
A Hardware-Scheduler for Fault Detection in RTOS-
Based Embedded Systems

J. Tarrillo, L. Bolzani, F. Vargas

Electrical Engineering Dept., Catholic University – PUCRS
Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil

vargas@computer.org

Abstract— Nowadays, Real-Time Operating Systems (RTOSs)
are often adopted in order to simplify the design of safety-critical
applications. However, real-time embedded systems are sensitive
to transient faults that can affect the system causing scheduling
dysfunctions and consequently changing the correct system
behavior. In this context, we propose a new hardware-based
approach able to detect faults that change the tasks’ execution
time and/or the tasks’ execution flow in embedded systems based
on RTOS. To demonstrate the effectiveness and benefits of using
the proposed approach, we implemented a hardware prototype
named Hardware-Scheduler (Hw-S) that provides real-time
monitoring of the Plasma Microprocessor's RTOS in order to
detect the above mentioned types of faults. The Hw-S has been
evaluated in terms of the introduced area overhead and fault
detection capability.

Keywords- Hardware-Scheduler, transient fault detection,
embedded systems, Real-Time Operating Systems.

I. INTRODUCTION
Embedded systems integrate hardware and software in

order to execute a specific application. Today, several safety-
critical embedded systems support real-time applications that
have to respect stringent timing constrains. In general terms,
real-time systems have to provide not only logically correct
results, but also temporally correct results [7]. Thus, if the
output value computed in execution time is correct, but this
value has been obtained too early or too late, the system
behavior may be incorrect. This could be catastrophic
considering applications like traffic control, medical life
support as well as space stations. Considering real-time
systems, it is important to highlight that timing, availability,
reliability and safety constrains are crucial to guarantee the
correct behavior of the system.

Indeed, the high complexity of the applications has made
the adoption of Real-Time Operating Systems (RTOS)
necessary in order to simplify the design of real-time
applications. Embedded systems based on RTOS exploit some
important facilities associated to native intrinsic mechanisms to
manage tasks, concurrency, memory, time as well as interrupts.
Thus, RTOSs serve as an interface between application
software and hardware.

However, real-time embedded systems are subject to
different parasitic phenomena induced by the environment, e.g.
Single Event Upsets (SEUs) [1] [7]. Such transient faults can
affect the applications running on the embedded systems as

well as the RTOS under which they are executed.
Consequently, they affect both, correctness of the outputs and
the task's deadline. According to [10], transient faults affecting
RTOSs of safety-critical systems can generate different types
of misbehaviors that can be categorized as follows: syndrome
for safety-critical systems without an RTOS or syndrome
specific to safety-critical systems including an RTOS. In detail,
faults affecting the first group can generate the following
syndromes: effect-less, application hang, exception, memory
access dysfunction, system crash and incorrect output results.
The effects associated to the second group of misbehaviors are:
real-time problems, where the specified timing constrains are
not respected and scheduling dysfunctions, where the task's
scheduling is not correct. This syndrome may cause incorrect
output results, real-time problems or system crash. Considering
real-time applications, it is possible to assume that the time
correctness represents can be more important than the
correctness of the output results [10].

Up to now, several new solutions have been proposed in
order to deal with the reliability problems of real-time
embedded systems. In [2] and [3] two different scheduling
algorithms have been proposed in order to improve the
robustness of real-time embedded systems. In [4] a new
strategy based on redundancy has been proposed. Indeed, a
software-based approach able to provide fault detection and
correction capabilities has been presented in [5]. In general
terms, this solution introduces additional application tasks able
to check other application tasks in their workspace memory.
Finally, a hardware-based approach able to detect control flow
faults affecting real-time multi-task systems has been presented
in [6].

