheduler, transient fault detection, 
embedded systems, Real-Time Operating Systems.  

I.  INTRODUCTION 
Embedded systems integrate hardware and software in 

order to execute a specific application. Today, several safety-
critical embedded systems support real-time applications that 
have to respect stringent timing constrains. In general terms, 
real-time systems have to provide not only logically correct 
results, but also temporally correct results [7]. Thus, if the 
output value computed in execution time is correct, but this 
value has been obtained too early or too late, the system 
behavior may be incorrect. This could be catastrophic 
considering applications like traffic control, medical life 
support as well as space stations. Considering real-time 
systems, it is important to highlight that timing, availability, 
reliability and safety constrains are crucial to guarantee the 
correct behavior of the system.  

Indeed, the high complexity of the applications has made 
the adoption of Real-Time Operating Systems (RTOS) 
necessary in order to simplify the design of real-time 
applications. Embedded systems based on RTOS exploit some 
important facilities associated to native intrinsic mechanisms to 
manage tasks, concurrency, memory, time as well as interrupts. 
Thus, RTOSs serve as an interface between application 
software and hardware.  

However, real-time embedded systems are subject to 
different parasitic phenomena induced by the environment, e.g. 
Single Event Upsets (SEUs) [1] [7]. Such transient faults can 
affect the applications running on the embedded systems as 

well as the RTOS under which they are executed. 
Consequently, they affect both, correctness of the outputs and 
the task's deadline. According to [10], transient faults affecting 
RTOSs of safety-critical systems can generate different types 
of misbehaviors that can be categorized as follows: syndrome 
for safety-critical systems without an RTOS or syndrome 
specific to safety-critical systems including an RTOS. In detail, 
faults affecting the first group can generate the following 
syndromes: effect-less, application hang, exception, memory 
access dysfunction, system crash and incorrect output results. 
The effects associated to the second group of misbehaviors are: 
real-time problems, where the specified timing constrains are 
not respected and scheduling dysfunctions, where the task's 
scheduling is not correct. This syndrome may cause incorrect 
output results, real-time problems or system crash. Considering 
real-time applications, it is possible to assume that the time 
correctness represents can be more important than the 
correctness of the output results [10].  

Up to now, several new solutions have been proposed in 
order to deal with the reliability problems of real-time 
embedded systems. In [2] and [3] two different scheduling 
algorithms have been proposed in order to improve the 
robustness of real-time embedded systems. In [4] a new 
strategy based on redundancy has been proposed. Indeed, a 
software-based approach able to provide fault detection and 
correction capabilities has been presented in [5].  In general 
terms, this solution introduces additional application tasks able 
to check other application tasks in their workspace memory. 
Finally, a hardware-based approach able to detect control flow 
faults affecting real-time multi-task systems has been presented 
in [6].   

However, the previously mentioned solutions provide fault 
tolerance only for the application level and do not consider 
faults affecting RTOSs that can be propagated from the 
application task to the application level. According to [7] about 
21% of the faults affecting the application tasks produce a 
significant system failure. Generally, when faults propagate to 
the application level, tasks tend to miss their deadlines, to 
produce incorrect results, to loose their context as well as to re-
execute within the same period. Moreover, the work presented 
in [9] demonstrates that about 34% of the faults injected in the 
main services of RTOSs cause scheduling dysfunctions. 
Indeed, about 44% of this misbehavior’s class lead to system 
crashes, about 34% generate logic results problems and the 
remaining 22% provoke real-time problems.  Finally, it is 
important to note that fault tolerance techniques proposed up to 
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now can represent feasible solutions, but they cannot guarantee 
that each task respects its deadline.  

In this context, we propose a hardware-based solution able 
to detect faults affecting the application tasks in embedded 
systems based on RTOS. The proposed approach provides 
detection of transient faults that affect the sequence and the 
timing of tasks. We implemented and validated an 
Infrastructure Intellectual Property (I-IP) named Hardware-
Scheduler (Hw-S) able to monitor the tasks’ execution flow. To 
evaluate the effectiveness of the proposed solution we adopted 
a case study using the Hw-S mapped in a FPGA Xilinx Spartan 
3E. Indeed, we performed fault injection experiments in order 
to evaluate the fault detection capability and estimated the 
introduced overheads associated to the Hw-S implemented.  

