
On-Chip Control Flow Integrity Check for
Real Time Embedded Systems
Fardin Abdi Taghi Abad∗, Joel Van Der Woude∗, Yi Lu∗, Stanley Bak∗

Marco Caccamo∗, Lui Sha∗ , Renato Mancuso∗, Sibin Mohan†

∗Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Information Trust Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Email: {abditag2, jvande31, yilu1, sbak2, mcaccamo, lrs, rmancus2, sibin}@ILLINOIS.EDU

Abstract—Modern industrial plants, vehicles and other cyber-
physical systems are increasingly being built as an aggregation of
embedded platforms. Together with the soaring number of such
systems and the current trends of increased connectivity, new security
concerns are emerging. Classic approaches to security are not often
suitable for embedded platforms.

In this paper we propose a hardware based approach for checking
the integrity of code flow of real-time tasks whit precisely predictable
overheads that do not affect the critical path. Specifically, we employ
a hardware module to perform control flow graph (CFG) validation
at run-time of real-time component. For this purpose, we developed a
binary-based, CFG generation tool. In addition, we also present our
implementation of a CFG integrity checking module. The proposed
approach is aimed at improving real-time systems security.

I. INTRODUCTION

Many safety-critical systems such as advanced automo-
tive/avionics systems, medical equipment, transportation, power
plants and industrial automation systems employ embedded real-
time components. These appear in the roles of controllers, physical
sensors or other tasks, depending on the actual system. These
components are usually responsible for the most critical tasks
in the system. In most cases, the proper functioning of such
components is of the utmost importance; otherwise, they could
lead to loss of life and/or injury to human beings and also result
in significant damage to the system(s) and/or environment.

In the past embedded systems were less vulnerable to malicious
activities when they were not connected to the network [34].
However, recently such systems are more interconnected or even
controlled over the internet. Moreover, there is more monetary and
adversarial motivations for malicious activities in recent times.
Examples of such malicious activities include: the W32.Stuxnet
worm that highlighted the possibility and effectiveness of an attack
on a nations critical infrastructure [29], malicious code injection
into the telematics units of modern automobiles [7], [16] and

The material presented in this paper is based upon work supported by National
Science Foundation (NSF) under grant numbers CNS-1035736 and CNS-1219064
and the Department of Energy under Award Number DEOE0000097. This report
was prepared as an account of work sponsored by an agency of the United States
Government (e.g. NSF, DOE). Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

attacks on UAVs [25] among others. Such attacks motivate a closer
inspection of the security of industrial control systems everywhere.

While general-purpose processors are opening doors for new
defensive techniques through increased parallelism, clock speed
and memory size, many real-time embedded systems are con-
strained by timing requirements and small onboard memory sizes.
Moreover, schedulabiliy of hard real-time tasks needs to be guaran-
teed, even with the additional overheads incurred by (any) security
techniques. Given their tight constraints, traditional techniques to
prevent against cyber attacks are not necessarily feasible; Many
software based security mechanisms developed for general purpose
systems create large workloads that are difficult to schedule.
Moreover, they either require components that do not necessary
exist in simple embedded system (such as trusted operating system
or memory management units) or the overheads imposed by
them is not predictable enough for providing guarantees that are
necessary for such systems. New defenses that are designed with
the limitations of embedded/realtime systems in mind are required
to adequately protect these systems.

In this paper we present a hardware based security approach
with predictable overhead for embedded real-time systems. We
check for the control flow integrity of the real-time task. We pro-
pose adding an on-chip control flow monitoring module (OCFMM)
to the processor core with its own isolated memory unit. OCFMM
has direct hooks into the processor that enable it to track the control
flow of the program. we also present methods for (a) determining
the control flow graph (CFG) of tasks that execute on the processor
and (b) loading them on to the memory units in advance. OCFMM
monitors the run-time control flow and compares it to the stored
CFG. Hardware implementation of OCFMM and the isolation of
its memory unit from the rest of system eliminates the possibility
of any attack on the OCFMM unit itself. We also take advantage
of a hardware stack mechanism to keep track of call and return
addresses (similar to SmashGuard [21]). In this paper, we also
present our tool for generating the control flow graph from a binary
without the need to modify the binary or access to source code.

