MapReduce System over Heterogeneous Mobile
Devices

Peter R. Elespuru, Sagun Shakya, and Shivakant Mishra

Department of Computer Science
University of Colorado, Campus Box 0430
Boulder, CO 80309-0430, USA

Abstract. MapReduce is a distributed processing algorithm which
breaks up large problem sets into small pieces, such that a large cluster
of computers can work on those small pieces in an efficient, timely man-
ner. MapReduce was created and popularized by Google, and is widely
used as a means of processing large amounts of textual data for the
purpose of indexing it for search later on. This paper examines the feasi-
bility of using smart mobile devices in a MapReduce system by exploring
several areas, including quantifying the contribution they make to com-
putation throughput, end-user participation, power consumption, and
security. The proposed MapReduce System over Heterogeneous Mobile
Devices consists of three key components: a server component that co-
ordinates and aggregates results, a mobile device client for iPhone, and
a traditional client for reference and to obtain baseline data. A proto-
typical research implementation demonstrates that it is indeed feasible
to leverage smart mobile devices in heterogeneous MapReduce systems,
provided certain conditions are understood and accepted. MapReduce
systems could see sizable gains of processing throughput by incorporat-
ing as many mobile devices as possible in such a heterogeneous environ-
ment. Considering the massive number of such devices available and in
active use today, this is a reasonably attainable goal and represents an
exciting area of study. This paper introduces relevant background ma-
terial, discusses related work, describes the proposed system, explains
obtained results, and finally, discusses topics for further research in this
area.

Keywords: MapReduce, iPhone, Android, Mobile Platforms, Apache,
Ruby, PHP, jQuery, JavaScript, AJAX.

1 Introduction

Distributed computing has come into its own in the internet age. Such a large
computational pool has given rise to endeavors such as the SETIQHome [I4],
and Folding@Home [7] projects, which both attempt to allow any willing person
to surrender a portion of their desktop computer or laptop to a much larger
computational goal. In the case of SETI@QHome, millions of users participate to
analyze data in search of extra terrestrial signals therein, whereas Folding@Home

S. Lee and P. Narasimhan (Eds.): SEUS 2009, LNCS 5860, pp. 168 2009.
© IFIP International Federation for Information Processing 2009

MapReduce System over Heterogeneous Mobile Devices 169

is a bit more practical. Folding@Home’s goal is ”to understand protein folding,
misfolding, and related diseases”. These systems, along with others which are
mentioned later, are conceptually similar to what we propose, which is a system
that allows people to participate freely in these kinds of massive, computationally
bound problems so that results may be quickly obtained. There are many similar
approaches to solving large computationally intensive problems. One of the most
famous of these is the problem of providing relevant search of the Internet itself
[2]. Google has emerged as the superior provider of that capability, and a portion
of that superiority comes by way of the underlying algorithms in use to make
their process efficient, elegant, and reliable [13], MapReduce [4]. MapReduce is
similar to other mechanisms employing parallel computations, such as parallel
prefix schemes [I2] and scan primitives [3], and is even fairly similar to blocked-
sort based indexing algorithms [10].

We believe there exists a blatant disregard of certain capable devices [11]
in the context of these kinds of distributed systems. Existing implementations
have neglected the mobile device computation pool, and we suspect this is due
to a number of factors which hamper most current mobile devices. It seems
only smart phones are powerful enough, computation wise, for most of these dis-
tributed workloads. There are many additional concerns as well that have been
covered by prior work, such as power usage, security concerns [9] and potential
interference with the device’s intended usage model as a phone. All of these fac-
tors limit the viability of incorporating mobile devices into a distributed system.
It is our belief that despite these limitations, there are solutions that allow the
inclusion of the massive smart phone population [6] into a distributed system.
One logical progression of MapReduce, and other such distributed algorithms,
is toward smart mobile devices primarily because there are so many of them,
and they are largely untapped. Even a small scale incorporation of this class
of device can have an enormous impact on the systems at large and how they
accomplish their goals. Increases in data volume underscores the need for addi-
tional computational power as the world continues to create far more data than
it can realistically and meaningfully process [5]. Using smart mobile devices, in
addition to the more traditional set of servers, is one possible way to increase
computational power for these kinds of systems, and is exactly what we attempt
to prove and quantify in specific cases by leveraging prior work on MapReduce.