The paper is organized as follows: Section II presents some 
basic definitions associated to RTOSs. In Section III we 
introduce the hardware-based approach proposed in this paper.  
Section IV describes the case study adopted, the environment 
used to validate the Hw-S and the fault injection setup. In 
Section V we summarize the experimental results obtained by 
fault injection campaigns as well as the introduced overheads. 
Finally in Section VI we draw the conclusions. 

II. BACKGROUND 
An RTOS is an operating system that guarantees a certain 

capability within specified time constraints and provides an 
interface between the application program (software) and the 
embedded system (hardware). Basically, RTOSs can be 
classified in two categories: hard-RTOSs and soft-RTOSs.  The 
main difference between the two categories is that a soft- 
RTOS can tolerate latencies and responds with decreased 
service quality but the hard-RTOS has to respect its deadlines, 
because otherwise the tasks fail. RTOSs provide four main 
types of basic services to the application program: 

• Task management: This module includes services 
associated to task creation, task scheduling as well as 
task priority assignment.  

• Time management: This module includes services 
associated to systems’ timing constrains such as task 
delays and time-outs.   

• Dynamic memory allocation: This module includes 
services associated to file creation, deletion, reposition 
and protection. 

• Interprocess communication and synchronization: This 
module provides services in order to guarantee the 
integrity of information exchange and the cooperation 
between tasks. 

The application program is structured as a set of processes. 
Moreover, some operating systems support an additional 
structure level named task. A task can be defined as a single 
process or as a set of processes with data dependencies between 
them. Thus, tasks generally have some sort of temporal 
constraints on their behavior. The exact nature of these 
constrains depends on the scheduling model. A deadline is the 
time at which a process must finish its execution after being 
initiated earlier. The period of a periodic process or task is the 

interval between initiating successive executions. Generally, a 
process can be in one of the following three states: blocked, 
ready or executing. Further, the transfer of execution from one 
process to another one is called context switch. 

III. THE PROPOSED APPROACH 
In this paper we propose a new hardware-based approach 

able to provide fault detection in embedded systems running a 
RTOS. The proposed approach is based on the development of 
an I-IP named Hardware-Scheduler (Hw-S). Our goal is to 
detect the set of faults that affect the application tasks and are 
propagated to the application level causing system failure. 
Indeed, the main idea behind our approach is to increase the 
robustness of the embedded systems based on RTOS, providing 
the detection of transient faults that are not detected by the 
native structures present in the RTOS. We specially intend to 
detect faults causing scheduling dysfunctions (Sequence 
Errors) and real-time problems (Time Errors). The proposed 
approach is based on the following ideas: 

• The scheduler is an element present in every RTOS 
and implements a scheduling algorithm that defines the 
exact moment to execute each task. 

• The algorithm is deterministic and known previously. 

• The tasks to be executed are implemented by programs 
stored in a specific memory location and consequently 
it is possible to define which task has to be executed in 
every instant of time. 

• The task's behavior follows a set of time constraints 
and is defined by external events. 

 
   Fig. 1 shows the block diagram of the adopted real-time 

embedded system. External events can influence the Hw-S 
when it has to decide which task will be executed. Indeed, the 
Hw-S must have access to the address bus in order to identify 
the task in execution.  

  In this context, the Hw-S has to know the set of events that 
can change the task in execution and the memory address that 
has to be accessed in order to detect an eventual fault during 
the activation and execution of the task. It is important to point 
out that the Hw-S represents a passive element in the 
embedded system, since it does not influence the execution 
flow of the system, because it is based on a reading signal. 

 

Figure 1.  Block diagram of the adopted embedded system.  

Fig. 2 shows in detail the block diagram of the proposed 
Hw-S that is composed of the following functional blocks:  
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• Task Detector: Based on the information stored in the 
address table, generated during the compilation of the 
system, this block identifies the task in execution.  
The Task Detector reads the address accessed by the 
microprocessor and compares it with the records stored 
in the address table. Afterwards, the block sends the 
identified task to the Fault Detector.   