However, the previously mentioned solutions provide fault
tolerance only for the application level and do not consider
faults affecting RTOSs that can be propagated from the
application task to the application level. According to [7] about
21% of the faults affecting the application tasks produce a
significant system failure. Generally, when faults propagate to
the application level, tasks tend to miss their deadlines, to
produce incorrect results, to loose their context as well as to re-
execute within the same period. Moreover, the work presented
in [9] demonstrates that about 34% of the faults injected in the
main services of RTOSs cause scheduling dysfunctions.
Indeed, about 44% of this misbehavior’s class lead to system
crashes, about 34% generate logic results problems and the
remaining 22% provoke real-time problems. Finally, it is
important to note that fault tolerance techniques proposed up to

2009 12th Euromicro Conference on Digital System Design / Architectures, Methods and Tools

978-0-7695-3782-5/09 $25.00 © 2009 IEEE

DOI 10.1109/DSD.2009.224

341

now can represent feasible solutions, but they cannot guarantee
that each task respects its deadline.

In this context, we propose a hardware-based solution able
to detect faults affecting the application tasks in embedded
systems based on RTOS. The proposed approach provides
detection of transient faults that affect the sequence and the
timing of tasks. We implemented and validated an
Infrastructure Intellectual Property (I-IP) named Hardware-
Scheduler (Hw-S) able to monitor the tasks’ execution flow. To
evaluate the effectiveness of the proposed solution we adopted
a case study using the Hw-S mapped in a FPGA Xilinx Spartan
3E. Indeed, we performed fault injection experiments in order
to evaluate the fault detection capability and estimated the
introduced overheads associated to the Hw-S implemented.

The paper is organized as follows: Section II presents some
basic definitions associated to RTOSs. In Section III we
introduce the hardware-based approach proposed in this paper.
Section IV describes the case study adopted, the environment
used to validate the Hw-S and the fault injection setup. In
Section V we summarize the experimental results obtained by
fault injection campaigns as well as the introduced overheads.
Finally in Section VI we draw the conclusions.

II. BACKGROUND
An RTOS is an operating system that guarantees a certain

capability within specified time constraints and provides an
interface between the application program (software) and the
embedded system (hardware). Basically, RTOSs can be
classified in two categories: hard-RTOSs and soft-RTOSs. The
main difference between the two categories is that a soft-
RTOS can tolerate latencies and responds with decreased
service quality but the hard-RTOS has to respect its deadlines,
because otherwise the tasks fail. RTOSs provide four main
types of basic services to the application program:

• Task management: This module includes services
associated to task creation, task scheduling as well as
task priority assignment.

• Time management: This module includes services
associated to systems’ timing constrains such as task
delays and time-outs.

• Dynamic memory allocation: This module includes
services associated to file creation, deletion, reposition
and protection.

• Interprocess communication and synchronization: This
module provides services in order to guarantee the
integrity of information exchange and the cooperation
between tasks.

The application program is structured as a set of processes.
Moreover, some operating systems support an additional
structure level named task. A task can be defined as a single
process or as a set of processes with data dependencies between
them. Thus, tasks generally have some sort of temporal
constraints on their behavior. The exact nature of these
constrains depends on the scheduling model. A deadline is the
time at which a process must finish its execution after being
initiated earlier. The period of a periodic process or task is the

interval between initiating successive executions. Generally, a
process can be in one of the following three states: blocked,
ready or executing. Further, the transfer of execution from one
process to another one is called context switch.

III. THE PROPOSED APPROACH
In this paper we propose a new hardware-based approach

able to provide fault detection in embedded systems running a
RTOS. The proposed approach is based on the development of
an I-IP named Hardware-Scheduler (Hw-S). Our goal is to
detect the set of faults that affect the application tasks and are
propagated to the application level causing system failure.
Indeed, the main idea behind our approach is to increase the
robustness of the embedded systems based on RTOS, providing
the detection of transient faults that are not detected by the
native structures present in the RTOS. We specially intend to
detect faults causing scheduling dysfunctions (Sequence
Errors) and real-time problems (Time Errors). The proposed
approach is based on the following ideas:

• The scheduler is an element present in every RTOS
and implements a scheduling algorithm that defines the
exact moment to execute each task.

• The algorithm is deterministic and known previously.

• The tasks to be executed are implemented by programs
stored in a specific memory location and consequently
it is possible to define which task has to be executed in
every instant of time.

• The task's behavior follows a set of time constraints
and is defined by external events.

 Fig. 1 shows the block diagram of the adopted real-time

embedded system. External events can influence the Hw-S
when it has to decide which task will be executed. Indeed, the
Hw-S must have access to the address bus in order to identify
the task in execution.

