
Managing Wearable Sensor Data through Cloud
Computing

Charalampos Doukas
Dept. of Information & Communication Systems

Engineering
University of the Aegean

Samos, Greece
doukas@aegean.gr

Ilias Maglogiannis
Dept. of Computer Science & Biomedical Informatics

University of Central Greece
Lamia, Greece
imaglo@ucg.gr

Abstract—Mobile pervasive healthcare technologies can support a
wide range of applications and services including patient
monitoring and emergency response. At the same time they
introduce several challenges, like data storage and management,
interoperability and availability of heterogeneous resources, unified
and ubiquitous access issues. One potential solution for addressing
all aforementioned issues is the introduction of the Cloud
Computing concept. Within this context, in this work we have
developed and present a wearable – textile platform based on open
hardware and software that collects motion and heartbeat data and
stores them wirelessly on an open Cloud infrastructure for
monitoring and further processing. The proposed system may be
used to promote the independent living of patient and elderly
requiring constant surveillance.

Keywords-component; cloud computing, sensors, wearable
sensors, wearable data management

I. INTRODUCTION
The introduction of the pervasive healthcare paradigm has

enabled the awareness towards the elderly and the need for
constant medical supervision of chronic patients or habitants at
remote, isolated and underserved locations. In this context,
advanced electronic healthcare services are required to be made
available through a network anytime, anyplace and to anyone. A
medical assistive environment on the other hand concerns the
utilization of pervasive and ubiquitous technologies for
delivering the above services. Wireless technologies enable the
real time transmission of data about a patient’s condition to
caregivers. Numerous portable devices are available that can
detect certain medical conditions—pulse rate, blood pressure,
breath alcohol level, and so on—from a user’s touch.

The realization, however, of health information management
through mobile devices introduces several challenges, like data
storage and management (e.g., physical storage issues,
availability and maintenance), interoperability and availability of
heterogeneous resources, security and privacy (e.g., permission
control, data anonymity, etc.), unified and ubiquitous access. One
potential solution for addressing all aforementioned issues is the

introduction of Cloud Computing concept in electronic
healthcare systems. Cloud Computing provides the facility to
access shared resources and common infrastructure in a
ubiquitous and pervasive manner, offering services on-demand,
over the network, to perform operations that meet changing needs
in electronic healthcare application. Figure 1 illustrates the Cloud
Computing concept.

Figure 1. An illustration of the Cloud Computing concept. All kinds of
computing and communication devices are able to interact with the Cloud and
share the same data resources. Embedded - sensor devices and microcontrollers
are such way a part of the Cloud.

In this context we have developed a Cloud-based system that

manages sensor data. Wearable – textile sensors collect
biosignals from the user (like heart rate and temperature) and
motion data. Depending on the wireless technology used, the data
can be forwarded to a mobile phone or directly to the Cloud

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3/11 $26.00 © 2011 IEEE

DOI 10.1109/CloudCom.2011.65

440

infrastructure. The latter is built utilizing resources of Google
App Engine. It is completely scalable and provides programming
interfaces (APIs) for sharing the collected data with external
applications and visualizing them on mobile devices.

II. RELATED WORK
There is a great number of research works in pervasive

healthcare sensors. Most of them deal with data management on
the devices (e.g., using storage means like SD cards) or utilize
intermediate nodes (e.g., mobile phones) or store the data directly
on computer nodes. Only few works exist however that address
the issue of data storage and management on the Cloud. Authors
in [4] present a sensor-oriented cloud infrastructure. The
presented platform is proprietary and the initial evaluation results
are based on simulated sensors and do not include actual devices.

There is also available a number of Cloud-based services
dedicated for storing sensor-based data. Pachube [19], Nimbits
[22], ThingSpeak [20] and iDigi [21] are a few that could be
mentioned.

Pachube has been one of the first on-line database service
providers that allow developers to connect sensor data to the
Web. It is a real-time data Cloud-based infrastructure platform
for the Internet of Things (IoT) with a scalable infrastructure that
enables users to build IoT products and services, and store, share
and discover real-time sensor, energy and environment data from
objects, devices & buildings around the world. The main features
of the platform are: managing real time sensor and environment
data, graphing and monitoring and controlling remote
environments. In addition there is a great number of interfaces
available for building sensor or mobile-based applications for
managing the data on the Cloud infrastructure. One of the
important features of Pachube that have facilitated its penetration
as a IoT cloud service is that the basic usage if free, it is based on
an open and easy accessible API and has a very interactive web
site for managing sensor data.

