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Abstract— Due to harsh and inaccessible operating environ-
ments, space computing presents many unique challenges with
respect to stringent power, reliability, and programmability con-
straints that limit on-board processing performance and mission
capabilities. However, the increasing need for real-time sensor
and autonomous processing, coupled with limited communica-
tion bandwidth with ground stations, are increasing the demand
for high-performance, on-board computing for next-generation
space missions. Since currently available radiation-hardened
space processors cannot satisfy this growing demand, research
into various processor architectures is required to ensure that
potential new space processors are based on architectures that
will best meet the computing needs of space missions. To
enable this research, we present a novel framework to analyze
potential processor architectures for space computing. By using
this framework to analyze a wide range of existing radiation-
hardened and emerging commercial processors, tradeoffs be-
tween potential space computing architectures can be deter-
mined and considered when designing new space processors or
when selecting commercial architectures for radiation harden-
ing and use in space missions. We demonstrate the ability of
the framework to generate data for various architectures in
terms of performance and power, and analyze this data for
initial insights into the effects of processor architectures on space
mission capabilities. The framework provides a foundation for
the analysis of a broad and diverse set of processor architectures
for potential use in next-generation, on-board space computing.
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1. INTRODUCTION

Most currently available radiation-hardened (rad-hard) space
processors, such as the BAE Systems RAD750 and the Xilinx
Virtex-5QV, are the result of commercial processor architec-
tures being selected for radiation hardening and use in space
missions [1-2]. Since creating rad-hard space processors is a
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lengthy, complex, and costly process, and since space mission
design typically requires lengthy development cycles, there
is a large technological gap between commercial and space
processors that results in limited and outdated processor
selections for space missions.

While current space processors increasingly lag behind the
capabilities of emerging commercial processors, computing
requirements for space missions are becoming more de-
manding. Furthermore, improving sensor technology and
increasing mission data rates, problem sizes, and data types
are increasing the demand for communication bandwidth to
ground stations. Due to limited bandwidth and long transmis-
sion latencies, remote transmission of real-time operating de-
cisions or new software/hardware reconfigurations becomes
impractical for space missions. High-performance, on-board
computing can alleviate these challenges and address the
unique computing needs of space missions by processing data
prior to transmission to ground stations and making real-time
operating decisions autonomously.

To address the continually increasing demand for high-
performance, on-board space computing, new processor ar-
chitectures must be analyzed for potential new space proces-
sors. Current rad-hard space processors are typically based
on commercial processors with architectures that were not
explicitly designed for the unique challenges of space com-
puting. To ensure that new space processors are based upon
architectures that are most suitable for next-generation space
missions, tradeoffs in architectural characteristics should be
determined and considered when designing a space processor
or when selecting a commercial architecture for radiation
hardening and use in space missions. However, this analysis
presents several challenges, since both the space-computing
domain and the set of available processors are broad and
diverse, with many possible applications and processor ar-
chitectures to evaluate. To address these challenges, Figure 1
conceptualizes the proposed framework that enables the anal-
ysis of potential processor architectures for space computing.

To study and characterize the broad space-computing domain,
we perform an expansive study to determine common and
critical space mission computing requirements that considers
key applications, data types, problem sizes, and other relevant
algorithmic details. With this information, we establish a
set of computational dwarfs and compose a taxonomy that
broadly defines and classifies the space-computing domain.
From this taxonomy, we establish a benchmark suite that con-
sists of key computations that broadly represent space mis-
sion requirements, and thus simplifies the space-computing
domain to a manageable set of computations.
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Figure 1: Framework concept diagram

To identify and characterize the numerous and diverse set
of potential processor architectures for space computing, we
leverage a suite of device metrics that provide a theoretical
basis for the study of architectural capabilities. Facilitated
by device metrics, we conduct initial quantitative analysis
and objective comparison of many diverse processor archi-
tectures, from categories such as multi-core and many-core
central processing units (CPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs), graphics
processing units (GPUs), and hybrid configurations of these
architectures. Device metrics analysis provides insights into
which architectures are most suitable for space computing
in terms of performance and power. We then target the
most suitable architectures for further analysis with device
benchmarking by developing a space-computing benchmark
suite and testing the performance capabilities of the targeted
architectures. We first test benchmarks in serial operation,
then further develop and test for parallelization across proces-
sor cores and reconfigurable fabrics. The framework enables
analysis of potential processor architectures for space com-
puting based on theoretical capabilities and the performance
of key computations required for space missions. While this
research focuses on space computing, our methodologies can
be adapted and applied to processor architecture analysis for
any computing domain.