This paper explores the feasibility of using smart mobile devices in a MapRe-
duce system by exploring several areas, including quantifying the contribution
they make to overall computation throughput, end-user participation, power con-
sumption, and security. We have implemented and experimented with a proto-
type of a MapReduce system that incorporates three types of devices: a standard
Linux server, an iPhone, and an iPhone simulator. Preliminary results from our
performance measurements support our claim that mobile devices can indeed
contribute positively in a large heterogenous MapReduce system, as well as sim-
ilar systems. Given that the number of smart phones is clearly on the rise, there
is immense potential in using them to build computationally-intensive parallel
processing applications.

170 P.R. Elespuru, S. Shakya, and S. Mishra

The rest of the paper is organized as follows. In Section [2, we briefly outline
the MapReduce system. Section [3] touches on similar endeavors. In Section [
we describe the design of our system, and in Section [}l we describe the imple-
mentation details. In Section [7 we discuss experimental results measured from
our prototype implementation. Next, we discuss some optimizations in Section
and then finally conclude our paper in Section

2 MapReduce

MapReduce [] is an increasingly popular programming paradigm for distributed
data processing, above and beyond merely indexing text. At the highest archi-
tectural level, MapReduce is comprised of a few critical pieces and processes. If
you have a large collection of documents or text, that corpus must be broken into
manageable pieces, called splits. Commonly, a split is one line of a document,
which is the model we follow as well. Once split, a master node must assign
splits to workers who then process each piece, store some aspect of it locally,
but ultimately return it to the master node or something else for reduction. The
reduction then typically partitions the results for faster usage, accounting for
statistics, document identification and so on.

We describe the MapReduce process in three phases: Map, Emit, and Reduce
(See Figure[Il). In our system, the map phase is responsible for taking a large
data set, and chunking it into splits. The Emit phase is entails the distributed
processing nodes obtaining and work on the splits, and returning a processed
result to another entity, the master node or job server that coordinates every-
thing. Unlike most MapReduce implementations, the nature of mobile devices
precludes us from using anything other than network communications to read
and write data, as well as assign jobs and process them. The final phase is Re-
duce, which in our case further minimizes the received results into a unique set
of data that ultimately gets stored in a database for simplicity.

(3} Reduce
{Complete)

Compute Node

o

For example, given a large
set of plain text files over (1) Map (Job Server, Dsta Server)
by keyword, a MapReduce
system begins with a master
node that takes all those text
line, and parcels them out to Qﬂ@/
participants. The participat- camputetode g
ing computation nodes find
. Compute Node Q
each line of text they were
given, and emit that set back
to the master node. The mas- Fig. 1. High Level Map Reduce Explanation

which you may wish to search
. (2) Compute/Emi
. . Map
files, splits them up line by
the unique set of keywords in
ter node, after getting all of

the pieces back, aggregates all

MapReduce System over Heterogeneous Mobile Devices 171

of the responses to determine the overall unique set of keywords for that whole
set of data, and stores the result in a database, file, or some other persistent stor-
age medium. It is at this point the data is analyzed and searched whatever way
desired from within our web application. One of the biggest strengths of MapRe-
duce lies in its inherent distribution of phases, which results in an extremely high
degree of reliable parallelism when implemented properly. MapReduce is both
fault and slow-response tolerant, which are very desirable characteristics in any
large distributed system.

3 Related Work

There have been a number of other explorations of heterogeneous MapReduce
implementations and their performance [I5], as well as some more unique ex-
pansions on the idea such as using JavaScript in an entirely client side browser
processing framework [8] for MapReduce. None of this related work however
focuses on using a mobile device pool as a major computation component. To
complement these related works, we focus on mobile devices, and in particular,
on the specifics of heterogeneity in the context of mobile devices mixed with
more traditional computation resources.

4 The Heterogeneous Mobile Device MapReduce System

Our problem encompasses
three areas: 1) Provide a
mechanism for interested par-
ties to participate in a smart
phone distributed computa-
tional system, and ensure
they are aware of the poten-
tial side effects; 2) Make use
of this opt-in device pool to
compute something and pro-
vide aggregate results; and 3)
Provide meaningful results to

(1) upload/stage (2) do work (3) use results

view
results

Network

processing

interested parties, and sum- '
marize them in a timely fash- I Server
ion, considering the reliability (1) splt, stage for

J

of devices on wireless and cel-
lular networks. Our solution I Database
is The Heterogeneous Mobile
Device MapReduce System.