 In this context, the Hw-S has to know the set of events that
can change the task in execution and the memory address that
has to be accessed in order to detect an eventual fault during
the activation and execution of the task. It is important to point
out that the Hw-S represents a passive element in the
embedded system, since it does not influence the execution
flow of the system, because it is based on a reading signal.

Figure 1. Block diagram of the adopted embedded system.

Fig. 2 shows in detail the block diagram of the proposed
Hw-S that is composed of the following functional blocks:

342

• Task Detector: Based on the information stored in the
address table, generated during the compilation of the
system, this block identifies the task in execution.
The Task Detector reads the address accessed by the
microprocessor and compares it with the records stored
in the address table. Afterwards, the block sends the
identified task to the Fault Detector.

• Event and Time Controller: It is in charge of defining
the time limit to execute each task (deadline) as well as
detecting the events that can possibly change the task
in execution. The time limit represents the maximum
time allowed before changing the task in execution. A
tick is used in order to indicate the context switch. Fig.
3 shows an example where it is possible to observe
three tasks, the time limit signal and the tick. Indeed,
the diagram shows the interval associated to the time
context switch (tcs) which is defined during the system
implementation as well as the time limit (tl) obtained
from an complete analysis of the system's behavior. In
order to decrease the error latency and to avoid the
detection of inexistent errors the definition of the tl is
considered crucial and its value has to accurately
represent the real system's behavior.

• Fault Detector: It implements the scheduling algorithm
based on the RTOS's algorithm and provides the fault
detection based on the task in execution, the analysis of
the tl as well as the events that can influence the real-
time system.

Figure 2. Block diagram of the Hw-S.

Figure 3. Context switch and time limit.

Regarding the fault detection capability, the Hw-S proposed
in this paper is able to detect two different types of faults
categorized as follows:

• Sequence error (E_seq): This type of error occurs
when the time limit is violated and the current task
does not represent the expected one according to the
task’s execution flow.

• Time error (E_time): This type of error occurs when a
context switch takes place in between two consecutive
ticks violating the time constraints associated to the
real-time system.

IV. CASE STUDY
To evaluate the hardware-based approach proposed in this

paper, we adopted a case study composed of a Von Neumann
32-bit RISC Plasma microprocessor [8] running an RTOS. The
Plasma microprocessor has an instruction set compatible to the
MIPS architecture except for the load/store instruction.
Moreover, the Plasma's pipeline is composed of the following
three states: blocked, ready and executing. Finally, the Plasma's
RTOS adopts the Round-Robin scheduling algorithm.

A. RTOS Assertions
The Plasma’s RTOS provides a basic mechanism able to

monitor the task’s execution flow and manage some particular
situations when RTOS’s misbehaviors are observed. This
mechanism is implemented by a function named assert().
Generally, when the argument of the assert() function is false,
the RTOS sends an error message through the standard output.
Table I summarizes the set of arguments that can be associated
to the assert() function implemented.

TABLE I. ARGUMENTS OF THE ASSERT() FUNCTION

Set of arguments associated to assert() function
((uint32)memory & 3) == 0
heap->magic == HEAP_MAGIC
thread->magic[0] == THREAD_MAGIC
threadCurrent->magic[0] == THREAD_MAGIC
threadNext->state == THREAD_READY
InterruptInside[OS_CpuIndex()] == 0
mutex->thread == OS_ThreadSelf()
mutex->count > 0
SpinLockArray[cpuIndex] < 10
ThreadHead
thread
semaphore
mutex
mQueue
timer
Block

The arguments mutex, mQueue, timer, block, ThreadHead,
thread, semaphore represent some examples associated to the
coherency verification of the data exchanged between different
tasks. Indeed, arguments like thread->magic[0] ==
THREAD_MAGIC and heap->magic == HEAP_MAGIC are in
charge of verifying the memory situation. This way, the RTOS
provides some mechanisms able to control and manage basic

343

situations, where a fault causes misbehaviors of its essential
services, such as stack overflow and timing violations.

It is important to highlight that the original Plasma’s RTOS
does not provide any mechanism able to detect the faults
targeted in this paper (E_seq and E_time). In this scenario, the
goal of the proposed approach is to improve the fault detection
capability of the Plasma’s RTOS.