Nimbits is a data processing service you can use to record and
share sensor data on the cloud. It is a free, social and open source
platform for the Internet of Things. With Nimbits, users can
create data points on the cloud and feed changing numeric, text
based, GPS, JSON or xml values into them. Data points can be
configured to perform calculations, generate alerts, relay data to
social networks and can be connected to SVG process control
diagrams, spreadsheets, web sites and more. Nimbits offers a data
compression mechanism, an alert management mechanism, and
data calculation on the received sensor data using simple
mathematic formulas.

ThingSpeak is another open source “Internet of Things”
application and API to store and retrieve data from things using
HTTP over the Internet or via a Local Area Network. With
ThingSpeak, users can create sensor-logging applications,
location tracking applications, and a social network of things
with status updates. In addition to storing and retrieving numeric
and alphanumeric data, the ThingSpeak API allows for numeric
data processing such as time scaling, averaging, median,
summing, and rounding. Each ThingSpeak Channel supports data

entries of up to 8 data fields, latitude, longitude, elevation, and
status. The channel feeds support JSON, XML, and CSV formats
for integration into applications. The ThingSpeak application also
features time zone management, read/write API key management
and JavaScript-based charts.

iDigi Platform is a machine-to-machine (M2M) platform-as-
a-service. iDigi Platform lowers the barriers to building secure,
scalable, cost-effective solutions that seamlessly tie together
enterprise applications and device assets. iDigi Platform manages
the communication between enterprise applications and remote
device assets, regardless of location or network. It makes
connecting remote assets easy, providing all of the tools to
connect, manage, store and move information across the near and
far reaches of the enterprise. The platform includes the device
connector software (called iDigi Dia) that simplifies remote
device connectivity and integration. It allows the management
(configure, upgrade, monitor, alarm, analyze) of products
including ZigBee nodes. The application messaging engine
enables broadcast and receipt notification for application-to-
device interaction and confirmation. There are also cache and
permanent storage options available for generation-based storage
and on-demand access to historical device samples.

These services however, focus mostly on the visualization of
the data and usually lack of secure data access and provision of
interfaces for linkage to mobile or external applications for
further processing.

The majority of the aforementioned works is based on
proprietary architectures and communication schemes, which
requires the deployment of specific software components.
Furthermore, these works deal mostly with delivering data to
healthcare applications and do not address issues of data
management and interoperability issues introduced by the
heterogeneous data resources found in modern electronic
healthcare systems. The introduction of Cloud Computing
infrastructure may provide data management and access
functionality overcoming the aforementioned issues as discussed
in previous lines. The concept of utilizing Cloud Computing in
the context of pervasive healthcare information management is
relatively new but is considered to have great potential [5],
motivating us to deal with this important field.

III. THE PROPOSED ARCHITECTURE
This section describes the proposed architecture of the

developed system, which is also illustrated in Figure 2. Wearable
and body sensors collect data regarding the status of the patient,
like heart rate, temperature, blood oxygen saturation, location,
etc. the sensors have appropriate wireless connectivity or can
communicate with other means to devices like a mobile phone.
The latter are responsible for collecting the data acquired by the
sensors and for forwarding them to the Cloud infrastructure.
Simple and lightweight communication protocols (like Web
Service calls) are utilized. Data exchange can be implemented
over HTTP or HTTPS protocol for secure communication.

An appropriate cloud-based web application has been
developed that manages the sensor data on Cloud resources. The

441

system exposes also various functions (such as alert management
and data overview) on mobile devices or third applications (like a
fall detection analysis) through Web Services.

Figure 2. Illustration of the architecture, main components and interaction with
users.

Currently, the most open and interoperable way to provide

access to remote services and/or enable applications to
communicate with each other is to utilize Web Services. The
term Web Services is fairly self-explanatory, it refers to
accessing services over the web. But, there's more to it than that,
the current use of the term refers to the architecture, standards,
technology and business models that make Web Services
possible. According to various available definitions, Web
Services are self-contained, self-describing, modular applications
that can be published, located, and invoked across the Web. Web
Services perform functions, which can be anything from simple
requests to complicated business processes. In other words, Web
Services are interoperable building blocks for constructing
applications. A Web Service is usually identified by a URI
(Unified Recourse Identifier).