Our proposed technique effective and applicable to embedded
real-time systems for three main reasons. First, software updates of
these types of systems is rare. In fact, their software is updated only
when the system administrator needs to change the application of
the system or when some system settings are modified. Therefore,
any overheads due to the generation a new CFG profile of the
program and loading it into the OCFMM is acceptable. Second, the
overhead incurred by OCFMM is finite and predictable. Therefore,
it is well-suited for hard real-time systems in need of formal ver-

26978-1-4799-0798-4/13/$31.00 ©2013 IEEE

ification. Finally, our technique does not require components that
may not exist in simple embedded systems (e.g., trusted operating
systems or memory management units). The security guarantees
and predictability provided by our OFCMM technique, make this
technique very effective for embedded real-time components in
safety-critical systems. .

In the following sections first, we introduce different types of
attacks, then describe the attack model and our assumptions. In
section III-C, the approach for generating control flow graphs and
also OCFMM design and its detection algorithm is described. In
section IV, some experiments in addition to performance analysis
is presented. Section VI talks about related work and the last
section concludes the paper.

II. ATTACKS

In this section we provide an overview on the popular types
of attacks on embedded systems that modify control flow of the
program. Monitoring the control flow of the program would help
us detect these attacks.

A. Buffer Overflow

The CWE/SANS list of the top 25 most dangerous programming
errors lists buffer overflows as the third most dangerous vulner-
ability [3]. A buffer overflow is an attack that exploits a lack of
sanitization in performing I/O operations which involve inbound
data transfers. Specifically, when the bounds of incoming data are
not checked properly, an attacker is able to write more data than
intended, overwriting nearby data and compromising the code logic
[20]. Buffer overflow vulnerabilities can affect different regions of
a program’s memory, such as stack or heap.

Exploiting a stack overflow, the attacker is able to overwrite
the return address of the current stack frame. In this way, it
is possible to redirect the execution to an almost arbitrary code
block. The other common case of a buffer overflow is called heap
overflow. In a way that is similar to what explained above, heap
overflow vulnerabilities allow an attacker to write data on the
heap exceeding the boundaries of a buffer. The same techniques
employed in a stack overflow attack can be set in place.

It should be noted that in both stack overflow and heap overflow
attacks, another way to redirect the execution flow is to overwrite
a control variable, such as a branching condition. In this way,
the attacker is able to alter the normal behavior of the code flow,
for instance driving the execution into unauthorized sequences of
instructions.

B. Return-into-libc

Return-into-libc is an attack which leverages on a buffer over-
flow in order to direct execution towards a libc function that
has been included in the compiled binary, thereby requiring no
shellcode to be injected. For instance, a call to the library function
system() can be forged, passing /bin/sh as an argument [2] and
leading to the execution of a command line interpreter. Return-into-
libc is a particularly powerful attack because it is able to bypass
protection measures that disable the execution of code from stack
or heap regions: one of the most common defenses against buffer
overflows attacks [1].

C. Return-oriented-programming

Like the return-to-libc, return-oriented-programming is a more
general technique that allows the execution of malicious code
bypassing memory protection defenses. As explained in [23], once

an attacker is able to overwrite a function return address, he
can chain the execution of small preexisting code fragments to
produce arbitrary program behavior. A known technique involves
searching for instructions that alter the control flow, typically return
instruction, and then scanning preceding bytes for instructions that
can be used for the attack. Such instruction snippets are called
“gadgets” and are chained together via a buffer overflow exploit.
Specifically, the vulnerable stack is injected with the sequence of
addresses of the employed gadgets, making sure that the address
of the first gadget overwrites the original return address. Once the
first gadget is executed, the trailing return instruction determines
the next on the stack to be executed, thus giving control to the
second gadget. Similarly, subsequent gadgets are executed and the
desired behavior is produced. According to [23], any sufficiently
large quantity of code can contain a set of gadgets that are Turing-
complete, providing full functionality.