There are several key com- Fig. 2. System Summary
ponents in our system: 1) A
server which acts as the master node and coordinator for MapReduce process-
ing; 2) Server side client code used to provide faster more powerful client pro-
cessing in conjunction with mobile devices, 3) The mobile device client which

172 P.R. Elespuru, S. Shakya, and S. Mishra

implements MapReduce code to get, work on, and emit results of data from the
master node; and finally 4) The BUI, or browser user interface (web application),
which lets the results be searched (See Figure [2)).

The MapReduce master node server leverages the Apache [IT] web server
for HTTP. To provide the MapReduce stack, we actually have two different
implementations of our master node/job server code, one in Ruby [18] and one
in PHP [19]. However, we primarily used the PHP variant during our testing.
Once the master node has been seeded with some content to process, it is told
to begin accepting participant connections. Once the process begins, clients of
any type, mobile or traditional, may connect, get work, compute and return
results. During processing, clients, whether they are mobile devices or processes
running on a powerful server, can continually request work and compute results
until nothing is left to do for a given collection. In this case, the server still
responds to requests, but does not return work units since the cycle is complete

(See Figure B)).

After all the data has been
processed, clients can still re- m
quest work, but obviously are

not furnished anything. At Process and
this point, our web appli- return result
cation front end is used to
search for keywords through-

out the documents which - f_GE-ﬁTo:k_J

. Participant(s)
were just processed. The web

application was implemented Process and
in PHP and makes use of retum resul
the jQuery [20] JavaScript
framework to provide asyn-
chronous (AJAX) page up-
dates as workers complete
units, in real-time. More can be seen in Figure 2l Further, Figure [illustrates
exactly what the entire process looks like.

f (3) Loop while work exists
(1)

GET /work do work
i wark "unit

Server

Fig. 3. Client Flow

POST fresult

returned
Mobile Mobi Ie

Device(s) Job Server(s) Devicel(s) Job Server(s)
Result Aggregator(s) Result Aggregator(s)

Fig. 4. Work Loop

MapReduce System over Heterogeneous Mobile Devices 173

5 System Development

There are a few additional aspects of developing this system that warrant dis-
cussion. Our experience with the development environment, and lessons learned
are worth sharing as well.

5.1 Mobile Client Application Development Experience

We developed our mobile client application on the iPhone OS platform using the
iPhone SDK, Cocoa Touch framework and Objective-C programming language.
As part of the iPhone SDK, the XCode development environment was used for
project management, source code editing and debugging. To run and test the
MapReduce mobile client, we used the iPhone simulator in addition to actual
devices. Apple’s Interface Builder provided a drag and drop tool to develop the
user interface very rapidly. All in all the experience was extremely positive [10].

5.2 Event Driven Interruption on iPhone

Event handling on the iPhone client proved rather interesting, due largely to
the fact that certain events can override an application and take control of the
device against an application’s will. While the iPhone is processing data, other
events like an incoming phone call, a SMS message or a calendar alert event can
take control of the device. In the case of an incoming phone call, the application
is paused. Once the user hangs up, the iPhone client is relaunched by iPhone
OS, but it is up to the application to maintain state. While on the call, if the
user goes back to the home screen or launches another application, the phone
client does not resume, and again the application is responsible for maintaining
state. When an SMS message or calendar event occurs the computation continues
in the background unless the user clicks on the message or views the calendar
dialog. In the latter case the action is same as when there is phone call. These
events, which are entirely out of the control of the application, pose an interesting
challenge and must be addressed during development.