A Web Service has WSDL (Web Service Description
Language) definitions. These are computerized descriptions of
what the Web Service can do, where it is located and how it can
be used (referred as ‘consumed’) by the client application. To
communicate with Web Services we need to use SOAP
messages, which are XML based messages transported over
Internet protocols like HTTP, SMTP, and FTP.

Web Services have certain advantages over other

technologies:
• Web Services are platform-independent and language-

independent, since they use standard XML languages.
This means that my client program can be programmed
in C++ and running under Windows, while the Web

Service is programmed in Java and running under
Linux.

• Most Web Services use HTTP for transmitting
messages (such as the service request and response).
This is a major advantage if you want to build an
Internet-scale application, since most of the Internet's
proxies and firewalls won't mess with HTTP traffic
(unlike CORBA, which usually has trouble with
firewalls).

In this work, we have placed all utilized sensors on a sock for

better usability and wearability. The sensors are textile, can be
easily sewed using conductive thread on the fabric and are even
washable. More details on the materials and methods used are
provided in the following section.

IV. THE SYSTEM IN PRACTICE: MODULES AND INITIAL
RESULTS

The platform consists mainly of two parts: the wearable part
the collects and transmits motion and heartbeat data and the
cloud infrastructure for storing the data. For the wearable part we
have used textile accelerometers and a heartbeat chest strap by
Polar ([1]). The latter sensors are connected to a textile version of
the Arduino open hardware microcontroller platform ([6]), called
LilyPad ([2]). Arduino is an open-source single-board
microcontroller.

An Arduino board consists of an 8-bit Atmel
AVR microcontroller with complementary components to
facilitate programming and incorporation into other circuits. An
important aspect of the Arduino is the standard way that
connectors are exposed, allowing the CPU board to be connected
to a variety of interchangeable add-on modules.

At a conceptual level, when using the Arduino software stack,
all boards are programmed over an RS-232 serial connection, but
the way this is implemented varies by hardware version. Serial
Arduino boards contain a simple inverter circuit to convert
between RS-232-level and TTL-level signals. Current Arduino
boards are programmed via USB, implemented using USB-to-
serial adapter chips such as the FTDI FT232. Some variants, such
as the Arduino Mini and the unofficial Boarduino, use a
detachable USB-to-serial adapter board or cable, Bluetooth or
other methods.

The Arduino IDE is a cross-platform application written in
Java, and is derived from the IDE for the Processing
programming language and the Wiring project. It is designed to
introduce programming to artists and other newcomers
unfamiliar with software development. It includes a code editor
with features such as syntax highlighting, brace matching, and
automatic indentation, and is also capable of compiling and
uploading programs to the board with a single click.

The LilyPad Arduino is a microcontroller board designed for
wearables and e-textiles. It can be sewn to fabric and similarly
mounted power supplies, sensors and actuators with conductive
thread.

442

For the connection between the Polar monitor and the
microcontroller, the Polar HeartRate Module has been utilized.
Lilypad collects data through the appropriate embedded software
and transmits them on an Android-based mobile phone through a
Bluetooth interface. An appropriate application has developed for
the Android that collects the data and forwards them to the
Cloud. All textile sensors and the microcontroller have been
sewed on a sock that can be worn easily by the user (see Figure 3).

A. Cloud Computing Utilization
Cloud Computing is a model for enabling convenient, on-

demand network access to a shared group of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction. Resources are available over the network and
accessed through standard mechanisms that promote use by
heterogeneous thin or thick client platforms (e.g., smart phones).
Examples of resources include storage, processing, memory,
network bandwidth, and virtual machines. Given the
characteristics of Cloud Computing and the flexibility of the
services that can be developed, a major benefit is the agility that
improves with users being able to rapidly and inexpensively re-
provision technological infrastructure resources. Device and
location independence enable users to access systems using a
web browser, regardless of their location or what device they are
using (e.g., mobile phones). Multi-tenancy enables sharing of
resources and costs across a large pool of users, thus allowing for
centralization of infrastructure in locations with lower costs.
Reliability improves through the use of multiple redundant sites,
which makes Cloud Computing suitable for business continuity
and disaster recovery. Security typically can be improved, due to
centralization of data and increased availability of security-
focused resources. Sustainability comes about through improved
resource utilization, resulting in more efficient systems.

A number of Cloud Computing platforms are already
available for pervasive management of user data, either free (e.g.,
iCloud [15], ¬Okeanos [18], and DropBox [17]) or commercial
(e.g., GoGrid [14] and Amazon AWS [16]). Most of them,
however, do not provide substantial developer support, to create
custom applications and incorporate Cloud Computing
functionality, apart from Amazon AWS. None of them is
optimized for the provision of services to sensor-based
applications.