B. Hw-S Validation
In order to validate the proposed approach, we implemented

a validation environment composed of two main blocks: FPGA
Under Test (FPGA UT) and FPGA Supervisor. This
environment has been implemented using a FPGA Xilinx
Spartan Model XC3S500E. Indeed, we developed one
benchmark composed of three tasks, T1, T2 and T3, that access
and update the value stored into three different global variables.

Fig. 4 shows the block diagram associated to the
architecture implemented to perform the validation of the
proposed Hw-S.

Figure 4. Block diagram of the implemented validation environment.

The FPGA UT consists of three sub-blocks that can be
defined as follows:

• Plasma microprocessor: It runs the application
program (benchmark).

• Hw-S unit: It monitors the tick signal from the Plasma
microprocessor as well as the address bus in order to
provide fault detection capability. In general terms,
when a sequence error or a time error is detected the
Hw-S generates the signal E-seq or E-time respectively
to indicate the detected error.

• Decoder unit: It decodes the addresses associated to
each task in order to monitor the context switch.

 The FPGA Supervisor is in charge of monitoring and
storing the information generated by the RTOS during
execution time and the Hw-S during fault injection campaigns.
The Plasma microprocessor presented in this block is
implemented in such a way to provide the proper interface
between the FPGA UT and the PC. Indeed, the Plasma
microprocessor receives the signal to start the test and it
downloads the information generated during the fault injection
campaigns to the PC. The FPGA Supervisor is composed of the
following sub-blocks:

• Control unit: This sub-block enables the other units to
save and read the execution flow of the Hw-S as well
as the RTOS. In general terms, this unit receives the
control signals selection_Hw-S and selection_RTOS
from the Plasma microprocessor. Table II shows the
behavior of the FPGA Supervisor according to the two
input signals. Indeed, the Plasma microprocessor sends
the address of the data to be read through the
address_in port. Finally, the data read from the
memory is sent to the Plasma microprocessor through
the data port.

TABLE II. FPGA SUPERVISOR’S BEHAVIOR

Selection
HW-S

Selection
RTOS Behavior

0 0 Disable test

0 1 Read and send data from RAM Hw-S to the PC

1 0 Read and send data from RAM RTOS to the
PC

1 1 Test start: store the execution flow into the
RAM Hw-S and RAM RTOS

• RAM Hw-S and RAM RTOS unit: Two 8-bit memories
with 1Mbyte of addresses. These memories are used to
store the execution flow’s information of the Hw-S and
the RTOS.

• Write Memory Hw-S and Write Memory RTOS unit:
These units control the read and write memory
associated to the RAM Hw-S and the RAM RTOS. Thus,
when an error is detected, the Write Memory Hw-S
stores the information associated to the type of error
and the exact moment, when the error has been
detected. The second information is obtained from the

344

Counter Unit. The Write Memory RTOS stores the
exactly moment when the context switch is performed
into the RAM RTOS. The busy signal indicates that the
unit is writing into the respectively associated memory.

• Counter Unit: This unit implements a 28-bits counter
that is used to indicate the moment when the data is
stored into the memory. It is important to note that the
information obtained from the Counter Unit and the
clock frequency are used to measure the fault latency
between the error's occurrence and its detection by the
Hw-S.

C. Fault Injection Setup
To evaluate the fault detection capability of the Hw-S, we

developed two benchmarks that exploit some services offered
by the Plasma's RTOS. To do so, we implemented three
different tasks according to the Round-Robin algorithm. It is
important to underline that before performing any fault
injection experiment, we carefully studied and tested these
applications in an environment without soft-errors in order to
guarantee that all tasks meet their deadlines and produce
correct output results. The implemented benchmarks are
described as follows:

• BM1: Tasks T1, T2 and T3 access and update the value
of three different global variables.

• BM2: Tasks T1 and T2 communicate by message
queue. T1 sends a value to the queue and T2 reads this
value. Task T3 writes a value into a global variable.