• Event and Time Controller: It is in charge of defining 
the time limit to execute each task (deadline) as well as 
detecting the events that can possibly change the task 
in execution. The time limit represents the maximum 
time allowed before changing the task in execution. A 
tick is used in order to indicate the context switch. Fig. 
3 shows an example where it is possible to observe 
three tasks, the time limit signal and the tick. Indeed, 
the diagram shows the interval associated to the time 
context switch (tcs) which is defined during the system 
implementation as well as the time limit (tl) obtained 
from an complete analysis of the system's behavior. In 
order to decrease the error latency and to avoid the 
detection of inexistent errors the definition of the tl is 
considered crucial and its value has to accurately 
represent the real system's behavior.   

• Fault Detector: It implements the scheduling algorithm 
based on the RTOS's algorithm and provides the fault 
detection based on the task in execution, the analysis of 
the tl as well as the events that can influence the real-
time system.  

 

Figure 2.   Block diagram of the Hw-S. 

 

Figure 3.  Context switch and time limit.  

Regarding the fault detection capability, the Hw-S proposed 
in this paper is able to detect two different types of faults 
categorized as follows:  

• Sequence error (E_seq): This type of error occurs 
when the time limit is violated and the current task 
does not represent the expected one according to the 
task’s execution flow.  

• Time error (E_time): This type of error occurs when a 
context switch takes place in between two consecutive 
ticks violating the time constraints associated to the 
real-time system.  

IV. CASE STUDY 
To evaluate the hardware-based approach proposed in this 

paper, we adopted a case study composed of a Von Neumann 
32-bit RISC Plasma microprocessor [8] running an RTOS. The 
Plasma microprocessor has an instruction set compatible to the 
MIPS architecture except for the load/store instruction. 
Moreover, the Plasma's pipeline is composed of the following 
three states: blocked, ready and executing. Finally, the Plasma's 
RTOS adopts the Round-Robin scheduling algorithm.  

A. RTOS Assertions 
The Plasma’s RTOS provides a basic mechanism able to 

monitor the task’s execution flow and manage some particular 
situations when RTOS’s misbehaviors are observed. This 
mechanism is implemented by a function named assert().   
Generally, when the argument of the assert() function is false, 
the RTOS sends an error message through the standard output. 
Table I summarizes the set of arguments that can be associated 
to the assert() function implemented.  

TABLE I.  ARGUMENTS OF THE ASSERT() FUNCTION 

Set of arguments associated to assert() function 
((uint32)memory & 3) == 0 
heap->magic == HEAP_MAGIC 
thread->magic[0] == THREAD_MAGIC 
threadCurrent->magic[0] == THREAD_MAGIC 
threadNext->state == THREAD_READY 
InterruptInside[OS_CpuIndex()] == 0 
mutex->thread == OS_ThreadSelf() 
mutex->count > 0 
SpinLockArray[cpuIndex] < 10 
ThreadHead 
thread 
semaphore 
mutex 
mQueue 
timer 
Block 

 

The arguments mutex, mQueue, timer, block, ThreadHead, 
thread, semaphore represent some examples associated to the 
coherency verification of the data exchanged between different 
tasks. Indeed, arguments like thread->magic[0] == 
THREAD_MAGIC and heap->magic == HEAP_MAGIC are in 
charge of verifying the memory situation. This way, the RTOS 
provides some mechanisms able to control and manage basic 
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situations, where a fault causes misbehaviors of its essential 
services, such as stack overflow and timing violations. 

It is important to highlight that the original Plasma’s RTOS 
does not provide any mechanism able to detect the faults 
targeted in this paper (E_seq and E_time). In this scenario, the 
goal of the proposed approach is to improve the fault detection 
capability of the Plasma’s RTOS.  

B. Hw-S Validation  
In order to validate the proposed approach, we implemented 

a validation environment composed of two main blocks: FPGA 
Under Test (FPGA UT) and FPGA Supervisor. This 
environment has been implemented using a FPGA Xilinx 
Spartan Model XC3S500E. Indeed, we developed one 
benchmark composed of three tasks, T1, T2 and T3, that access 
and update the value stored into three different global variables.  

Fig. 4 shows the block diagram associated to the 
architecture implemented to perform the validation of the 
proposed Hw-S.   

 

Figure 4.  Block diagram of the implemented validation environment. 