6 End-User Participation

Participants are largely in two different camps, captive and voluntary. For exam-
ple, if a system such as ours was deployed in a large corporation where most employ-
ees have company provided mobile devices, that company could require employees
to allow their devices to participate in the system. These are what we consider cap-
tive users. Normal users on the other hand are true volunteers, and participate for
different reasons. The key is to come up with methods which engage both of these
types of users so that the overall experience is positive for everyone involved.
There are a large number of possible solutions to entice both types of users.
Both captive and voluntary users could be offered prizes for participation, or
perhaps simply receive accolades for being the participant with the most com-
puted work units. This is similar to what both SETTQ@Home and Folding@Home

174 P.R. Elespuru, S. Shakya, and S. Mishra

do, and has proven effective. The sense of competition and participation drives
people to team up with the hopes of being the most productive participant. This

topic is discussed further later on as well.

7 Results

Our results were very in-
teresting. We created several
data sets of varying sizes
composed of randomly gen-
erated text files of varying
sizes. Data set sizes overall
ranged from 5 MB to al-
most 50 MB. Within those
data sets, each individual text
document ranged in size as
well, from a few kilobytes
up to roughly 64 kilobytes
each. Processing throughput
was largely consistent inde-
pendent of both the overall
data set size and the distribu-

70.000

60.000

50.000

40.000

30.000

20000

Time(sec)

10.000

0000 W
000 050 100 150 200 250 300 350 400 450 500

Per Client
v B simulatorstats
v ¥ Perl Stats
=3 iphone stats
¥
HE =W L]

ThroughtputMiB/sec)

Fig. 5. Client Type Comparison

tion of included document sizes.

FigureBlillustrates exactly what we expected would be the case. The simulated
iPhone clients were the fastest, followed by the traditional perl clients, and lastly
the real iPhone clients, which processed data at the slowest rate of all clients tested.
The reason this behavior was expected is that the simulated iPhone clients ran on
the same machine as the server software during our tests. The perl clients were
executed on remote Linux machines. Interestingly though, mixing and matching
client types didn’t seem to impact the contribution of any one particular client type.
Perl clients processed data at roughly the same rate independent of whether a given
test included only perl clients, as did simulated and real iPhone clients.

Figure [6 presents another
visualization that clearly
shows there was a fair amount
of variation in the different
client types. Again, the simu-
lated iPhone clients were able
to process the most data, pri-
marily because they were run
on the same machine as the
server component. The tradi-
tional perl clients were not far
behind, and the real iPhone
clients were the laggards of
the bunch.

25

Throughtputs(MiB/sec)

Throughputs
M sim
M peri
Oiphone
MIN MAX

Fig. 6. Min Max Average

MapReduce System over Heterogeneous Mobile Devices 175

7.1 Interpretation of

the Results Projection

1400
Simulated iPhone clients pro-
cessed an average of 1.64
MB/sec, Perl clients pro- 1000
cessed an average of 1.29 800 “iphone only
MB/sec, and finally, real
iPhone clients processed an
average of 0.12 MB/sec. The
simulated iPhone clients can
be thought of as another form 0
. 50 500 1000 5000 10000

of local client, and they help No. Clients
highlight the difference and
overhead in the wireless con- Fig. 7. Projected System Throughput
nection and processing capa-
bilities of the real phones. These results and averages were consistent across a
variety of data sets, both in terms of size and textual content. Our results show
that very consistently, the iPhones were capable of performing at roughly an
order of magnitude slower than the traditional clients, which is a very exciting
result. It implies that a large portion of processing could be moved to these
kinds of mobile clients, if enough exist at a given time to perform the necessary
work load. For example, a company could purchase one server to operate as the
master node, and farm all of the processing to mobile devices within their own
company. Provided they have on the order of one hundred or more employees
with such devices, which is a very likely scenario. This also suggests that this
system could be particularly useful for non-time sensitive computations. For ex-
ample, if a company had a large set of text documents it needed processed, it
could install a client on its employees mobile devices. Those devices in turn could
connect and work on the data set over a long period of time, so long as they are
capable of processing data faster than it is being created. Considering how easy
it is to quantify the contribution each device type is capable of making, such a
system could very easily monitor its own progress. In summary, there are a large
number of problems to which this system is a viable and exciting solution.