The fault injection campaigns have been performed by
applying voltage dips to the FPGA UT Vdd pins according to
the IEC 61.000-4-29 Normative [11]. The nominal Vdd used is
of 1.2V and the periphery (I/O pads) remained at their nominal
voltage levels, i.e., 3.3V and 2.5V. These voltage dips were
injected in the FPGA pins at a frequency of 0.3MHz. Fig. 5
displays the injected noise captured with the oscilloscope at the
Vdd input pins of FPGA UT associated to BM1’s execution. It is
important to point out that Power Supply Disturbance (PSD)
represents one of the most common sources of transient faults
in many embedded applications [12].

Figure 5. IEC 61.000-4-29-compliant injected noise captured with

oscilloscope at the Vdd input pins of FPGA UT.

V. EXPERIMENTAL RESULTS
The effectiveness of the proposed hardware-based approach

has been evaluated by fault injection campaigns and by the
analysis of the introduced overheads.

During the fault injection campaigns we identified
different system behaviors related to the percentage of voltage
dips injected in FPGA pins. Thus, we distinguished five
different functional states, which go from a fully functional
system to a corrupted FPGA configuration. Based on these
states we determined the critical voltage range for each
benchmarks described above. The behavior of the system has
been classified as follows:

• Behavior_1: The system works properly applying this
voltage range.

• Behavior_2: Applying this voltage range, transient
faults affect the system generating different types of
errors that are 100% detected by both RTOS and
Hw-S.

• Behavior_3: Applying this voltage range, transient
faults generate different types of errors. At the regard,
RTOS and Hw-S present different fault detection
capability.

• Behavior_4: Applying this voltage range, the
microprocessor crashes and needs to be reset.

• Behavior_5: The FPGA’s configuration is corrupted
when this voltage range is applied.

The adopted benchmarks use different RTOS services and
consequently the microprocessor accesses different parts of the
FPGA device, such as, RAM memory or the microprocessor’s
internal registers. According to this reasoning, we can observe
different levels of sensitivity. In other words, one of the above
mentioned behaviors may have a different critical voltage range
regarding different benchmarks.

Fig. 6 and Fig. 7 show the effect of transient faults on the
task’s execution flow regarding to BM1 and BM2,
respectively. The related values have been obtained performing
100 fault injection experiments applying the voltage range
associated to the Behavior_2.

Behavior of BM1

35%

29%

36%

Prevented from switching from T1 to T2
Prevented from switching from T2 to T3
Prevented from switching from T3 to T1

Figure 6. BM1: Faults’ effects during the fault injection experiments

345

According to Fig. 6, we can observe that during 35% of the
injected voltage sags, the microprocessor was prevented from
moving from T1 to T2. Similar reasoning can be applied to the
remaining tasks, during 29% of the voltage dips injected, the
microprocessor was prevented from switching from T2 to T3
and during 36% from T3 to T1, respectively.

Behavior of the BM2

11%

28%
61%

Prevented from switching from T1 to T2
Prevented from switching from T2 to T3
Prevented from switching from T3 to T1

Figure 7. BM2: Faults’ effects during the fault injection experiments

Considering Fig. 7, we can observe that during 61% of the
voltage dips injected the microprocessor was prevented from
moving from T3 to T1, during 28% from T2 to T3 and during
11% from T1 to T2, respectively. These results can be
interpreted due to the different RTOS resources that are used
during the tasks’ execution. In other words, T1 and T2
exchange data through a queue service, while T3 reads or
writes into a global variable stored in the RAM memory. In
general terms, T1 makes use of semaphore to control the queue
access and this service performs more complex functions than
the ones performed during a RAM memory access. Therefore,
the system resources associated to T1 are much larger and
complex than the ones associated to T3. As conclusion, when
the microprocessor tries to switch from T3 to T1, the
probability that the large control data required by the
microprocessor to run T1 is corrupted is higher when compared
to the smaller amount of information to run T3. According to
this reasoning, when the microprocessor tries to switch from T3
to T1 and does not find all the required information to restart
T1’s execution from the last executed part, the microprocessor
remains blocked during T3’s execution. It is important to point
out that when this happens, the RTOS sends two different
message assertions to the user. The first one is StackOverflow
which is generated when the program counter accesses an
unexpected memory location. The second message assertion is
ThreadHead which is activated when the program counter
looses the pointer associated to the next task to be executed.