The remainder of this paper is structured as follows. Section
2 describes background and related work. In Section 3,
we present computational dwarfs and a novel taxonomy for

space computing that includes key computations selected to
establish a space-computing benchmark suite. In Section 4,
we present device metrics analysis over a broad and diverse
set of architectures for potential use as space processors.
In Section 5, we conduct device benchmarking analysis on
architectures that show potential for use in space computing.
Finally, Section 6 discusses conclusions and future research
directions.

2. BACKGROUND AND RELATED WORK

The framework leverages established concepts in the analysis
of algorithms and processor architectures, and applies these
concepts to the space-computing domain. These concepts
include the creation of taxonomies for various computing
domains based upon computational dwarfs, device metrics
analysis as an initial comparison of the capabilities of a broad
set of architectures, and device benchmarking for further
architecture analysis based upon the performance of key
computations.

Computational Dwarfs

The University of California at Berkeley (UCB) introduced
the computational dwarf concept for designing and analyzing
computing models and architectures. Asanovic et al. [3]
defined a computational dwarf as “an algorithmic method
that captures a pattern of computation and communication.”
Figure 2 lists these UCB dwarfs, which were defined at high



levels of abstraction to encompass all computational methods
used in modern computing. The UCB dwarfs can be used
to characterize applications by determining the application’s
key computations and classifying the application under the
appropriate dwarf. For example, computations such as matrix
multiplication and QR decomposition are both classified as
linear algebra dwarfs, while Fast Fourier Transform (FFT)
and wavelet transform are both classified as spectral methods
dwarfs. Abstracting applications as computational dwarfs
enables analysis of key computational patterns across a wide
range of applications, independent of the actual software
and hardware implementation details. For any computing
domain, computational dwarfs can be identified and used to
create taxonomies that broadly define and classify the key
computational patterns within that domain. This concept has
been demonstrated in various computing domains, such as
symbolic computation [4], cloud computing [5], and work-
load characterization [6]. The framework leverages these
concepts to establish computational dwarfs and a taxonomy
for space computing.

e Dense linear algebra e Combinational logic

o Sparse linear algebra o Graph traversal

o Spectral methods o Dynamic programming
o N-body methods e Backtrack and

o Structured grids branch-and-bound

o Unstructured grids o Graphical models

e MapReduce o Finite state machines

Figure 2: UCB dwarfs [3]

Device Metrics

We leverage an in-house developed set of device metrics
for quantitative analysis of processor architectures in terms
of performance and power [7-9]. Device metrics provide a
theoretical basis for processor capability analysis and can be
calculated based solely on architectural characteristics, allow-
ing for the study of a larger and broader set of architectures
than is practical with device benchmarking. Device metrics
enable the objective comparison of disparate architectures,
from categories such as multi-core and many-core CPU, DSP,
FPGA, GPU, and hybrid configurations. In this research, we
employ device metrics to analyze and compare a broad set
of processor architectures as an initial step to determine the
architectures’ potential for space computing.

Since space processors must operate with limited power
consumption, the framework focuses on the computational
density (CD) and CD per Watt (CD/W) device metrics. CD
and CD/W data provide an initial analysis of architectural ca-
pabilities in terms of performance and power. CD evaluates a
processor’s raw performance capabilities in terms of addition
and multiplication operations per second, and is calculated
separately for each data type considered. The framework
evaluates various data types, including several integer preci-
sions and both single-precision and double-precision floating-
point (SPFP and DPFP, respectively). Richardson et al. [7]
defined CD as:

CD=fx Z : (1)
< CPI,

where N is the number of execution units or the number
of operations that can be issued simultaneously, C'PI is
the average number of cycles per instruction, and f is the
operating frequency. This calculation accounts for all n

types of execution units that can support operations with
the evaluated data type. To ensure that CD is memory-
sustainable, the realistic ability of memory to provide data
for each parallel operation is considered. Richardson et al.
[7] defined CD/W as CD divided by power, which measures
how much performance is achieved for each Watt dissipated.

