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ABSTRACT-Swarm Robotics refers to the application of Swarm Intelligence techniques where a 
desired collective behavior emerges from the local interactions of robots with one another and with 
their environment. In this paper, a modified Bees Algorithm is proposed for multi-target search and 
coverage by an autonomous swarm of robotic "bees". The objective is to find targets in an unknown 
area, send their estimated locations and fitness values to other robots in swarm which then provide 
the coverage of the found targets in a self-organized, decentralized way. The robots are equipped 
with ultrasonic sensors for obstacle avoidance, thermal sensors for target detection, and ZigBee 
modules for local communication. For the experiments, a small swarm of robots was built to test the 
performance of the modified Bees Algorithm. The experimental results show that the swarm is self­
organized, decentralized and adaptive, and it can be successfully applied to the unknown area search 
and coverage. 
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1. INTRODUCTION 

Robots can be utilized in many tasks that would be too risky or too demanding for humans. In 
applications where a fast response is crucial, multi-robot systems can play an important role thanks to their 
capability to cover the area. Possible applications for multi-robot systems are search and rescue, planet 
exploration, monitoring and surveillance, cleaning and maintenance, etc. In order to be successful in such 
applications, besides a high degree of autonomy and local intelligence, robots require a good level of 
cooperation and coordination in order to achieve objectives that are impossible for an individual unit. The 
set of robots should behave like a team and not merely as a set of entities. 

Swarm-based systems typically consist of a population of simple agents interacting locally with one 
another and with their environment [1]. The benefits of cooperation can be significant in situations where 
global knowledge of the environment does not exist. Individuals within the group interact by exchanging 
locally available information such that the global objective is achieved more efficiently than it would be if 
performed by a single individual. Swarm Intelligence is a group of algorithms that are modeled on the 
social behavior present in animal colonies in nature, such as insects, fish or birds. Examples of emergent 
behavior in nature are numerous and they gave inspiration to some of the most popular algorithms. Ant 
Colony Optimization (ACO) models the foraging behavior of ant colonies [2]. Particle Swarm 
Optimization (PSO) was originally inspired by the social behavior of bird flocking or fish schooling [3]. 
Sees Algorithm (SA) is a model of the colony of bees in their search for the richer and closer food source 
[4]. Among others, these algorithms have been applied to optimization problems [5]-[6], and many that can 
be converted to optimization problems, such as the travelling salesman problem [7]-[8], quadratic 
assignment problem [9], data mining [10], data clustering [11], image processing [12]-[13], control [14]­
[15], etc. Since the colonies in nature are autonomous multi-agent systems they are very suitable for 
modeling of multi-robot systems. 

Swarm Robotics is a new approach to the coordination of multi-robot systems which consist of large 
numbers of usually, but not necessarily, simple physical robots. It is an interesting alternative to classical 
approaches to robotics because of some properties of problem-solving by social animals, which is flexible, 
robust, decentralized and self-organized. In this paper, we applied a modified Sees Algorithm (SA) on the 
swarm of robots in multi-target search and coverage scenario. The paper is organized as follows. In Section 
2, we present the basic SA and the proposed modified SA. The implementation on a swarm of robots is 
described in Section 3. In Section 4 the experimental results are presented, followed by the discussion in 
Section 5. Finally, in Section 6 the conclusions are made. 
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2. PROPOSED METHOD 

2.1 Problem statement 

In the research proposal presented in this paper, we address the problem of multi-target search and 
coverage in an unknown area. It consists in distributing a swarm of robots on the map so that the targets 
with higher fitness values attract more robots. When a robot finds a target, it sends its estimated location 
and target's fitness value to the other robots in vicinity. If more than one target is found, the robots need to 
decide for which one to go. The decision is based on the probability which is calculated from the target's 
fitness value and distance. In such a manner, the system consisting of a large number of robots is capable of 
finding and covering targets on the map autonomously, in a decentralized way. The resulting distribution 
favors the most valuable targets but does not omit the targets with a lower fitness value. 

The area search and coverage are important tasks in various applications such as search and rescue 
(SAR), simultaneous localization and mapping (SLAM), area exploration, surveillance and monitoring, etc. 
Many include dangerous tasks (e.g. mine fields) or inaccessible territories (e.g. planet exploration) making 
them suitable for the applications of Swarm Robotics. A robotic swarm usually consists of a large number 
of robots and it is autonomous. The traditional, centralized approach faces the problem of information 
overload; also, the autonomy of the system is open to question if a robot needs to wait for the command 
from a higher instance, what we call a central control unit. In some cases, such as the planet exploration, it 
is impossible to wait for the command because of the time a signal needs to travel to reach its destination. 

The solution Swarm Robotics offers has several advantages. Swarm Intelligence provides scalability 
and robustness. Adding more robots wiIJ improve the performance of the overall system and on the other 
hand, losing some robots will not cause the catastrophic failure. Swarms are decentralized, agents locally 
communicate with one another and with the environment substantially reducing the amount of the 
exchanged information. Many aspects of swarm behavior are self-organized which results in qualitatively 
different patterns that emerge at the global level of a system from interactions among its lower-level 
components. The swarm-based systems are also flexible, they can adapt to a dynamically changing 
environment. 