D. Code injection

The term “code injection” refers to a technique that leverages
on the control over an existing process in a system (e.g. an
already compromised one) to spread the attack to other software
components of the same system. Usually, the aim is to inject
code into a process with high privileges from a low-privileged
one. As explained in [35] this type of attack can be carried on
using APIs of the NTCreateThread() family on Windows
platforms. In this way, the attacker is able to execute any function
which exists in the context of the targeted executable. On Linux
platforms, the ptrace() system call can be used to manipulate
the execution flow of the attached process. Additionally, on both
Windows and Linux platforms, code injection can be performed
leveraging on APIs that allow programs to load shared objects into
running processes. DLL (SO respectively) injection attacks can
be performed against Windows (Linux respectively) platforms in
order to gain full control of open file descriptors, intercepting I/O
and executing functions within the context of the victim process
[35].

III. CONTROL FLOW MONITORING

In this section we detail the proposed methodology. The as-
sumptions under which we are able to perform threat detection
are presented. Furthermore, a detailed explanation of how CFG
run-time checking can be effective against the attack techniques
presented in the previous section is provided.

A. Trusted Initialization

The proposed technique requires the system to be initialized
safely. As explained in section III-C, together with the standard
system bootstrap procedure, a CFG needs to be correctly produced
from the binary and loaded into the OCFMM memory.

It is important to underline that the assumption of a trusted
initialization sequence is realistic for embedded systems. Firstly
because the supply chain for industrial controllers and systems
is generally supervised. Second, because it is often the case that
before such systems become operative, physical access to them is
restricted to trusted personnel only. Third, because typically net-
work connections are established only after the bootstrap sequence
is completed. Once the initialization sequence completes and the
proposed detection module is booted, the system can establish
connections to untrusted networks and become fully operational.
Since a trusted initialization is performed at system boot, there
is no need to secure bootstrap code executed before the critical

27

components are loaded and the detection module starts. Instead,
intrusion detection and execution flow inspection can be performed
after the initialization phase is completed.

B. Attack Model

As previously mentioned, we do not consider attacks which
require physical access to the targeted system. The reason is
twofold. First, because our focus is on embedded devices, with
particular attention to industrial plant control systems, whose phys-
ical access is generally restricted. Moreover, assuming untrusted
physical access to this class of systems raises a whole gambit of
options to maliciously impact the functionality.

On the other hand, we do assume that the attacker has networked
access to the system, by means that an interface is available
through a remote connection or indirect channels. For example,
it includes attacks that are set in place infecting USB devices
that are connected at a later stage to the targeted system or to
an intermediate machine that is networked with the fianal target.
We also assume that the industrial control system has zero-day
vulnerabilities, unknown to the administration personnel, which
could be leveraged by an attacker. This is a realistic assumption
given the lifecycle of many embedded devices, as they can be run-
ning legacy code for decades without being updated or rewritten.
Furthermore, we are following an open design policy, by means
that we assume an attacker to have access to the source code of
the program on the controller and a complete knowledge of the
hardware design.

In this paper we are only targeting the attacks that are altering
the control flow graph. However, our technique does not offer
sufficient protection from attacks that modify the data values of the
victim process without diverting its behavior from a legal sequence
of execution blocks. These attacks can harm system in two main
ways. First, attackers can overwrite the value of function pointers,
redirecting execution to an unauthorized code fragment. In order to
address this issue, it is enough to prevent the executable code from
using pointer-based function calls. This is a reasonable assumption
for embedded real-time controllers, whose code exhibits a high
level of determinism. Second, attackers can manipulate the values
that affect the physical behavior of the considered system. For
instance, tampering the variable encoding the target temperature
in a thermal controller, would impact the safety of the physical
plant. In order to prevent such attacks, Simplex [22] can be used
as an additional safety envelope for the output channels.