The FPGA UT consists of three sub-blocks that can be 
defined as follows: 

• Plasma microprocessor: It runs the application 
program (benchmark). 

• Hw-S unit: It monitors the tick signal from the Plasma 
microprocessor as well as the address bus in order to 
provide fault detection capability. In general terms, 
when a sequence error or a time error is detected the 
Hw-S generates the signal E-seq or E-time respectively 
to indicate the detected error. 

• Decoder unit: It decodes the addresses associated to 
each task in order to monitor the context switch. 

   The FPGA Supervisor is in charge of monitoring and 
storing the information generated by the RTOS during 
execution time and the Hw-S during fault injection campaigns. 
The Plasma microprocessor presented in this block is 
implemented in such a way to provide the proper interface 
between the FPGA UT and the PC. Indeed, the Plasma 
microprocessor receives the signal to start the test and it 
downloads the information generated during the fault injection 
campaigns to the PC. The FPGA Supervisor is composed of the 
following sub-blocks: 

• Control unit: This sub-block enables the other units to 
save and read the execution flow of the Hw-S as well 
as the RTOS. In general terms, this unit receives the 
control signals selection_Hw-S and selection_RTOS 
from the Plasma microprocessor. Table II shows the 
behavior of the FPGA Supervisor according to the two 
input signals. Indeed, the Plasma microprocessor sends 
the address of the data to be read through the 
address_in port. Finally, the data read from the 
memory is sent to the Plasma microprocessor through 
the data port. 

TABLE II.  FPGA SUPERVISOR’S BEHAVIOR 

Selection 
HW-S 

Selection 
RTOS Behavior 

0 0 Disable test 

0 1 Read and send data from RAM Hw-S to the PC 

1 0 Read and send data from RAM  RTOS to the 
PC 

1 1 Test start: store the execution flow into the 
RAM Hw-S and RAM RTOS 

 

• RAM Hw-S and RAM RTOS unit: Two 8-bit memories 
with 1Mbyte of addresses. These memories are used to 
store the execution flow’s information of the Hw-S and 
the RTOS.  

• Write Memory Hw-S and Write Memory RTOS unit: 
These units control the read and write memory 
associated to the RAM Hw-S and the RAM RTOS. Thus, 
when an error is detected, the Write Memory Hw-S 
stores the information associated to the type of error 
and the exact moment, when the error has been 
detected. The second information is obtained from the 
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Counter Unit. The Write Memory RTOS stores the 
exactly moment when the context switch is performed 
into the RAM RTOS. The busy signal indicates that the 
unit is writing into the respectively associated memory.  

• Counter Unit: This unit implements a 28-bits counter 
that is used to indicate the moment when the data is 
stored into the memory. It is important to note that the 
information obtained from the Counter Unit and the 
clock frequency are used to measure the fault latency 
between the error's occurrence and its detection by the 
Hw-S. 

C. Fault Injection Setup  
To evaluate the fault detection capability of the Hw-S, we 

developed two benchmarks that exploit some services offered 
by the Plasma's RTOS. To do so, we implemented three 
different tasks according to the Round-Robin algorithm. It is 
important to underline that before performing any fault 
injection experiment, we carefully studied and tested these 
applications in an environment without soft-errors in order to 
guarantee that all tasks meet their deadlines and produce 
correct output results. The implemented benchmarks are 
described as follows:  

• BM1: Tasks T1, T2 and T3 access and update the value 
of three different global variables. 

• BM2: Tasks T1 and T2 communicate by message 
queue. T1 sends a value to the queue and T2 reads this 
value. Task T3 writes a value into a global variable.  

The fault injection campaigns have been performed by 
applying voltage dips to the FPGA UT Vdd pins according to 
the IEC 61.000-4-29 Normative [11]. The nominal Vdd used is 
of 1.2V and the periphery (I/O pads) remained at their nominal 
voltage levels, i.e., 3.3V and 2.5V. These voltage dips were 
injected in the FPGA pins at a frequency of 0.3MHz. Fig. 5 
displays the injected noise captured with the oscilloscope at the 
Vdd input pins of FPGA UT associated to BM1’s execution. It is 
important to point out that Power Supply Disturbance (PSD) 
represents one of the most common sources of transient faults 
in many embedded applications [12]. 

