

Software-hardware Partitioning Strategy Using
Hybrid Genetic and Tabu Search

LI Lan-ying
Dept of Computer Science, Harbin University of Science and

Technology
Harbin P. R. China

e-mail: lulu08521@sina.com,

SHI Min
Dept of Computer Science, Harbin University of Science and

Technology
Harbin P. R. China

e-mail: shiminw@hotmail.com

Abstract—One of the most crucial steps in the design of
embedded systems is deciding which components of the system
should be implemented in software and which ones in hardware.
Inspired by genetic algorithm (GA) and tabu search (TS), this
paper puts forward a hybrid strategy (GATS) to solve the
software-hardware partitioning problem in embedded system.
The main frame of GATS is provided by genetic algorithm and
the tabu search is taken as the mutation operator. Here the tabu
search is used for the solution space in the process of mutation.
And the results show that GATS has multiple starting-points,
strong mountain-climbing ability and memory function instead
of inferior mountain-climbing ability of GA and the single
starting-point feature of TS. The experimental results indicate
that GATS is superior to the single GA and TS in terms of both
required time and system cost, which testify the effectiveness of
GATS and produce better portioning results.

Keywords- embedded system; software-hardware partitioning;
genetic algorithm; tabu search; mutation operator.

I. INTRODUCTION
As the development of integrated circuit, SoC (system on a

chip) is becoming the main trend of electric system design. A
key phase is partitioning the system specification into
hardware and software implementations, such that the design
constraints, including the time and power constraints are met
and at the same time the system cost is minimized.

It is well known that software hardware partitioning
problems are NP-complete [1] and are therefore intractable.
1992, Gupta etc. [2] developed a software-hardware
partitioning algorithm to realize the space searching process of
the automatic design. Henceforth, partitioning algorithm with
various features is developed. The most typical effective one is
heuristic algorithm, mountain climbing method, genetic
algorithm [3], simulated annealing [4], tabu search [5] etc.

II. PROBLEM DESCRIPTION

A. Function description
The system is formulated to a series of basic schedule

blocks (BSB). And then all the blocks are formed into a
control data flow graph (CDFG), which is composed of nodes
and arcs [6] [7] [8].The nodes denote the BSBs, and the arcs
denote the data flows between BSBs. Generally, the CDFG is a

directed acyclic graph (DAG). The partitioning algorithm
determines which nodes in the DAG are implemented by
hardware and which by software. The termination conditions
are satisfied, i.e., the solution achieves a good tradeoff of some
constraints, such as power, size, and performance. Otherwise,
generate a new partition and evaluate again [9].

Every BSB (i.e. node in CDFG) can receive data from its
previous nodes, and send data to its next nodes. The BSB is
described by a seven-dimension vector:

>=< iiiiiiii pcwrthahtsasB ,,,,,,

where ias and its respectively; denote the cost and the
executing time implemented by software, iah and ith denote
these implemented by hardware. ir and iw are two arrays,
which, respectively, denote the incoming and outcoming node
sets, and, respectively, store the corresponding communication
time sets. ipc denotes that the node i executes ipc times
repeatedly [10].

According to different constraints, there are two basic
problems: optimize the time in terms of cost [11] and optimize
the cost in terms of time [3]. In this paper, GATS is used to
optimize the cost under the time constraint.

B. Partitioning model
The partition model adopted in this paper is shown in Fig.

1 [6]. “HA1”, “HA2”,…, “HAm” represent the hardware
nodes implemented by ASIC(application specific integrated
circuit) or FPGA (field programmable gate array). The
software nodes are executed on a programmable processor
(denoted by CPU). All the nodes exchange data through a
shared bus, and they share the common memory to store the
interim data.

The partitioning problem in this paper can be described as
follows [3]:

Minimize C , Subject to <=T qTime Re (1)

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.488

83

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.488

83

Figure 1. Partitioning model used in this paper

qTime Re denotes the time constraint, C denotes the total
cost of the system, and T denotes the total executing time.
This is a constraint optimization problem. Generally, the
required time is given in advance by the designer. The cost of
software is usually negligible. So the total cost of the system
can be described as

∑
∈

=
HWB

i
i

ahC , (2)

Where HWBi ∈ means that node iB is implemented by
hardware.