C. Architecture

The majority of the attacks discussed in Section II share a
fundamental aim: arbitrary code execution. Thereby, it follows
that by monitoring the execution flow of a program, and cross-
validating it against the expected CFG, we are able to detect attacks
that maliciously affect the execution flow. We refer back to [5] for
the formal analysis of this method.

Figure 1 presents the high-level architecture. The OCFMM is
placed on the same chip with the processor and can directly
access program counter (PC) and instruction register (IR) with the
provided hooks into the processor. Accessing PC and IR does not
require any additional operation to be executed on the processor.

Generating the control flow graph of the executable program we
want to protect is the first step of our technique. We first describe
the control flow graph generation procedure and then detail the
OCFMM.

Fig. 1. High level architecture of a processor with OCFMM

D. Control Flow Graph Extraction

We have developed a tool to generate the CFG from compiled
binary. This approach guarantees backward compatibility with
legacy code bases, without the need to rewrite existing executables
or having access to their source code. It is also flexible across
different architectures with only minor changes required in order
to adapt the CFG generation procedure to the targeted ISA.

We define a “block” as the basic unit of a control flow.
Each block is defined as the longest sequence of instructions
contained between two control flow statements, i.e. between two
statements encoding any variation of a branch, jump, call, or
return instruction. Each block is described using three pieces of
information: a unique block ID; the address of the first instruction
in the block; and its size (number of instructions in the block).

First, during an initialization step, we scan the whole binary
executable to identify blocks, according to the mentioned criteria,
and to assign unique IDs. Next, starting from the block which
contains the entry point of the executable under analysis, it is
possible to incrementally build the control flow graph. Specifically,
for the block considered at each iteration, we need to know
which blocks can be reached next. For conditional jump/branch
instructions, we identify a Yes-Block and a No-Block, as the
blocks which execute after the current block if the condition of the
jump/branch is satisfied or not, respectively. It is enough to store
the IDs of said destination blocks in the final CFG. In general, Yes-
Blocks can be directly extracted from the branching instruction
itself, while No-Blocks start with the subsequent instruction, or
vice versa1. For unconditional jumps and branches, as well as
direct function calls, there is no distinction between Yes-Blocks
and No-Blocks, so that just the ID of the target block is stored.

For return instructions, there is no need to store any Yes/No-
Block because the execution return address depends on the mem-
ory offset of the corresponding call instruction. We developed
a hardware stack in order to handle call/return instructions as
explained in the next subsection.

The control flow of a program can be seen as a graph G =
(V,E), where each vertex v ∈ V represents a block and each
edge e ∈ E represents a valid control flow between two blocks.
An example of control flow graph for the code shown in Figure 2a
is reported in Figure 2b.

Despite the existence of loops in the graph, we can use a graph
traversal algorithms to get the control flow information of each
block. In this paper, we use Depth First Search (DFS), starting at
the main function. Therefore, this will be the root of the spanning
tree, and will be called “main” block.

As previously mentioned, the first step to generate the CFG is to

1The arrangement of blocks after branching instructions depends on the compiler
used to generate the binary file. Branch prediction strategies may vary how a
conditional jump is encoded from the source code.

28

Fig. 2. Assembly code of a sample program (a) and resulting control flow graph
(b).

parse the disassembled code into distinct blocks and to assign each
block a unique ID. Once this step is done, our algorithm proceeds
from the main block. The algorithm which generates the complete
control flow graph in a recursive manner is described in figure
III-E. The main block has ID = 1, so that the CFG generation
begins by calling recursive_CFG(1).