2.2 Modified Bees Algorithm 

The Bees Algorithm (BA) is a population-based search algorithm that mimics the food foraging 
behavior of swarms of honey bees [4]. In its basic version, the algorithm performs a neighborhood search 
combined with random search and can be used for optimization. In this paper, we propose to build an 
autonomous swarm of robotic "bees" capable of performing search in a two-dimensional space, i.e. the 
robot arena. The initial number of robots that make up the population is constant, and can only decrease 
due to robots' hardware failure. In order to apply the BA to swarm of robots some modifications need to be 
made. 

Robots start the search from the preprogrammed initial locations. While moving through the search 
space they avoid obstacles and other robots. A robot that performs a random search can be referred to as an 
available robot. When it finds a target, or is directed to a target found by another robot, it becomes an 
unavailable robot. Based on their velocity, direction and time of movement, robots can estimate every new 
location they reach. When a target is found, the available robots that are in its vicinity receive the message 
that contains the estimated location and the fitness value of the target. If various targets are found, robots 
probabilistically determine the next target to move to. The probability that a kth robot is displaced to target 
i is given by: 

(1) 



3 Building a Swarm of Robotic Bees 

where Wi and "Ii are the fitness value and the visibility of the target at the location (Xi, Yi), respectively, N is 
the number of targets found in the kth robot's vicinity, and a and fJ are control parameters (a, fJ > 0; a, fJ 

Efli). The visibility of the target at (Xi, Yi) is inversely proportional to its Euclidean distance from the robot's 
location at (x" Yr): 

(2) 

It is important to notice that the goal of the original BA is to find a single value which represents the 
global optimum. The drawback of this algorithm is that the selection of the best sites and the recruitment of 
the bees are performed in a centralized manner. In function minimization, the lack of collective component 
in the original BA suggests that the algorithm would reach the same solution with only two bees (minimum 
needed for solution comparison) in the swarm, but would take longer time to compute. The modified BA 
we propose resolves this issue by relying on the local robot communication only. In the case scenario 
described in this paper, finding the global best is not the objective. 

3. IMPLEMENTATION 

3.1 Robot hardware 

The robots were assembled to have the same selection of hardware components (Fig. 1). We used the 
Lynxmotion Terminator Sumo Robot Kit with four Spur Gear Head Motors as a base to build the robots, 
although any platform that could support the listed hardware components would be suitable. The DC 
motors were powered with 12VDC, with 200 RPM, torque of 63.890z.in (4.6 Kg-cm), 30:1 reduction and 
6mm shaft diameter, and they were paired as left-hand and right-hand, in order to be able to perform 
rotation on-the-spot. Devantech MD22 Motor Driver was used to control the motors' rotation speed and 
direction. It averaged the PWM signal received from the Arduino microcontroller board to provide a 
proportional value of the 12VDC from the battery. The four switches on the motor driver's board are used 
to define the working mode. In the experiments, we used the analog mode which provided satisfactory 
speed control. 

Arduino Duemilanove micro controller board with ATMEGA328 microcontroller was powered with 
the 6VDC battery. Zigbee module used for robot communication was connected using the Arduino Xbee 
shield. Sensors were programmed for I2C communication protocol with the micro controller. One ultrasonic 
sensor was mounted on each robot for obstacle detection. Thermal sensor was used to detect the targets. 
The odometry error inherent to all mobile robots affected their precise localization. It cannot be eliminated, 
but it can be reduced by using for example the averaging method proposed in [16]. 

3.2 Coordinator and communication 

A computer with a Pentium IV processor at 3 GHz with 2 GB of RAM was used to program the robots 
and to connect a ZigBee communication module that created a mesh communication network (the 
coordinator). The ZigBee modules mounted on robots were able to detect a reserved communication 
channel and connect with the coordinator. This allowed the communication between the robots and the 
robots with the computer coordinator. We used the broadcast mode, since it allowed each module to 
communicate with any other module in the network. 

4. EXPERIMENTAL RESULTS 

The main objective of the experimental setup was to test the performance of the proposed algorithm 
and not the sensing and pattern recognition capabilities of the robots. Although the robots performed well 
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in detecting the source of heat and sending the estimated location and measured temperature, which was 
tested in initial experiments, in order to test the performance of the modified BA algorithm a simplified 
scenario was arranged. A small swarm of three real and two simulated robots was used in search of two 
targets. 

The experiments were performed in 12x12 feet (3.65x3.65m) arena, with randomly distributed 
obstacles. Robots were placed at the preprogrammed initial locations. When the command was sent from 
the coordinator, the robots started the random search. After a certain period of time t, the information of 
two targets was sequentially sent from the coordinator. The information included the targets' estimated 
locations and their temperature (fitness) values. The robots calculated the probabilities to move to each 
target as in (1). The real robots were not able to recognize the message sender; therefore, the coordinator 
was able to simulate two "real" robots that found two different targets. 