B. The Cloud Infrastructure
For the Cloud infrastructure we have utilized the Google App

Engine, as an open source way for hosting online applications on
the Cloud. It is a cloud-computing platform for developing and
hosting web applications in Google-managed data centers.
Google App Engine makes it easy to build an application that
runs reliably, even under heavy load and with large amounts of
data. The main features of the Google App Engine include:

• Dynamic web serving, with full support for common web
technologies

• Persistent storage with queries, sorting and transactions
• Automatic scaling and load balancing of the applications
• APIs for authenticating users and sending email using

Google Accounts
• A fully featured local development environment that

simulates Google App Engine on your computer
• Task queues for performing work outside of the scope of a

web request
• Scheduled tasks for triggering events at specified times and

regular intervals

App Engine's infrastructure removes many of the system
administration and development challenges of building
applications to scale to hundreds of requests per second and
beyond. Google handles deploying code to a cluster, monitoring,
failover, and launching application instances as necessary.

Google App Engine also provides all the appropriate
application programming interfaces (APIs) for developing web
applications that allow users to view visually the collected data
and manage them. It also provides APIs for creating
interoperable mobile applications and ways for integrating
existing applications (e.g., a fall detection platform as in [3], [9] -
[12]).

While other services let users install and configure nearly any
*NIX compatible software, App Engine requires developers to
use only its supported languages, APIs, and frameworks. Current
APIs allow storing and retrieving data from a non-relational
database; making HTTP requests; sending e-mail; manipulating
images; and caching. Most existing Web applications can't run on
App Engine without modification, because they require a
relational database. Per-day and per-minute quotas restrict
bandwidth and CPU use, number of requests served, number of
concurrent requests, and calls to the various APIs, and individual
requests are terminated if they take more than 30 seconds or
return more than 10MB of data.

App Engine offers automatic scaling for web applications - as
the number of requests increases for an application, App Engine
automatically allocates more resources for the web application to
handle the additional demand.

Google App Engine is free up to a certain level of consumed
resources. Fees are charged for additional storage, bandwidth, or
CPU cycles required by the application.

C. The Cloud Application
Google App Engine supports the hosting of applications

developed either in Java, Python and the recently introduced
Google’s programming language called Go. We have selected
Java to develop our application that receives sensor data, stores
them in the Cloud infrastructure provided by Google and also
provides a visualization web application and APIs for
communicating with external applications and mobile devices.
The web interface (see Figure 4) is a J2EE web application that
allows user to create and manage data points related to sensor

443

data. The Google chart visualization API has been utilized in
order to present diagrams with sensor data.

Sensor data are retrieved using a lightweight REST API that
enables direct communication from the Arduino Lilypad
microcontroller when direct wireless connectivity is available.

Here is an example HTTP POST to the Web application
using the REST API:

POST /update HTTP/1.1
Host: cloudsensorsock.appspot.com
Connection: close
X-THINGSPEAKAPIKEY: (Write API Key)
Content-Type: application/x-www-form-urlencoded
Content-Length: (number of characters in message)

secret_key=’key’&sensorX=value&sensorY=value…

The last part of the HTTP Post represents the actual content.
It is composed by a secret key (utilized as an authentication
mechanism) of 16bit long, and the sensor values to be stored into
the database.

The data are stored using the App Engine’s Datastore feature.
The Datastore writes data in objects known as entities, and each
entity has a key that identifies the entity. Entities can belong to
the same entity group, which allows you to perform a single
transaction with multiple entities. Entity groups have a parent
key that identifies the entire entity group. App Engine's
infrastructure takes care of all of the distribution, replication and
load balancing of data.

Figure 3. The CloudSensorSock and the main hardware modules as sewed on the
final prototype.

Figure 4.The web interface hosted on Cloud for viewing sensor data.

D. Initial Evaluation Results
During the initial experimentation with the system, a drop

packet rate of 20-30% has been detected. This fact is either due to
the Arduino low resources for high rate sampling of sensors and
transmitting the data at the same time, or due to network
congestion because of the repetitive REST calls at such a high
sampling rate (i.e. 10 acceleration samples per second). In order
to address this issue, a memory buffer has been introduced on the
Arduino side that collects motion data during a 10 second time
frame and then transmits the latter to the Cloud. This way the
drop rate has been minimized between 2-5%, which is quite
acceptable for the application.