Algorithm 1 recursive CFG(current block)
if current block.processed == true then

return
else if current block.last inst is unconditional jump or branch
or direct call then

current block.processed = true
current block.Yes-Block = target block;
current block.No-Block = target block;
recursive CFG(target block);

else if current block.last inst is Conditional jump or branch
then

current block.processed = true
current block.Yes-Block = target Block ;
current block.No-Block = current block + 1 ;
recursive CFG(current block.Yes-Block);
recursive CFG(current block.No-Block) ;

else if current block.last inst is return then
current block.processed = true
current block.Yes-Block = 0 ;
current block.No-Block = 0 ;

end if
return

Finally each block profile contains starting address of the block,
IDs of Yes-block and No-Block and block size. Conversely, For
indirect calls or jumps (as they can result from a function pointer
or a jump table) we must enumerate all the possible instruction
targets. This enumeration requires a more in-depth analysis and it
is currently left as a future work. A naı̈ve implementation would be
allowing an indirect call or jump to any target memory address.
However, this would determine security issues, e.g. exposing to
return-to-libc attacks.

E. Detection Mechanism

At a high-level description, the detection module is in charge of
comparing the control flow of the running program with the CFG
loaded into the dedicated memory at boot time. If a mismatch
occurs, it raises a detection flag.

In the proposed design shown in Figure 1, the OCFMM storage
unit is where the CFG profile of the program is loaded. When
execution begins, the profile for the main block (with ID equal to
1) is fetched. Thus, what are the next valid states becomes available
to the detection module.

Similarly, during the execution of a given block, CFG profiles
for the possible next blocks are pre-fetched. Our module con-
tinuously checks that the execution remains inside the current
block. On the other hand, whenever it detects that a change
in the executing block occurs, it validates the current address
of the program counter against the possible, previously fetched
destination addresses. If there is a match, execution is not affected,
otherwise a detection flag is raised, allowing the system itself or
the administration personnel to take appropriate actions.

As previously stated, in addition to conditional and uncondi-
tional branches, it is necessary to handle function calls. In order
to correctly handle call/return instructions we rely on a stack
module implemented in hardware using a FILO buffer. When a
function is called, the address at which to return is pushed onto
a hardware stack. When the function call returns, the address of
the corresponding call is popped from the top of the stack. The
detection module verifies that execution is resumed at such address.
Again, if a mismatch is observed, detection flag is raised. The main
idea behind this implementation is similar to SmashGuard [21].

The basic algorithm used to check control flow integrity is
reported below. This algorithm is executed every time that the
value of PC changes. In this algorithm, PC is the current value
of the program counter and B is the descriptor of a block of
control flow, which contains {pc, n, Y es-Block,No-Block}. B.pc
represents the address at which the control flow block B begins.
B.n is the number of instructions contained in block B. Finally,
B.Y es−Block and B.No−Block encode the control flow blocks
that may occur after B, as explained in Section III-D.

F. Predictable Over Head

In hard real-time system, safety and reliability of system is
only guaranteed if critical tasks of the system finish before their
relative deadlines. Therefore, system designers need to perform
extensive schedulability analysis to ensure this condition would not
be violated. Due to this, techniques that alter execution time of the
tasks in an unpredictable manner, cannot be applied to this class
of systems such as most of the techniques employing randomness
or obfuscation.

Having this constraint in mind, we have designed our technique
such that incurred overhead on each block is precisely predictable.
The reason of the overhead is that for some very small execution
blocks, the time required to load the block information from
OCFMM memory is longer than the time required for executing the
instructions of that block, therefore execution needs to be halted
until the block information is fully loaded.