Calculating CD and CD/W is more complex for FPGAs [7-
8] as compared to traditional processors, and requires use
of vendor tools. First, arithmetic cores for the evaluated
operations and data types are generated for the evaluated
FPGA, and a linear-programming algorithm is applied to
FPGA resource utilization data, which is used to determine
optimal packing of cores onto the reconfigurable fabric.
Then, CD is calculated by multiplying the maximum possible
number of cores by the limiting core frequency, and CD/W
is calculated by using vendor tools for power estimation to
determine static and dynamic power for the device given the
packing configuration.

Device Benchmarking

Whereas device metrics serve as a valuable first step in the
analysis of processor architectures, more thorough analysis
can be conducted with device benchmarking. Developing
and testing device benchmarks on the processors provides
insights into the performance capabilities of the evaluated
architectures. Although device benchmarking analysis re-
quires greater hardware costs and development efforts than
device metrics analysis, the resulting insights are specific
to key computations for the evaluated computing domain.
Further analysis becomes possible as processors approach
theoretical capabilities and the effects of architectural char-
acteristics on performance can be carefully studied. Thus,
device benchmarking provides a methodology to compare
performance tradeoffs for various architectures, algorithms,
and optimizations under consideration.

3. SPACE-COMPUTING TAXONOMY

To establish a set of computational dwarfs for space comput-
ing, we conduct a comprehensive study of space applications,
data types, problem sizes, and other key algorithmic details
based upon space mission needs. Requirements for on-board
space computing are rapidly increasing due to advancements
in remote sensors and data acquisition, including common
radar and laser applications and operations for merging sensor
data, which impose intensive computational demands. Image
processing is commonly required, such as imaging across
frequency spectrums and in noisy environments, in addition
to resolution enhancement, stereo vision, and detection and
tracking of features across image frames [10-13].

Guidance, navigation, and control applications are key to
space missions, and require intensive computing for real-
time autonomous operations, which includes horizon and star
tracking, and determination and control algorithms for space-
craft attitude and orbit [14-15]. Autonomous maneuvering is
required in orbital missions for proximity operations, such as
relative motion control for rendezvous and docking and on-
orbit assembly [16-18]. Surface missions require autonomous
maneuvering to study foreign environments and to safely and
efficiently land on and navigate unfamiliar terrain [19-22].
Autonomous mission planning consists of intelligent schedul-
ing and abstract modeling of spacecraft control operations
and profiling of on-board science experiments [23-25].



Communication capabilities with ground stations or other
remote systems are also vital for space missions, and include
software-defined radio and packet switching operations [26].
Since sensor data cannot always be processed on-board,
and communication bandwidth to ground stations is limited,
data compression can reduce communication requirements to
ensure that critical sensor data is retrieved and analyzed [27].
Due to the unreliability of remote communication systems
and hazards posed by the harsh space environment, fault
tolerance is critical for space missions. Data reliability can
be strengthened with periodic memory scrubbing and channel
coding of data transmissions [28]. Encryption techniques are
considered since cryptography may be necessary to protect
sensitive mission information [29]. While mission secu-
rity may require specific, classified encryption algorithms,
computationally-similar unclassified algorithms are also of
significance for less-sensitive or shorter-duration missions.

Given these requirements, Table 1 depicts the space-
computing taxonomy, which is composed of broad, high-
level computational dwarfs and corresponding applications.
This taxonomy provides a comprehensive assessment of com-
mon and critical requirements for on-board space comput-
ing. Table 2 depicts the space-computing benchmark suite.
These benchmarks represent key computations required by
the corresponding dwarfs in Table 1. Since it is impractical
to exhaustively consider every possible space application or
algorithm, this taxonomy and benchmark suite provide a
broad representation of key computations required for space
missions. These computations can be characterized with the
more abstracted UCB dwarfs, with most benchmarks classi-
fied under the linear algebra, spectral methods, and combi-
national logic UCB dwarfs. By developing this benchmark
suite and conducting device benchmarking, architectures can
be targeted and analyzed for potential use as space processors
and the processors’ performance capabilities can be ana-
lyzed for key computations either for specific applications or
broadly across the space-computing domain.