Moreover, we performed 100 fault injection campaigns for
each benchmark applying the voltage dips associated to the
Behavior_2, Behavior_3 and Behavior_4 in order to determine
the fault detection capability of the Hw-S.

Table III and IV summarize the results obtained during the
fault injection experiments with respect to RTOS and Hw-S
fault coverage for the BM1 and BM2, respectively.

TABLE III. FAULT COVERAGE ASSOCIATED TO BM1

System
behavior

Voltage range
[mV]

Voltage Dips
[%]

Fault coverage [%]
RTOS Hw-S

Behavior_1 [1200-956] 20.34 - -
Behavior_2 [955-943] 21.42 100.00 100.0
Behavior_3 [942-858] 28.50 69.00 100.00
Behavior_4 [857-651] 45.75 0.00 100.00
Behavior_5 [650-0] 100.00 - -

TABLE IV. FAULT COVERAGE ASSOCIATED TO BM2

System
behavior

Voltage range
[mV]

Voltage Dips
[%]

Fault coverage [%]
RTOS Hw-S

Behavior_1 [1200-1120] 6.67 - -
Behavior_2 [1119-893] 25.58 100.00 100.0
Behavior_3 [892-858] 28.50 56.00 100.00
Behavior_4 [857-651] 45.75 0.00 100.00
Behavior_5 [650-0] 100.00 - -

Considering the critical voltage ranges associated to
Behavior_2, Behavior_3 and Behavior_4, it is possible to
conclude that the Hw-S is able to detect 100% of the transient
faults injected during the execution of BM1 and BM2
respectively. However, considering the voltage range
associated to Behavior_3, we can observe that the RTOS is not
able to detect all injected faults anymore and regarding to
Behavior_4 no faults at all. The difference between RTOS and
Hw-S fault coverage can be attributed to the fact that the
mechanism used by RTOS in order to identify a possible error
is more sensitive to voltage sags. Applying voltage sags of
28.50% we observed that during about 40% of the injected
faults the Plasma’s RTOS is not able to detect injected faults,
because it lost the capacity to send assertions in order to sign an
error occurrence. This possibly happens out of two reasons.
The first one might be the complete loss of the necessary
information to run the Plasma’s RTOS generating inability to
detect errors during the tasks’ execution. The second reason
could be communication problems associated to the mechanism
adopted to send the assertions.

Regarding the detected faults, the sequence errors represent
the majority of the errors observed during the fault injection
experiments. We identified four different situations with
respect to E_seq. The first one happened when the
microprocessor did not respect the tasks’ execution flow and
jumped to a wrong task. To give an example, the first situation
can be observed when the microprocessor jumps directly from
T1 to T3. The second situation happened when the
microprocessor remained blocked executing only one task
without executing the context switch anymore. We attributed it
to the fact that the microprocessor lost the information
associated to the next task to be executed. The next situation
associated to E_seq is observed when the first tick does not
provoke a context switch and therefore the same task
continuous to be executed till the next tick triggers the context
switch and the next task is executed. For example, the tasks’
execution flow could be T1, T1, T2, T3 and so on. When
looking at the last situation we can observe that, as in the third
one, the first tick does not result in a context switch. But
differently, instead of changing to the correct task, the
microprocessor executes the context switch and jumps to the

346

next but one task. Thus, the tasks’ execution flow could be T1,
T1, T3 and so on.

To conclude, the fault injection campaigns show that the
Hw-S reacts significantly more robust when exposed to voltage
dips than RTOS only.

Continuing our evaluation, Table V summarizes the area
overhead associated to the Hw-S with respect to the Plasma
microprocessor.

TABLE V. AREA OVERHEAD

Element Plasma
[#]

Hw-S
[#]

Overhead
[%]

Number of LUTs of 4 inputs 3306 333 10.07

Number of RAM blocks 4 0 0.00

Observing Table V, it is possible to conclude that the
overhead introduced by the Hw-S is about 10%. We assume
that this number tends to decrease when we consider more
complex microprocessor architectures.