However, for each block, the upper bound on the halting time
could be simply calculated. If ei is the minimum execution time
of ith instruction in the block, m is the access time for OCFMM
memory and nk is the number of instructions in kth block. Then
we have the following for upper bound of overhead on kth block,

29

Algorithm 2 Detection Algorithm
if Instruction is a call then

push PC + 4
end if
if Instruction is a return then

newB = pop()
if newB.pc == PC then

B = newB;
else

raise detection flag;
end if

else if PC == (PC Previous + 4) AND (PC < B.pc + B.n) then
return ;

else
if PC belongs to B.Yes-Block then

return
else if PC belongs to B.No-Block then

return
else

Raise detection Flag
end if

end if
return

overhead(k) =

{
m−

∑nk

i=1 ei, if m >
∑nk

i=1 ei

0, otherwise

With the worst case overheads of every block, upper bound of
overhead on every piece of program is calculable, too. System
designer can use this information to generate new worst case
execution times for tasks in order to verify schedulability of the
task sets in hard real-time systems.

IV. EXPERIMENTS AND EVALUATIONS

In order to test and verify the applicability of our approach, we
integrated our proposed control flow integrity checking module
into the design of the LEON3 soft-core processor. LEON3 is a
32-bit synthesizable VHDL model of a SPARC V8 processor. We
implemented a single core processor without virtual memory on
a Xilinx Virtex-5 LXT FPGA ML505 evaluation platform. We
utilized excess fabric on the FPGA to implement our module with
hooks into the 7-stage pipeline of the LEON3. Our aim was to
introduce minimal changes to the design of the LEON3 while
being able to monitor CFG by only hooking into the program
counter (PC) and instruction register (IR).

In our prototype implementation due to limitations of the FPGA
board, we did not add an external memory unit for OCFMM.
Instead we implemented a SRAM unit on FPGA fabric. This
implementation works for our prototype experimental set up while
it restricts maximum size of the CFG profile and consequently
the size of our program. For future work, we will implement an
external storage memory unit for OCFMM. Having a dedicated
memory unit eliminates any limitations on the size of executable
in addition to loading CFG profile during update. Due to limited
size of hardware stack, we ran our preliminary experiments under
the assumption that there is no nested calls deeper than 200 levels.

We performed the first experiment on a PID controller designed
for temperature control in an industrial unit. The program reads a
value entered by user as a reference temperature and generates a

relative output signal. PID controller code consists of the following
components: simple function for reading the reference input and
the control loop. In every execution of the loop, first the function
responsible for reading the sensor values is called. Next, output
is calculated based on the read values and propagated on the
output port. After running the CFG generation tool, 240 execution
blocks were detected. In this version of our implementation, size
of information of each block is 9 bytes. Consequently, size of CFG
profile generated for this program 2160 bytes.

In the first experiment, we simulated the code replacement attack
by loading a modified binary onto the processor where one of the
jump destinations is different from the expected address resulting
in a different CFG. OCFMM was able to detect the mismatch and
detection flag was raised.

In the second experiment, we simulate control flow graph
modifications due to overwriting a return address in stack. We
used the same program as the previous experiment where the value
read from sensor is written into an unbounded buffer. A malicious
sensor output written to this buffer would overwrite the return
address in the stack, and would redirect the execution flow to the
address of attacker’s desire. Our approach successfully detected
the CFG mismatch with the expected CFG and raised the detection
flag.

V. FUTURE WORK AND LIMITATIONS

There is much more work to be done to improve our technique
and expand its effectiveness and applicability.

Our future plan is to further advance our implementation by
replacing on-chip SRAM unit of OCFMM with an external one.
Additionally, in order to mitigate the overhead caused by halting
execution of small blocks or slow external memories, we are
planning to use a CFG profile caching mechanism to pre-fetch
profile of multiple levels in advance. This would eliminate the
need to halt the processor for short blocks as the information are
already present in the cache, consequently reducing the overhead.