We had a limited number of actual devices to test with (3 to be specific) but
all performed consistently across all tests and data sets, so we feel comfortable
projecting forward to estimate the impact of even more devices. As you in-
crease the number of actual devices, throughput should grow similarly to what
is represented in Figure [l If a system utilized 500 mobile devices, we expect
that system would be capable of processing close to 60 MB/sec of textual data.
Similarly, 10000 devices would likely yield the ability to process 1,200 MB /sec
(1.2 GB/sec!) of data. This certainly suggests our system warrants further ex-
ploration, but points to the fact that other components of the system would
definitely start becoming bottlenecks. For example, at those rates, it would take
massive network bandwidth to even support the data transfer necessary for the
processing to take place.

600

MiB/sec

400

200

176 P.R. Elespuru, S. Shakya, and S. Mishra

8 Optimizations

There are a few areas where certain aspects of this system could be improved
to provide a more automatic and ideal experience. It is particularly important
that the end user experience be as automatic and elegant as possible.

8.1 Automatic Discovery

Currently, the client needs to know the IP address and port number of the server
in order to participate. This requires prior knowledge of the server address infor-
mation which may be a barrier to entry for our implementation of MapReduce.
In order to allow auto-discovery, we can have Bonjour (aka mDNS), a service
discovery protocol, running on the server and clients. Bonjour automatically
broadcasts the service being offered for use. With Bonjour enabled on the server
and clients a WiFi network is not an absolute requirement. However, there are
some limitations of using Bonjour as service discovery protocol. Namely, all de-
vices must be on the same subnet of the same local area network, which imposes
maximum client limits that would minimize the viability of our system in those
situations.

8.2 Device Specific Scaling

An important goal of this system is that it can be used on heterogeneous mobile
devices. As such, not all mobile devices perform the same or have the same power
usage characteristics. The system should ideally have the ability to know about
each type of device it can run on to maintain a profile of sorts. The purpose
is to allow the system to optimize itself. For example, on a Google Android
device it would have one profile, and on an iPhone it would have another, and in
each case the client application would taylor itself to the environment on which
it is running. The ultimate goal is to maximize performance relative to power
consumption.

8.3 Other Client Types

In addition to smart mobile devices of various types, and traditional clients, there
are other kinds of clients which could be used in conjunction with the other
two varieties. In particular, a JavaScript client would allow any web browser
to connect and participate [§] in the system. The combination of these three
types of clients would be formidable indeed, and form a potentially massive
computational system.

9 Additional Considerations

There are a number of areas we did not explore as part of our implementa-
tion. However, the following topics would need to be considered in an actual
production implementation.

MapReduce System over Heterogeneous Mobile Devices 177

9.1 Security

Security is a multi-faceted topic in this context. Our primary concerns are two
fold, first can the client implementation impact security of end-user’s mobile
devices, or in any way be used to compromise their devices. Second, is the data
mobile devices receive in the course of participating information that would be
risky to have out in the open, were a device compromised by some other means.
A production implementation would need to ensure that even if a mobile device
is compromised by some other means, any data associated with this processing
system is inaccessible. One way to accomplish this might be to improve the client
to store its local results in encrypted form, and transmit them via HTTPS to
ensure the communication channel also minimizes the opportunity for compro-
mise. Another consideration that must be made is whether to process sensitive
information in the first place. In fact, certain regulations may even prevent it
altogether.

9.2 Power Usage

Power usage is a very critical topic when considering a system such as this. The
additional load placed on mobile devices will certainly draw more power, which
is potentially even disastrous in some situations. For example, if the mobile
device is an emergency phone, running down the battery to participate in a
computation cycle is a very bad idea. Ultimately, power usage must be considered
when deciding which devices to allow in the mix. There are a number of things
which may be done to account for these concerns, such as adding code to the
mobile client that would prevent it from participating if a certain power level has
been passed. This may prove particularly tricky however, since not all mobile
platforms include API calls that allow an application to probe for that kind of low
level system information. A balance must be reached, and it is the responsibility
of the client application implementation to ensure that balance is maintained.