 To finish the evaluation of the proposed approach, we
estimated the fault latency of the proposed Hw-S with respect
to internal mechanisms implemented by the Plasma’s RTOS
(assert() function). The obtained value shows that the Hw-S
latency represents about half the time compared to the latency
value associated to the RTOS.

VI. CONCLUSIONS
In this paper we proposed a hardware-based approach able

to detect transient faults affecting the task’s execution flow and
the task’s execution time. In general terms, the proposed
approach targets transient faults affecting the RTOS’s task
level. We developed an I-IP named Hw-S and performed fault
injection campaigns in order to evaluate the effectiveness of the
proposed approach.

The main contribution of this paper consists of providing
significantly more robust embedded systems based on RTOS,
when voltage dips are injected in the FPGA Vdd pin. The
proposed approach provides 100% of fault coverage for the
identified critical voltage ranges, introducing only about 10%
area overhead. However, the non hardened system was able to
provide only 69% and 0% in BM1 or 56% and 0% in BM2,
respectively. These numbers are sustained by fault injection
campaigns. Further the introduction of an Hw-S reduces the
fault latency to about 50% with respect to the RTOS’ latency.

To conclude, we are convinced that the hardware-based
approach proposed in this paper represents an interesting
solution for hardening real-time embedded systems based on
RTOS. Therefore, we plan to conduct future works including
additional fault injection experiments. We intend to implement
still different benchmarks and to evaluate the fault detection
capabilities of the Hw-S, when exposed to irradiated
electromagnetic interference, for example.

ACKNOWLEDGMENT
The work reported in this paper has been partially funded by CNPq (Science and
Technology Foundation, Brazil).

REFERENCES
[1] D. Mossé, R. Melhelm, S. Gosh, “A non-preemptive real-time scheduler

with recovery from transient faults and its implementation”, IEEE
Transactions on Software Engineering, Vol. 29, N° 8, pp. 752-767,
August 2003.

[2] S. Gosh, R. Melhem, D. Mossé, J. Sarma, “Fault-tolerant Rate
Monotonic Scheduling”, Journal of Real-time Systems, , vol. 15, N° 2,
September 1998.

[3] P. Mejia-Alvarez, D. Mossé, “A responsiveness approach for scheduling
fault-recovery in real-time systems”, 5th Real-Time Technology and
Applications Symposium, pp. 83-93, 2nd - 4th June 1999.

[4] V. Izosimov, P. Pop, P. Eles, Z. Peng, “Design optimization of time- and
cost-constrained fault-tolerant distributed embedded systems”, Desgin,
Automation and Test in Europe, Munich, Germany, pp. 864-869, 2005.

[5] Ph. Shirvani, R. Saxena. E.J. McCluskey, “Software-implemented
EDAC protection against SEUs”, IEEE Transaction on Reliability, Vol.
49, N° 3, pp. 273-284, September 2000.

[6] F. Vargas, L. Piccoli, A.A. Alecrim, M. Moraes, M. Gama, “Time-
Sensitive Control-Flow Checking Monitoring for Multitask SoCs”, IEEE
East-West Design & Test Symposium, Sochi, Russia, 2006.

[7] N. Ignat, B. Nicolescu, Y. Savari, G. Nicolescy, “Soft-Error
Classification and Impact Analysis on Real-Time Operating Systems”,
Design, Automation and Test in Europe 2006.

[8] www.opencores.org
[9] M.H Neishaburi, M. Daneshtalab, M. R. Kakoee, S. Safari, “Improving

Robustness of Real-Time Operating Systems (RTOS) Services Related
to Soft-Errors, Computer Systems and Applications, AICCSA’07, 2007.

[10] B. Nicolescu, N. Ignat, Y. Savaria, G. Nicolescu, “Analysis of Real-
Time Systems Sensitivity to Transient Faults Using MicroC Kernel”,
IEEE Transactions on Nuclear Science, Vol. 53, N. 4, August 2006.

[11] IEC International Standards. www.iec.ch.
[12] G. Miremadi, J. Torin, “Evaluating Processor-Behavior and Three Error-

Detection Mechanisms Using Physical Fault-Injection”, IEEE
Transactions on Reliability, Vol. 44, N. 3, September 1995.

347