V. CONCLUSIONS
The proposed solution is lightweight, non-invasive and low-

cost (under 200$) and stores all data on the Cloud. Based on
preliminary results the battery can last for more than 24hrs
continuously monitoring and transmitting data regarding user’s
movement and heartbeat rate. Users can visually view acquired
data in charts using developed web applications and receive alerts
on mobile phones. Data can also be utilized by fall detection
platforms and be used for emergency response and treatment.

The presented system is unique as a dedicated solution for
managing patient-related data on the cloud and that utilizes both
open hardware and open software resources for developing the
hardware and software parts of the platform. It allows direct
communication of the sensor devices with the Cloud application
due to the lightweight API used, while it is highly scalable in the
context of data stored, users and sensors supported.

Open issues that need to be addressed are the security of
privacy of data and the energy efficiency of the textile sensors
and microcontroller platform, in order to extend the system
autonomy.

444

ACKNOWLEDGMENT
This work was partially supported by Information Society

Technology program of the European Commission “e-Laboratory
for Interdisciplinary Collaborative Research in Data Mining and
Data-Intensive Sciences (e-LICO)” (IST-2007.4.4-231519).

REFERENCES
[1] Polar, www.polar.com
[2] The Arduino LilyPad, http://arduino.cc/en/Main/ArduinoBoardLilyPad
[3] Charalampos Doukas, Ilias Maglogiannis, “Emergency Fall Incidents

Detection in Assisted Living Environments Utilizing Motion, Sound and
Visual Perceptual Components”, in IEEE Transactions on Information
Technology in Biomedicine, vol. 15, no. 2, pp. 277 – 289, March 2011.

[4] Yuriyama, M.; Kushida, T.; , "Sensor-Cloud Infrastructure - Physical
Sensor Management with Virtualized Sensors on Cloud
Computing," Network-Based Information Systems (NBiS), 2010 13th
International Conference on , vol., no., pp.1-8, 14-16 Sept. 2010.

[5] Ofer Shimrat.: Cloud Computing and Healthcare. San Diego Physician, pp.
26-29 (2009)

[6] The Arduino Open Source microcontroller platform, http://www.arduino.cc
[7] Wearable microcontroller solution, LilyPad Arduino,

http://arduino.cc/en/Main/ArduinoBoardLilyPad
[8] The Android Open Accessory Development Kit,

http://developer.android.com/guide/topics/usb/adk.html
[9] Charalampos Doukas, Ilias Maglogiannis.: An Assistive Environment for

Improving Human Safety Utilizing Advanced Sound and Motion Data

Classification. Accepted for publication in Universal Access in the
Information Society, Springer.

[10] Charalampos Doukas, Ilias Maglogiannis.: Advanced Classification and
Rules-Based Evaluation of Motion, Visual and Biosignal Data for Patient
Fall Incident Detection. Artificial Intelligence Techniques for Pervasive
Computing, International Journal on AI Tools (IJAIT), World Scientific
Press, vol. 19, issue 2, pp. 175-191 (2010)

[11] Charalampos Doukas, Ilias Maglogiannis.: Advanced Patient or Elder Fall
Detection based on Movement and Sound Data. 2nd International
Conference on Pervasive Computing Technologies for Healthcare 2008.

[12] Charalampos Doukas, Ilias Maglogiannis, Philippos Tragkas, Dimitris
Liapis, Gregory Yovanof.: Patient Fall Detection using Support Vector
Machines. In Proc. of the 4th IFIP Conference on Artificial Intelligence
Applications & Innovations (AIAI), Sept. 19-21, Athens, Greece (2007)

[13] George Reese, Cloud Application Architectures: Building Applications and
Infrastructure in the Cloud, O'Reilly Media, Paperback (April 17, 2009),
ISBN: 0596156367.

[14] GoGrid Storage Services, http://www.gogrid.com
[15] iCloud, http://www.icloud
[16] Amazon Web Services (AWS), http://aws.amazon.com/
[17] DropBox, https://www.dropbox.com
[18] ~Okeanos cloud services for the Greek academic community,

http://okeanos.grnet.gr
[19] The Pachube Feed Cloud Service, http://www.pachube.com
[20] Internet of Things – ThingSpeak service, http://www.thingspeak.com
[21] iDigi Device Cloud, http://www.idigi.com
[22] Nimbits Data Logging Cloud Sever, http://www.nimbits.com

445