4. DEVICE METRICS ANALYSIS

Device metrics provide a method for the initial analysis
and comparison of a broad set of processor architectures
without the increased hardware costs and development efforts
required for more exhaustive device benchmarking. Device
metrics provide a quantitative and objective comparison of
similar or disparate architectures, including comparison of
existing rad-hard technology with emerging commercial pro-
cessors. Architectures can be analyzed for various data types
used in space computing, and hybrid architectures can be
studied as individual constituent components or in a com-
bined/hybrid fashion. This analysis provides insights into
which architectures are most suitable for space computing
in terms of performance and power and should be further
evaluated with device benchmarking.

Figures 3 and 4 show initial CD and CD/W data, reported in
billions (giga) of operations per second (GOPS) and GOPS
per Watt (GOPS/W), respectively, for various integer and
floating-point data precisions on a broad range of architec-
tures. Table 3 shows corresponding raw data and architectural
categorizations. Using this data, we study various archi-
tectural tradeoffs to gain insights into specific architectural
considerations for space computing in terms of performance
and power. Evaluated architectural categories include multi-
core and many-core CPUs, DSPs, FPGAs, GPUs, and hybrid
configurations.

Table 1: Space-computing taxonomy

Dwarf

|

Application areas

Remote sensing

Synthetic-aperture radar
Light detection and ranging
Beamforming

Sensor fusion

Image processing

Hyper/multi-spectral imaging
Overhead persistent infrared
Super resolution imaging
Stereo vision

Feature detection & tracking

Orbital orientation

Horizon & star tracking
Attitude determination & control
Orbit determination & control