9.3 Participation Incentives

Regardless of whether a participating end user is a captive corporate user or a
truly voluntary end user, there should be an incentive structure that rewards par-
ticipation in a manner that benefits all parties. There are several incentives that
could be considered. One potential way would be to offer some kind of reward
for participating, based on the number of work units completed for example.
This would entice users to participate even more. A community or marketplace
could even be set up around this concept. For example, companies could post
documents they want processed and offer to pay some amount per work unit
completed. Users could agree to participate for a given company, and allow their
device to churn out results as quickly as possible. This would have to be a small
amount of money per work unit to be viable, perhaps a few cents each. Such
a marketplace could easily become quite large and be very beneficial to all in-
volved. Amazon has a similar concept in place with its Mechanical Turk, that

178 P.R. Elespuru, S. Shakya, and S. Mishra

allows people to post work units which other people then work on for a small
sum of money [I]. Another possibility would be to bundle the processing into
applications where it runs in the background, such as a music player, so that
work goes on continually while the media player is playing music. The incentive
could be a discount of a few cents when purchasing songs through that appli-
cation, relative to some number of successfully completed jobs. The possibilities
are NUMerous.

10 Conclusions

As is clearly evident in our results, mobile devices can certainly contribute pos-
itively in a large heterogenous MapReduce system. The typical increase from
even a few tens of mobile devices is substantial, and will only increase as more
and more mobile devices participate. Assuming a good server implementation
exists, the mobile client contribution should increase with each new mobile de-
vice added. It is expected there would be a point of diminishing returns relative
to network communication overhead, but the potential benefit is still very real.
If non-captive user bases could be properly motivated, there is a large poten-
tial here to process massive amounts of data for a wide range of uses. This is
conceptually similar to existing cloud computing, but where computation and
storage resources happen to be mobile devices, or they interoperate between the
traditional cloud and a new set of mobile cloud resources.

References

1. Amazon, Inc. Amazon Mechanical Turk, https://www.mturk.com/mturk/welcome
2. Barroso, L.: Web Search for a Planet: The Google Cluster Architecture. IEEE 23(2)
(March 2003)
3. Blelloch, G.E.: Scans as Primitive Parallel Operations. IEEE Transactions on Com-
puters 38(11) (November 1989)
4. Dean, J., Ghemawat, J.: Map Reduce, Simplied Data Processing On Large Clusters.
ACM, New York (2004)
5. Dubey, P.: Recognition, Mining, and Synthesis Moves Computers to the Era of
Tera. Technology@Intel Magazine (February 2005)
6. Egha, G.: Worldwide Smartphone Sales Analysis, UK (February 2008)
7. Folding@Home. Folding@Home project, http://folding.stanford.edu/
8. Grigorik, L.: Collaborative MapReduce in the Browser (2008)
9. Hunkins, J.: Will Smartphones be the Next Security Challenge (October 2008)
0. iPhone Developer Program. iphone development,
http://developer.apple.com/iphone/program/develop.html
11. Krazit, T.: Smartphones Will Soon Turn Computing on its Head, CNet (March
2008)
12. Ladner, R.E., Fischer, M.J.: Parallel Prex Computation. Journal of the ACM 27(4)
(October 1980)
13. Mitra, S.: Robust System Design with Built-in Soft-Error Resilience. IEEE 38(2)
(February 2005)

https://www.mturk.com/mturk/welcome
http://folding.stanford.edu/
http://developer.apple.com/iphone/program/develop.html

14.
15.

16.

17.
18.
19.
20.

MapReduce System over Heterogeneous Mobile Devices 179

SETI@Home. SETI@QHome Project, http://setiathome.ssl.berkeley.edu/
Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapRe-
duce Performance in Heterogeneous Environments. In: OSDI (2008)

Manning, C., Prabhakar, R., Hinrich, S.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

Apache Web Server. Apache, http://httpd.apache.org/

Ruby Programming Language Ruby, http://www.ruby-lang.org/en/

PHP Programming Language PHP, http://www.php.net/

jQuery JavaScript Framework. jQuery, http://jquery.com/

http://setiathome.ssl.berkeley.edu/
http://httpd.apache.org/
http://www.ruby-lang.org/en/
http://www.php.net/
http://jquery.com/

	MapReduce System over Heterogeneous Mobile Devices
	Introduction
	MapReduce
	Related Work
	The Heterogeneous Mobile Device MapReduce System
	System Development
	Mobile Client Application Development Experience
	Event Driven Interruption on iPhone

	End-User Participation
	Results
	Interpretation of the Results

	Optimizations
	Automatic Discovery
	Device Specific Scaling
	Other Client Types

	Additional Considerations
	Security
	Power Usage
	Participation Incentives

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