Two types of experiments were performed. In the first one, the random search time t was changed to 
test its influence on the odometry error. Single robot was used in order to avoid the collision with other 
robots, and only one robot was simulated from the coordinator. With each of three robots 30 experiments 
were conducted in order to obtain the average odometry error value. The results of the first experimental 
setup are shown in Fig. 2. The search was considered successful if the robot was able to get as close as 
30,48 cm (1 foot) from the target. From Fig. 2, we can see that, as expected, while increasing the initial 
random search time of the robot, the odometry error increased as well. This happened due to the imperfect 
calibration of the DC motors, non-constant battery voltage, friction of the ground, etc. We can also notice 
that for the t � 90 s the experiment success rate was 100%. 

The results from the first experimental setup were used to define the second experimental setup. The 
random search initial time value was set to t = 30 s, which guaranteed that the odometry error would be 
below the success threshold. The scenario involved all three robots in search for two targets whose 
information was sent form the coordinator. The choice of having two targets in the scenario was based on 
the number of real robots that were at our disposal. By having three robots and two targets we could test 
how the robots distributed in the arena based on the targets' fitness values. Four possible events could 
occur: 1) all robots go for the first target (Tl); 2) all robots go for the second target (T2); 3) two robots go 
for the target T1 and one for the target T2; and 4) one robot goes for the target Tl and two robots go for the 
target T2. 

Since the scenario arena was relatively small, the visibility of the targets was set to be constant, 171 = 172 
= 1, and the decision on which target to go to was made only on the target's fitness value. The values of the 
control parameters were also set to a. = f3 = 1. In order to test the self-organized behavior of the swarm of 
robots, the fitness values of the two targets sent from the coordinator to the robots were changed. The 
experimental results are shown in Table I. We can notice that when the fitness values were equal, WI = W2 
= 50, in most cases two robots would go for one target and one would go for the other. This was expected 
since the probabilities of choosing one target or another were equal. By increasing the difference between 
the fitness values, the distribution would change in favor of the target with the higher fitness value since the 
probability that a robot chooses that target would also increase. 

5. DISCUSSION 

The experimental results show that the swarm of robots is self-organized, and adaptive. It is self­
organized because the localization of new targets would change the distribution of the robots in the arena 
accordingly. This also demonstrates that the swarm is adaptive as the robots were able to react to that 
change in the environment, e.g. when a new target is found. Although the decentralized concept of the 
swarm was not directly demonstrated through the presented experiments, the robots were not aware of the 
message sender's identity. Even though the message containing the information about the new targets was 
sent from the coordinator, it was actually a simulation of the real robots sending that same message. The 
robots were equipped with the ZigBee communication module, hence capable of sending and receiving the 
messages, which was previously tested in the initial experiments. 
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TABLE I 
ROBOTS' DISTRIBUTION VS. TARGETS' FITNESS VALUES 

Fitness values T 1:T2 Occurrence Occurrence [%] 

w 1  = w2 = 50 2:1 1 1  36.67 

w1 = w2 = 50 3:0 4 13.33 

w1 = w2 = 50 1 :2 13 43.33 

w1 = w2 = 50 0:3 2 6.67 

w1 =70; w2 = 30 2: 1 18 60.00 

w1 =70; w2 = 30 3:0 9 30.00 

w1 =70; w2 = 30 1:2 2 6.67 

w 1  =70; w2 = 30 0:3 3.33 

w 1  =90; w2 = 10 2:1 8 26.67 

w 1  =90; w2 = 10 3:0 2 1  70.00 

w1 =90; w2 = 10 1:2 3.33 

w 1  =90; w2 = 10 0:3 0 0.00 

First column represents the fitness values of the two targets. 
Second column represents the number of robots, out of three, 

that went for the targets T1 and T2, respectively. 
Third column represents the number of experiments that the 

distribution from the second column occurred. Total number of 
experiments for the constant values w1 and w2 was 30. 

The last column represents the occurrence from the third 
column compared to total number of experiments, in percentage. 

Building a Swarm of Robotic Bees 

Fig. 1 Sumo robot used in the experiments 
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Fig. 2 Results of the first experimental 
setup: Average odometry error vs. initial 
random search time 

The distribution of the robots depended on the fitness values of the found targets. The decision for 
which target the robot would go was based on the probability calculated in (l). The targets with higher 
fitness values attracted more robots in the swarm, which was the goal of the multi -target search scenario. 
The odometry error inherent to mobile robots was used as an advantage in order to gather the robots in the 
vicinity of the found targets and not at their exact locations. Still, there is a necessity to maintain the 
odometry error within the acceptable limits, and this might be a part of the future work. 

6. CONCLUSIONS 

The proposed robot swarm behavior is a decentralized model of the foraging behavior of bee colonies 
in nature. For that, a modified Bees Algorithm (BA) was applied to multi-target search and coverage. The 
experimental results proved that the robot swarm is autonomous and self-organized. The odometry error of 
the mobile robotic units was used as an advantage to group the robots around the areas of interest, i.e. 
where the targets were found. Future work may include the research on how to reduce the odometry error 
for the scenarios that take long time to execute. The scalability of the swarm with a larger number of robots 
may also be studied through the scenarios where the robot's communication range does not cover the whole 
search area and where the local communication may get its full effect. 
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