Even though our technique, as proposed in this paper, provides a
predictable overhead, but since the implementation is still incom-
plete, we have not yet provided comprehensive measurement on the
overhead.In our future work, along with a caching mechanism and
an external memory, we plan to perform extensive measurements
on performance and logic overhead

We hypothesize that by using additional hooks into the processor
to determine current privilege level stored in the MMU, our module
would be able to distinguish between multiple tasks and monitor
the control flow of each. Securing the whole system by detecting
and securing some critical components of the system is the another
direction of research that we are currently working on. Finally,
additional research into methods of preventing state variables
from being overwritten by a buffer overflow is needed to provide
reasonable protection against that form of attack.

VI. RELATED WORK

There has been a large body of work on mitigating control
hijacking attacks. due to lack of space, we focus on most relevant
and well-known works.

There is a line of research that performs software based control
flow monitoring. In [30], the CFG of a program is extracted from
static analysis of program source code and used to build the models
for system calls. Program shepherding [14] is another technique
that performs function level control flow monitoring. It extract
CFG during the execution of the program. [4] also monitors the

30

program in function level but it extracts the CFG from binary.
The problems of all these software based approaches is the large
overhead ranging from 45% in control-flow integrity to 660% in
program shepherding.

Moreover, there is another direction of research that uses secrets
to protect the control flow integrity. Point guard [9], stores code
addresses in an encrypted form in data memory. [6] uses address
obfuscation for security purposes. [8], [11], [28], [33] also rely on
secret values in order to prevent intruder from being able to easily
predict and modify pointer addresses. Exploiting these techniques
opens an additional vulnerability (keeping the secret values). Some
of these techniques have also been found to be vulnerable [24],
[27].

Additionally, there are number of other software/hardware de-
fenses against control flow altering through buffer overflow. [10],
[12]–[14], [18], [21] have limited protection compared to our
approach. For instance some of them fail to protect from return-
to-libc or only cover attacks on function return address.

Moreover, directly trying to integrate security solutions that
have been developed for general purpose systems to embedded
RTS [13], [15], [17], [19], [26], [31], [32] may not always be
the best solution. These are not always aware of the underlying
nature of embedded RTS, e.g., attempts to integrate cryptography
into embedded RTS should be compliant with the strict scheduling
policies of such systems or some of these techniques require
trusted operating system.

VII. CONCLUSION

In conclusion, we have introduced on-chip control flow mon-
itoring to enforce control flow integrity in embedded real-time
systems. The solution presented is well suited for simple embed-
ded real-time systems that do not have a Memory Management
Unit (MMU) and have strict timing requirements. Additionally, it
introduces finite and predictable overhead in terms of execution
time and does not require any modifications to the source code
or any sort of binary rewriting. This allows the technique to be
applied to legacy code, propriety programs, or third party products.
This technique was able to detect modifications to the control
flow graph of an executing program preventing the attackers from
return-into-libc, return-oriented-programming, and code injection.
The technique was successfully implemented as a modification of
LEON3 soft core.

REFERENCES

[1] Getting around non-executable stack @ONLINE, 1997.
[2] Advanced return-into-lib(c) exploits (PaX case study) @ONLINE, 2001.
[3] 2011 cwe/sans top 25 most dangerous software errors @ONLINE, 2011.
[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In

Proceedings of the 12th ACM conference on Computer and communications
security, pages 340–353. ACM, 2005.

[5] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Transactions on Infor-
mation and System Security (TISSEC), 13(1):4, 2009.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient
approach to combat a broad range of memory error exploits. In Proceedings of
the 12th USENIX security symposium, volume 120. Washington, DC., 2003.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive exper-
imental analyses of automotive attack surfaces. In USENIX Security, Aug
2011.

[8] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier. Formatguard: Automatic protection from printf format string
vulnerabilities. In Proceedings of the 10th USENIX Security Symposium,
volume 3, 2001.

[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard tm: protecting
pointers from buffer overflow vulnerabilities. In Proceedings of the 12th
conference on USENIX Security Symposium, volume 12, pages 91–104, 2003.

[10] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, volume 81, pages 346–355, 1998.