Orbital maneuvering

Relative motion control
Rapid trajectory generation
On-orbit assembly

Surface maneuvering

Autonomous landing

Hazard detection & avoidance
Terrain classification & mapping
Path optimization

Mission planning

Intelligent scheduling
Model checking
Experiment profiling

Communications

Software-defined radio
Packet switching

Compression

Image & video compression
Hyper/multi-spectral compression

Fault tolerance

Memory scrubbing
Channel coding

Cryptography

NSA Type-1 certified encryption
Unclassified encryption

Table 2: Space-computing benchmark suite

Benchmark

‘ ‘ Dwarfs

Matrix multiplication

Remote sensing
Image processing
Orbital orientation

Matrix transpose

Remote sensing

Convolution

Remote sensing
Image processing
Orbital orientation

FFT

Remote sensing
Communications

OR decomposition

Image processing

Wavelet transform

Image processing
Compression

TCP/IP operations

Communications

Error correction
coding

Fault tolerance

Rijndael AES

Cryptography

Singular value
decomposition

Orbital orientation

Lambert’s problem

Orbital orientation
Orbital maneuvering

Graph search

Orbital orientation
Mission planning

function

Artificial potential

Orbital maneuvering

Newton’s method

Orbital maneuvering
Surface maneuvering

Kalman filtering

Orbital maneuvering
Surface maneuvering




“Int§ =Intl6 =Int32 =SPFP =DPFP
10
an "
=3
=
10
10°
10"
=0 V- 6 S 3 4\ S 2 0 4 0 -
2 M\ﬂ:“w\,g M“‘“c’\‘m‘e ‘1‘3@,@ e Lo 5 6T m‘sﬁ“ st 8% o e O ar o0 o -m“\\ et 0 !\“_\_1\ "o UL‘:I“ e
i 0 w 50! Vi Vi cre At e ot® el 3\ \\ s
- et @ C° (3‘ Loy ey* o NS " yor ¥ el W < et
wh¥ e ‘\\ I P‘\‘eraxl\o\ i o O o ¥ oy wey S e ”& o P
Figure 3: CD comparison for broad set of architectures
0
“Int8 ®Intl6 =~Int32 =SPFP = DPFP
~
[72]
S
\] 50 0 hS o el i3 1 3 S 2 . OV A 2 0 ]
s Rh‘)‘l:ﬂ"‘“ K"‘\ Mo‘“snbf“ ﬂ:ﬁt“: ¥ G‘fé“‘io\‘g \(/6610‘“" Lﬁf\ s \1&\\“ 4 R%S‘a“ ) k‘.:’Ge \J“:ce L (;qﬂ“‘ oﬂ?:\ b ‘L\,‘J\‘\ 60 s T ‘“t\m\ A lo’:(:l“ @vbf
- gyst® N e A €Y a S 35! % sV i ort! o rad® e QL U g ol
® ¥ 5Y A\ w ot qner® T K \L L P p»““‘i[ \D‘“b: \\)\\tﬁ m\‘ o o w0 e 1 2 Iy
Figure 4: CD/W comparison for broad set of architectures
Table 3: CD and CD/W raw data
. CD (GOPS CD/W (GOPS/W
Device ( ) w ( )
Int8 | Int16 [ Int32 | SPFP | DPFP Int8 | Int16 | Int32 | SPFP | DPFP
BAE Systems RAD750 2.13 1.06 0.53 0.13 0.13 5.00 | 043 | 021 | 0.11 0.03 0.03
IBM PowerPC750 4.80 2.40 1.20 0.60 0.30 7.30 | 0.66 | 0.33 [ 0.16 0.08 0.04
CPU Intel Atom S1260 320.00 | 160.00 | 80.00 [ 48.00 | 16.00 | 8.50 | 37.65 | 18.82 [ 9.41 5.65 1.88
Intel Core i7-3960X 1123.20 | 561.60 | 280.80 | 374.40 | 187.20 [130.00( 8.64 [ 4.32 | 2.16 2.88 1.44
Tilera TILE-Gx8036 486.00 | 270.00 | 162.00 | 54.00 [ 54.00 | 30.00 | 16.20 | 9.00 [ 5.40 1.80 1.80
DSP TI KeyStone-1 C6672 288.00 | 144.00 [ 72.00 | 48.00 | 24.00 | 13.86 | 20.78 [ 10.39 | 5.19 3.46 1.73
TI KeyStone-I1 C6678 960.00 | 480.00 | 240.00 | 160.00 | 80.00 | 20.30 | 56.75 | 28.37 | 14.19 | 7.88 3.94
Xilinx Virtex-5 130T 1271.22 | 550.08 | 106.09 | 112.87 | 22.75 | 21.92 | 57.99 | 26.77 | 6.71 6.25 2.29
FPGA Xilinx Virtex-7 585T 2798.66 |2028.80| 490.80 [ 495.70 | 135.30 | 31.93 | 87.65 | 85.80 | 30.40 | 30.50 5.70
Altera Stratix V 5SGS 6526.95 | 877.50 | 351.00 [ 261.00 | 85.69 | 44.74 [145.90| 61.71 | 16.38 | 16.26 7.99
NVIDIA GeForce 8800 Ultra 1536.00 | 768.00 | 384.00 | 384.00 [ 0.00 |175.00| 8.78 | 4.39 [ 2.19 2.19 0.00
GPU NVIDIA GeForce GTX 690 3130.39 [3130.39]3130.39]3130.39| 65.22 [300.00{ 10.43 | 10.43 | 10.43 | 10.43 0.22
AMD Radeon HD 7990 16448.00 | 8256.00 4160.00| 4096.00 | 2048.00375.00( 43.86 | 22.02 | 11.09 | 11.09 5.46
NVIDIA Tegra 4 520.64 | 307.84 | 201.44 [ 155.84 | 30.40 | 2.15 |242.16]| 143.18[ 93.69 | 72.48 | 14.14
TI KeyStone-11 66AK2H12 1459.20 | 729.60 | 364.80 [ 198.40 [ 99.20 | 21.69 | 67.28 | 33.64 | 16.82 | 9.15 4.57
Hybrid Xilinx Zynq-7020 324.15 | 152.00 | 47.38 | 38.78 13.14 | 448 | 72.35| 42.82 | 12.57 | 9.17 3.59
Xilinx Zynq-7020 (CPU) 32.02 16.01 8.04 8.04 2.68 1.17 | 27.44 | 13.72 | 6.89 6.89 2.30
Xilinx Zynq-7020 (FPGA) 292.13 | 13599 | 39.34 | 30.74 10.46 | 4.48 | 88.26 | 57.14 | 15.13 | 10.06 4.21

The results show that the prevalent BAE Systems RAD750
space processor and the corresponding commercial processor,
the IBM PowerPC750, are becoming obsolete by several
orders of magnitude when compared to the emerging pro-
cessors in all major architectural categories studied. While
architectural variations of the RAD750 exist, CD and CD/W
data is based on a frequency of 133 MHz and a power
dissipation of 5W [1].