III. HYBRID STRATEGY OF GA AND TS
Glover, the founder of TS, analyzed and discussed the

necessity and feasibility of the hybrid strategy of GA and TS
theoretically, which is taken as the theoretical foundation of
the hybrid of GA and TS publicly. According to the analysis of
GA and TS, a hybrid strategy of GA and TS is proposed in this
paper based on the Glover theory, namely GATS, which is
used to solve the software-hardware partitioning problem in
SoC. TS are taken as GA’s mutation operator to improve GA’s
mountain climbing ability.

A. Fitness function
Construct a general objective function based on the

algorithm optimization target, namely the total system
executing time T and cost C , and then obtain the fitness
function from the general objective function scaling. Turn the
executing time as the penalty term in the general objective
function where the chosen penalty term should guarantee the
constraints satisfaction of the partitioning results, meanwhile
the fully utilization of the executing time should also be
ensured, there will be no optimum with a too small executing
time. The affinity function is similar to the fitness function in
Ref. [8]. Two normalization factors cσ and tσ are introduced
[8]:

 CostSwCostHwc −=σ (3)
)Re,Remax(TimeHwqTimeqTimeTimeSwt −−=σ (4)

Where CostHw denotes the total cost when all nodes are
implemented by hardware, and CostSw by the software. In
general, CostSw is negligible. Namely, CostSw is equal
to 0 . TimeHw and TimeSw respectively denote the
corresponding execute time. qTime Re denotes the required
time constraint. Usually it is a value between TimeHw

and TimeSw . And the affinity function is defined as follows
[8]:

 ()cobjFitness += 11 , (5)

where the value of cobj is defined as Eq. (9) [8]:

ctti

CqTimeT
M

qTimeTcobj
σ

α
σσ

α)1(Re)Reexp(−+−−= , (6)

In (6) ，T and C respectively, denote the executing time
and the cost of a given partitioning solution. The total
executing time T is calculated by the results getting from the
program with the data generated by TGFF tools. In Eq. (6), we
also adaptively adjust the strength of the penalty item with a
factor iM in ith generation. In experiments, set 10 =M and

ii MM 98.01 =+ [8]. At the beginning of evolution, iM is larger
in order to keep the diversity of the population. iM decreases
adaptively to give more and more punishment to the offending
individuals along with the evolution. The parameter 6.0=α is
the coefficient of time and cost for all experiments.

B. GATS algorithm flow
First, give the initial parameters including the max

iteration, population size, crossover probability cP and
mutation probability mP . The initial population is generated
randomly by GA, after encoding it using binary, performing
selection operation on the population, and then mixing them in
a crossover fashion. Finally, TS is taken as the mutation
operator. TS part will be executed if the randomly generated
probability P is less than mP . TS involve the concepts like
neighbor, tabu list, tabu length, candidate, and aspiration
criterion. 0-1 antiposition factor is used to generate the
candidate for the mutation operator used in GATS. Fig. 2 is the
flow sheet of GATS algorithm. Here is the algorithm for TS:

Figure 2. Flow sheet of GATS algorithm

8484

Step1: Choose an initial solution x in S. Set xx =* and

iteration number 0=i .
Step2: Set 1+= ii and generate a subset *V of solution in

),(kiN such that either one of the tabu conditions is
violated or at least one of the aspiration conditions
hold.

Step3: Choose a best j in *V and set jx = .
Step4:)()(*xfxfif > then set xx =* .
Step5: Update tabu and aspiration conditions.
Step6: if the stopping condition is met then stops else go to

Step2.

IV. EXPERIMENT

A. Experiment environment and data
To construct the experimental samples, we generate seven

groups of DAGs using TGFF tool (Windows Version 3.1) [12]
randomly. There are 30 DAGs in each group, and the average
branching factors of the seven DAG groups are 3, 3, 3, 4, 4, 5,
and 5. We use the average performance values of the thirty
DAG samples as the final performance results.