[11] R. Doe. The pax project @ONLINE, 2004.
[12] A. Francillon, D. Perito, and C. Castelluccia. Defending embedded systems

against control flow attacks. In Proceedings of the first ACM workshop on
Secure execution of untrusted code, pages 19–26. ACM, 2009.

[13] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM
conference on Computer and communications security, pages 272–280. ACM,
2003.

[14] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program
shepherding. In Proceedings of the 11th USENIX security symposium,
volume 6, 2002.

[15] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi. Security as a
new dimension in embedded system design, 2004.

[16] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. Mc-
Coy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental
security analysis of a modern automobile. In Security and Privacy (SP),
2010 IEEE Symposium on, pages 447 –462, may 2010.

[17] M. Lin, L. Xu, L. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu. Static
security optimization for real-time systems. IEEE Transactions on Industrial
Informatics, 5(1), Feb. 2009.

[18] M. Milenković, A. Milenković, and E. Jovanov. Hardware support for code
integrity in embedded processors. In Proceedings of the 2005 international
conference on Compilers, architectures and synthesis for embedded systems,
pages 55–65. ACM, 2005.

[19] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3A:
Secure system simplex architecture for enhanced security and robustness of
cyber-physical systems. In ACM Conference on High Confidence Networked
Systems, 2013.

[20] A. One. Smashing the stack for fun and profit @ONLINE.
[21] H. Ozdoganoglu, T. Vijaykumar, C. E. Brodley, B. A. Kuperman, and

A. Jalote. Smashguard: A hardware solution to prevent security attacks on
the function return address. Computers, IEEE Transactions on, 55(10):1271–
1285, 2006.

[22] L. Sha. Using simplicity to control complexity. Software, IEEE, 18(4):20
–28, jul/aug 2001.

[23] H. Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and communications security, CCS ’07, pages 552–
561, New York, NY, USA, 2007. ACM.

[24] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On
the effectiveness of address-space randomization. In Proceedings of the 11th
ACM conference on Computer and communications security, pages 298–307.
ACM, 2004.

[25] D. Shepard, J. Bhatti, and T. Humphreys. Drone hack: Spoofing attack
demonstration on a civilian unmanned aerial vehicle. GPS World, August
2012.

[26] S. Son, R. Mukkamala, and R. David. Integrating security and real-
time requirements using covert channel capacity. Knowledge and Data
Engineering, IEEE Transactions on, 12(6):865 –879, nov/dec 2000.

[27] A. N. Sovarel, D. Evans, and N. Paul. Wheres the feeb? the effectiveness
of instruction set randomization. In 14th USENIX Security Symposium,
volume 6, 2005.

[28] N. Tuck, B. Calder, and G. Varghese. Hardware and binary modification sup-
port for code pointer protection from buffer overflow. In Microarchitecture,
2004. MICRO-37 2004. 37th International Symposium on, pages 209–220.
IEEE, 2004.

[29] US-CERT. ICSA-10-272-01: Primary stuxnet indicators. Aug. 2010.
[30] D. Wagner and R. Dean. Intrusion detection via static analysis. In Security

and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages
156–168. IEEE, 2001.

[31] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 380–395. IEEE, 2010.

[32] T. Xie and X. Qin. Improving security for periodic tasks in embedded systems
through scheduling. ACM Trans. Embed. Comput. Syst., 6(3), July 2007.

[33] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization
for security. In Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on, pages 260–269. IEEE, 2003.

[34] M.-K. Yoon, S. Mohan, and L. Sha. Securecore: A multicore architecture
for intrusion detection in real-time control systems. In IEEE Conference on
Real-Time and Embedded Technology and Applications Symposium. IEEE,
2013.

[35] G. Yucheng, W. Peng, L. Juwei, and G. Qingping. A way to detect computer
trojan based on DLL preemptive injection. In Distributed Computing and
Applications to Business, Engineering and Science (DCABES), 2011 Tenth
International Symposium on, pages 255–258, 2011.

31