 

 
Figure 5.  IEC 61.000-4-29-compliant injected noise captured with 

oscilloscope at the Vdd input pins of FPGA UT. 

V. EXPERIMENTAL RESULTS 
The effectiveness of the proposed hardware-based approach 

has been evaluated by fault injection campaigns and by the 
analysis of the introduced overheads.  

During the fault injection campaigns we identified 
different system behaviors related to the percentage of voltage 
dips injected in FPGA pins. Thus, we distinguished five 
different functional states, which go from a fully functional 
system to a corrupted FPGA configuration. Based on these 
states we determined the critical voltage range for each 
benchmarks described above. The behavior of the system has 
been classified as follows: 

• Behavior_1: The system works properly applying this 
voltage range. 

• Behavior_2: Applying this voltage range, transient 
faults affect the system generating different types of 
errors that are 100% detected by both RTOS and    
Hw-S. 

• Behavior_3: Applying this voltage range, transient 
faults generate different types of errors. At the regard, 
RTOS and Hw-S present different fault detection 
capability. 

• Behavior_4: Applying this voltage range, the 
microprocessor crashes and needs to be reset. 

• Behavior_5: The FPGA’s configuration is corrupted 
when this voltage range is applied. 

The adopted benchmarks use different RTOS services and 
consequently the microprocessor accesses different parts of the 
FPGA device, such as, RAM memory or the microprocessor’s 
internal registers. According to this reasoning, we can observe 
different levels of sensitivity. In other words, one of the above 
mentioned behaviors may have a different critical voltage range 
regarding different benchmarks.  

Fig. 6 and Fig. 7 show the effect of transient faults on the 
task’s execution flow regarding to BM1 and BM2, 
respectively. The related values have been obtained performing 
100 fault injection experiments applying the voltage range 
associated to the Behavior_2.  

 

Behavior of BM1

35%

29%

36%

Prevented from switching from T1 to T2
Prevented from switching from T2 to T3
Prevented from switching from T3 to T1

 

Figure 6.  BM1: Faults’ effects during the fault injection experiments 
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According to Fig. 6, we can observe that during 35% of the 
injected voltage sags, the microprocessor was prevented from 
moving from T1 to T2. Similar reasoning can be applied to the 
remaining tasks, during 29% of the voltage dips injected, the 
microprocessor was prevented from switching from T2 to T3 
and during 36% from T3 to T1, respectively.  

 

Behavior of the BM2

11%

28%
61%

Prevented from switching from T1 to T2
Prevented from switching from T2 to T3
Prevented from switching from T3 to T1

 

Figure 7.  BM2: Faults’ effects during the fault injection experiments 

Considering Fig. 7, we can observe that during 61% of the 
voltage dips injected the microprocessor was prevented from 
moving from T3 to T1, during 28% from T2 to T3 and during 
11% from T1 to T2, respectively. These results can be 
interpreted due to the different RTOS resources that are used 
during the tasks’ execution. In other words, T1 and T2 
exchange data through a queue service, while T3 reads or 
writes into a global variable stored in the RAM memory. In 
general terms, T1 makes use of semaphore to control the queue 
access and this service performs more complex functions than 
the ones performed during a RAM memory access. Therefore, 
the system resources associated to T1 are much larger and 
complex than the ones associated to T3. As conclusion, when 
the microprocessor tries to switch from T3 to T1, the 
probability that the large control data required by the 
microprocessor to run T1 is corrupted is higher when compared 
to the smaller amount of information to run T3. According to 
this reasoning, when the microprocessor tries to switch from T3 
to T1 and does not find all the required information to restart 
T1’s execution from the last executed part, the microprocessor 
remains blocked during T3’s execution. It is important to point 
out that when this happens, the RTOS sends two different 
message assertions to the user. The first one is StackOverflow 
which is generated when the program counter accesses an 
unexpected memory location. The second message assertion is 
ThreadHead which is activated when the program counter 
looses the pointer associated to the next task to be executed.  

Moreover, we performed 100 fault injection campaigns for 
each benchmark applying the voltage dips associated to the 
Behavior_2, Behavior_3 and Behavior_4 in order to determine 
the fault detection capability of the Hw-S. 