Device metrics can be used not only to objectively compare
very disparate architectures, but also architectures with simi-
larities, such as belonging to the same architectural category,
vendor, or processor family. When analyzing commercial
architectures for potential use in space missions, we first
compare several CPUs from the same architectural category.

Results show that the Intel Atom S1260 lacks the perfor-
mance capabilities of the Intel Core 17-3960X and the Tilera
TILE-Gx8036, but achieves higher CD/W for all evaluated
data types, revealing the low-power advantage of the Atom
S1260 architecture. The Tilera TILE-Gx8036 fails to match
the performance capabilities of the Core 17-3960X, but does
achieve higher CD/W for most data types. We also compare
commercial DSPs from the same architectural category, ven-
dor, and processor family. Results show that the octal-core TI
KeyStone-I C6678 achieves both higher CD and CD/W than
the dual-core KeyStone-I C6672. When analyzing FPGAs,
we evaluate the Xilinx Virtex-5 130T FPGA, which is the
commercial counterpart of the Virtex-5QV space processor,
and find that greater CD and CD/W can be achieved with the
more advanced Virtex-7 and Altera Stratix V architectures.



The results for GPUs reveal not only the high power require-
ments of emerging commercial GPUs, but the effects of data
types and precisions on CD. The NVIDIA GeForce 8800
Ultra contains floating-point units capable of only SPFP op-
erations, which is insufficient for high-precision applications
that require DPFP processing. While the NVIDIA GeForce
GTX 690 does contain DPFP units, CUDA cores are used
to support both SPFP and 32-bit integer operations, with
smaller integer precisions automatically converted up to 32-
bit values. Therefore, applications can leverage precision
levels up to 32-bit integer or SPFP without decreasing CD.
With the AMD Radeon HD 7990, CD data follows a more
predictable pattern and decreases with higher precisions.

Device metrics also provide the capability to analyze hybrid
architectures, such as the NVIDIA Tegra 4, which combines
a GPU with a quad-core CPU, or the TI KeyStone-1I, which
contains both an octal-core DSP and quad-core CPU. With
hybrid architectures, CD and CD/W are calculated first for
all constituent architectures. CD values are then combined to
give the hybrid CD, which is then divided by the total power
dissipation to obtain the hybrid CD/W. Therefore, hybrid
architectures can be analyzed with constituent architectures
in isolation or in a combined fashion as is demonstrated with
the Xilinx Zynq-7020, which contains both a dual-core ARM
Cortex-A9 CPU and an Artix-7 FPGA fabric. Computational
metrics data for the Zynq-7020 shows that the FPGA fabric
provides most of the performance capability and achieves
better CD/W than the CPU for all data types studied.

5. DEVICE BENCHMARKING ANALYSIS

Although analysis with device metrics provides a valuable
initial step for architecture analysis, more thorough analysis
with device benchmarking can provide further insights into
architectures that show potential for use as space proces-
sors. We develop several benchmarks in the space-computing
benchmark suite and test these benchmarks on the targeted
architectures. The resulting timing data provides insights
into performance capabilities for key computations either for
specific applications or broadly across the space-computing
domain. We evaluate device benchmarking on a variety of
processors to analyze the effects of different architectures,
algorithms, and optimizations on performance. The bench-
marks developed include a triple-loop matrix multiplication
of two n X n matrices, a double-loop matrix transpose of
an n X n matrix, and a quad-loop flipped-kernel convolution
of an n x n matrix. We first conduct benchmarking with
serial operations to compare existing rad-hard technology
with emerging commercial processors. We then adapt the
benchmarks to parallel operation to test the parallelizability
of computations across processor cores. Finally, we develop
a benchmarking strategy to test the acceleration of computa-
tions by mapping to reconfigurable fabrics. Although initial
benchmarking data provides insights into potential archi-
tectures for future space processors, extensive optimization
of algorithms and architectures is required to more closely
reflect the full capabilities of the evaluated processors.