Table III and IV summarize the results obtained during the 
fault injection experiments with respect to RTOS and Hw-S 
fault coverage for the BM1 and BM2, respectively.  

 

TABLE III.  FAULT COVERAGE ASSOCIATED TO BM1 

System 
behavior 

Voltage range 
[mV] 

Voltage Dips 
[%] 

Fault coverage [%] 
RTOS Hw-S 

Behavior_1 [1200-956] 20.34 - - 
Behavior_2 [955-943] 21.42 100.00 100.0 
Behavior_3 [942-858] 28.50 69.00 100.00 
Behavior_4 [857-651] 45.75 0.00 100.00 
Behavior_5 [650-0] 100.00 - - 

TABLE IV.  FAULT COVERAGE ASSOCIATED TO BM2 

System 
behavior 

Voltage range 
[mV] 

Voltage Dips 
[%] 

Fault coverage [%] 
RTOS Hw-S 

Behavior_1 [1200-1120] 6.67 - - 
Behavior_2 [1119-893] 25.58 100.00 100.0 
Behavior_3 [892-858] 28.50 56.00 100.00 
Behavior_4 [857-651] 45.75 0.00 100.00 
Behavior_5 [650-0] 100.00 - - 

 

Considering the critical voltage ranges associated to 
Behavior_2, Behavior_3 and Behavior_4, it is possible to 
conclude that the Hw-S is able to detect 100% of the transient 
faults injected during the execution of BM1 and BM2 
respectively. However, considering the voltage range 
associated to Behavior_3, we can observe that the RTOS is not 
able to detect all injected faults anymore and regarding to 
Behavior_4 no faults at all. The difference between RTOS and 
Hw-S fault coverage can be attributed to the fact that the 
mechanism used by RTOS in order to identify a possible error 
is more sensitive to voltage sags. Applying voltage sags of 
28.50% we observed that during about 40% of the injected 
faults the Plasma’s RTOS is not able to detect injected faults, 
because it lost the capacity to send assertions in order to sign an 
error occurrence. This possibly happens out of two reasons. 
The first one might be the complete loss of the necessary 
information to run the Plasma’s RTOS generating inability to 
detect errors during the tasks’ execution. The second reason 
could be communication problems associated to the mechanism 
adopted to send the assertions.  

Regarding the detected faults, the sequence errors represent 
the majority of the errors observed during the fault injection 
experiments. We identified four different situations with 
respect to E_seq. The first one happened when the 
microprocessor did not respect the tasks’ execution flow and 
jumped to a wrong task. To give an example, the first situation 
can be observed when the microprocessor jumps directly from 
T1 to T3. The second situation happened when the 
microprocessor remained blocked executing only one task 
without executing the context switch anymore. We attributed it 
to the fact that the microprocessor lost the information 
associated to the next task to be executed. The next situation 
associated to E_seq is observed when the first tick does not 
provoke a context switch and therefore the same task 
continuous to be executed till the next tick triggers the context 
switch and the next task is executed. For example, the tasks’ 
execution flow could be T1, T1, T2, T3 and so on. When 
looking at the last situation we can observe that, as in the third 
one, the first tick does not result in a context switch. But 
differently, instead of changing to the correct task, the 
microprocessor executes the context switch and jumps to the 
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next but one task. Thus, the tasks’ execution flow could be T1, 
T1, T3 and so on.  

To conclude, the fault injection campaigns show that the 
Hw-S reacts significantly more robust when exposed to voltage 
dips than RTOS only.  

Continuing our evaluation, Table V summarizes the area 
overhead associated to the Hw-S with respect to the Plasma 
microprocessor.  

TABLE V.  AREA OVERHEAD 

Element Plasma 
[#] 

Hw-S 
[#] 

Overhead 
[%] 

Number of LUTs of 4 inputs 3306 333 10.07 

Number of RAM blocks 4 0 0.00 

 

Observing Table V, it is possible to conclude that the 
overhead introduced by the Hw-S is about 10%. We assume 
that this number tends to decrease when we consider more 
complex microprocessor architectures. 

 To finish the evaluation of the proposed approach, we 
estimated the fault latency of the proposed Hw-S with respect 
to internal mechanisms implemented by the Plasma’s RTOS 
(assert() function). The obtained value shows that the Hw-S 
latency represents about half the time compared to the latency 
value associated to the RTOS.  