To analyze existing rad-hard technology, we conduct device
benchmarking on the BRE DesignNet MSV, an existing rad-
hard space processor of close architectural similarity to the
more prevalent BAE Systems RAD750. The MSV is based on
the commercial IBM PowerPC750FX single-core architec-
ture, which is analogous to the IBM PowerPC750 found in the
RAD750, with some minor additional features. To analyze
the various architectural categories of emerging commercial

processors, we conduct device benchmarking on the Xilinx
Zynq-7020, which is a hybrid CPU/FPGA architecture, the
Tilera TILE-Gx8036, which is a many-core CPU, and the TI
KeyStone-I C6678, which is a multi-core DSP.

We develop benchmarks in C and VHDL for various data
types and problem sizes and verify correct operation using
known test patterns. We then conduct benchmarking with
randomized data using processor-specific design tools and
environments, including a single-board computer platform
with the WindRiver VxWorks OS and design tools for the
BRE DesignNet MSV, a Digilent ZedBoard with the Xillinux
OS and Xilinx ISE design tools for the Xilinx Zyng-7020, a
TILEmpower-Gx platform with CentOS for the Tilera TILE-
Gx8036, and an EVM board with the MCSDK SYS/BIOS
and TI CCS design tools for the TI KeyStone-I C6678.

Serial Benchmarking

Figures 5 and 7 show serial benchmarking results, which
demonstrate the relatively, and expected, inferior perfor-
mance of existing rad-hard technology when compared to
emerging commercial processors for all evaluated data types,
even when commercial multi-core and many-core architec-
tures are limited to single-core operation. While the rad-hard
processor shows the worst performance for all benchmarks
tested, the best performing architecture varies depending
upon the benchmark and data type, which shows that these
aspects should be considered when analyzing architectures
for future space processors.
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Figure 5: Serial matrix multiplication, n = 2048
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Figure 8: Parallel matrix multiplication
Tilera TILE-Gx8036, n = 2048
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Figure 9: Parallel matrix multiplication
TI KeyStone-1 C6678, n = 2048

Parallel Benchmarking

Since multi-core, many-core, and hybrid architectures are of
increasing prevalence in emerging commercial processors,
we further develop our benchmarks with an OpenMP shared-
memory parallelization strategy. We then test performance
on the Tilera TILE-Gx8036 and the TI KeyStone-1 C6678 to
analyze the parallelizability of computations across processor
cores.

Figures 8 and 9 show parallelized matrix multiplication
results for the TILE-Gx8036 and KeyStone-I C6678, re-
spectively. For both architectures, speedup is achieved as
computations are distributed across processor cores. The
TILE-Gx8036’s speedup increases as the number of cores
increases up to an eventual tipping point in performance
gains caused by the communication overhead associated
with the parallelization strategy. When increasing cores on
the KeyStone-I C6678, a performance penalty is incurred
that prevents speedup for lower data precisions without in-
creased optimization. For higher precisions, speedup occurs
when the number of cores is high enough for the benefits
of parallelization to overtake any communication overhead.
Unlike the TILE-Gx8036, the KeyStone-I C6678 does not
contain enough cores to reach a tipping point in performance
gains for the evaluated benchmark. However, for most
parallelized applications, a performance limit exists where
additional parallelization across cores will stop significantly
increasing speedup and can begin degrading performance.
Using application details such as data types and problem
sizes, the optimal number of parallel cores can be determined
for a specified architecture. Achieved speedup and optimal
number of parallel cores vary with differing architectures
and parallelization strategies, as greater development and
optimization efforts may be required for some processors to
reach performance levels near theoretical capabilities.

Figures 10 and 11 show parallelized matrix transpose results
for the TILE-Gx8036 and KeyStone-I C6678, respectively.
For both processors, speedup is achieved with increasing
number of processor cores until an eventual tipping point
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Figure 10: Parallel matrix transpose
Tilera TILE-Gx8036, n = 2048

<Int8 #Intl6 +Int32 —SPFP --DPFP /
4 /
3

) =

A M

Cores

Speedup

Figure 11: Parallel matrix transpose
TI KeyStone-I C6678, n = 2048

in performance gains. While the TILE-Gx8036 achieves
greater speedup for matrix multiplication than the KeyStone-
I C6678, the opposite is true for matrix transpose. This out-
come demonstrates that speedup for targeted processors may
vary between algorithms of different computational charac-
teristics, allowing decisions about architectures for potential
new space processors to be adjusted based upon specific
application requirements.