VI. CONCLUSIONS 
In this paper we proposed a hardware-based approach able 

to detect transient faults affecting the task’s execution flow and 
the task’s execution time. In general terms, the proposed 
approach targets transient faults affecting the RTOS’s task 
level. We developed an I-IP named Hw-S and performed fault 
injection campaigns in order to evaluate the effectiveness of the 
proposed approach. 

The main contribution of this paper consists of providing 
significantly more robust embedded systems based on RTOS, 
when voltage dips are injected in the FPGA Vdd pin. The 
proposed approach provides 100% of fault coverage for the 
identified critical voltage ranges, introducing only about 10% 
area overhead. However, the non hardened system was able to 
provide only 69% and 0% in BM1 or 56% and 0% in BM2, 
respectively. These numbers are sustained by fault injection 
campaigns. Further the introduction of an Hw-S reduces the 
fault latency to about 50% with respect to the RTOS’ latency. 

To conclude, we are convinced that the hardware-based 
approach proposed in this paper represents an interesting 
solution for hardening real-time embedded systems based on 
RTOS. Therefore, we plan to conduct future works including 
additional fault injection experiments. We intend to implement 
still different benchmarks and to evaluate the fault detection 
capabilities of the Hw-S, when exposed to irradiated 
electromagnetic interference, for example. 

ACKNOWLEDGMENT  
The work reported in this paper has been partially funded by CNPq (Science and 
Technology Foundation, Brazil). 
 

REFERENCES 
[1] D. Mossé, R. Melhelm, S. Gosh, “A non-preemptive real-time scheduler 

with recovery from transient faults and its implementation”, IEEE 
Transactions  on Software Engineering, Vol. 29, N° 8, pp. 752-767, 
August 2003. 

[2] S. Gosh, R. Melhem, D. Mossé, J. Sarma, “Fault-tolerant Rate 
Monotonic Scheduling”, Journal of Real-time Systems, , vol. 15, N° 2, 
September 1998. 

[3] P. Mejia-Alvarez, D. Mossé, “A responsiveness approach for scheduling 
fault-recovery in real-time systems”, 5th Real-Time Technology and 
Applications Symposium, pp. 83-93, 2nd - 4th June 1999. 

[4] V. Izosimov, P. Pop, P. Eles, Z. Peng, “Design optimization of time- and 
cost-constrained fault-tolerant distributed embedded systems”, Desgin, 
Automation and Test in Europe, Munich, Germany, pp. 864-869,  2005. 

[5] Ph. Shirvani, R. Saxena. E.J. McCluskey, “Software-implemented 
EDAC protection against SEUs”, IEEE Transaction on Reliability, Vol. 
49, N° 3, pp. 273-284, September 2000. 

[6] F. Vargas, L. Piccoli, A.A. Alecrim, M. Moraes, M. Gama, “Time-
Sensitive Control-Flow Checking Monitoring for Multitask SoCs”, IEEE 
East-West Design & Test Symposium, Sochi, Russia, 2006. 

[7] N. Ignat, B. Nicolescu, Y. Savari, G. Nicolescy, “Soft-Error 
Classification and Impact Analysis on Real-Time Operating Systems”, 
Design, Automation and Test in Europe 2006. 

[8] www.opencores.org 
[9] M.H Neishaburi, M. Daneshtalab, M. R. Kakoee, S. Safari, “Improving 

Robustness of Real-Time Operating Systems (RTOS) Services Related 
to Soft-Errors, Computer Systems and Applications, AICCSA’07, 2007.  

[10] B. Nicolescu, N. Ignat, Y. Savaria, G. Nicolescu, “Analysis of Real-
Time Systems Sensitivity to Transient Faults Using MicroC Kernel”, 
IEEE Transactions on Nuclear Science, Vol. 53, N. 4, August 2006. 

[11] IEC International Standards. www.iec.ch. 
[12] G. Miremadi, J. Torin, “Evaluating Processor-Behavior and Three Error-

Detection Mechanisms Using Physical Fault-Injection”, IEEE 
Transactions on Reliability, Vol. 44, N. 3, September 1995. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

347