Reconfigurable Benchmarking

Since customized hardware acceleration of compute-
intensive algorithms has the potential to alleviate perfor-
mance bottlenecks for space missions, FPGA benchmarking
is used to determine the amenability of space applications to
reconfigurable fabrics. We evaluate FPGA acceleration by
designing a reconfigurable convolution benchmark in VHDL
and test this benchmark on the Artix-7 FPGA fabric of the
Xilinx Zyng-7020. The convolution datapath is designed
to perform arithmetic operations in parallel. Throughput is
increased by dividing the datapath into pipeline stages, which
reduces the propagation delay incurred per clock cycle, thus
increasing achievable operating frequencies.

Table 4: Reconfigurable convolution
Xilinx Zyng-7020 (FPGA), 3 x 3 Sobel kernel, n = 2048

Data precision Resource utilization Performan.ce
FF LUT DSP__| cyles | frequency | time (ms)
Int§ 160 (1%) | 320%) [ 17(7%) [466033] s00mHz | 0.9321
Int16 320(1%) | 4301%) | 17(7%) [466033] soomuz | 09321
Int32 928 (1%) | 210 1%) [ 35(15%) [466033] s00MHz [ 0.9321
SPFP 4010 3%) | 2735 (5%) | 43 (19%) [ 466033 300 MHZ 1.5534
DPFP 12706 (11%) | 8315 (15%) | 123 (55%) [ 466033] 300 MHz 1.5534

Table 4 shows reconfigurable benchmarking results, which
are analyzed both in terms of performance and FPGA re-
sources utilized for the convolution datapath. The design
requires a relatively small percentage of flip-flop (FF), look-
up table (LUT), and hard-wired multiplier (DSP) resources
available on the FPGA fabric. Throughput is further in-
creased by generating a phase-locked loop to increase operat-



ing frequencies. Performance is then calculated by scaling the
total number of cycles required to finish computation by the
operating frequency. Results demonstrate that FPGA acceler-
ation can be achieved without requiring significant resource
utilization, enabling additional FPGA-based computation on
remaining resources as needed.

6. CONCLUSIONS AND FUTURE RESEARCH

As the need for high-performance, on-board space computing
is continually increasing, we develop a novel framework to
analyze the capabilities of processor architectures to meet
future space mission requirements. The framework addresses
the challenges presented when considering both a broad do-
main of computing and a broad set of potential architectures.
We evaluate the framework’s ability to gain initial insights
into a variety of processor architectures for potential space
computing, and we evaluate a broad range of common and
critical space applications to identify computational dwarfs
and establish a novel space-computing taxonomy. With a
basis in this taxonomy, key computations are selected for a
space-computing benchmark suite that broadly represents the
computational needs of future space missions. Device metrics
analysis is demonstrated as an initial step to quantitatively and
objectively compare a broad set of processor architectures for
potential use in space computing. Using a space-computing
benchmark suite, device benchmarking is conducted for more
thorough and targeted analysis of processor architectures.
Serial benchmarks are developed and tested on both existing
rad-hard technology and emerging commercial architectures
with potential for use as space processors. Benchmark paral-
lelizability is tested across processor cores and reconfigurable
fabrics. Results confirm that existing rad-hard technology
is greatly outperformed by emerging commercial processors,
and that space-computing benchmarks often demonstrate par-
allelizability, with multi-core, many-core, and reconfigurable
architectures enabling performance speedup. The framework
thus creates a research foundation for the quantitative analysis
of processor architectures for use in next-generation, on-
board space computing.

Future research will extend the framework for further analysis
of tradeoffs in architectural characteristics for space com-
puting with a more complete set of emerging processors,
including new multi-core, many-core, reconfigurable, and
hybrid architectures. The space-computing benchmark suite
will be further developed, and benchmarking methodologies
will be improved by leveraging existing optimized libraries
and creating optimized benchmarking environments for ar-
chitectures under study.
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