In our experimentation, we use the following PC
configurations: a) Intel Pentium 4 2.80GHz processor, 512M
memory. b) Windows XP operating system. c) VC 6.0
programming..tools.

TABLE I. DATA OBTAINED FROM TGFF

NumOfNodes 30 40 50 60 70 80 90
TimeHw 4,322 5,608 7,151 8,761 9,845 11,724 13,066
TimeSw 8,764 11,475 14,533 17,684 20,124 23,630 26,417
TimeReq 6,543 8,541 10,842 13,222 14,984 17,677 19,741
CostHw 2,850 3,912 4,532 5,909 6,783 7,446 8,684

B. Experiment results and analysis
In order to make the comparison valid, we use the same

controlling parameters for these three types of partitioning
algorithms. The initial population is generated randomly,
population size of 30, 40… 90 and the corresponding task

graphs with node =30, node=40,…,node=90 are used
respectively. Other parameters are 8.0=cP , 01.0=mP . In tabu
part, the number of neighbors equals to the nodes in task
graphs, tabu_length = n , where n is the number of task
nodes.

TABLE II. COMPARISON OF GENETIC ALGORITHM (GA), TABU SEARCH (TS) AND GATS

Total DAGs
Nodes

Cost Time
GA TS GATS GA TS GATS

30 2,071 2,058 2,056 6,536 6,487 6,457
40 2,845 2,835 2,809 8,541 8,461 8,537
50 3,680 3,573 3,362 10,800 10,675 9,784
60 4,316 4,311 4,310 13,221 13,108 13,056
70 4,944 4,806 4,776 14,933 14,984 14,886
80 5,431 5,248 5,119 17,573 17,673 16,899
90 6,337 6,185 6,042 19,626 19,730 18,189

Under the same experimental condition given above, run
the GA, TS and GATS as the software hardware partitioning
algorithm using the data from Table 1 separately. The
comparison results are shown in Table 2. From Table 2, it is
obvious that all the system time are less than the time required,
moreover, our algorithm provides smaller system cost and also
better fitness value contrast to GA and TS, which is proved in
Fig. 3.

V. CONCLUSION AND FUTURE WORK
Our algorithm takes the advantages of the two algorithms

and overcomes their disadvantages. Experiments show our
algorithm, namely GATS， excels GA and TS in performance.

This work has only examined the partitioning problem
using simulated inputs in the form of directed acyclic task

0.75

0.8

0.85

0.9

0.95

1

30 40 50 60 70 80 90

TS

GA

GATS

Figure 3. Fitness Value/Nodes Curve

graphs. While this approach allows investigation of our
algorithm, GATS, with a variety of problem complexities, our
approach needs to be verified on real software-hardware

systems. Future work includes the use of realistic benchmarks
in evaluating the partitioning algorithm on appropriate
hardware platforms (such as transform our algorithm onto the
target structure with multiple processor and multiple hardware

8585

components). We also plan to explore other approaches to
refine our work.

REFERENCES

[1] Garey M R, Johnson D S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman Company, 1979.

[2] Gupta R.K, Micheli G.D. System-Level synthesis using re-
programmable components. In: Hugo DM, Herman B, eds. Proc. of the
European Conf. on Design Automation (EDAC). Brussels: IEEE
Computer Society Press, 1992, pp.2-7.

[3] Saha D, Mitra R.S, Basu A. Hardware software partitioning using
genetic algorithm. In: Agrawal V, Mahabala HN, eds. Proc. of the 10th
Int’l Conf. on VLSI Design. Hyderabad: IEEE Computer Society Press,
1997, pp.155-160.

[4] T. Wiangtong, P. Cheung, and W. Luk. Comparing three heuristic
search methods for functional partitioning in hardware-software
codesign. Journal of Design Automation for Embedded Systems, 2002,
pp.425-449.

[5] Else P, Peng Z, Kuchcinski K, Doboli. A. System level
hardware/software partitioning based on simulated annealing and tabu
search. Design Automation of Embedded Systems, 1997, 2(1). pp.5-32.

[6] Y. Peng, M. Lin, J. Yang, Hardware–software partitioning research
based on resource constraint, J. Circuits Syst. 10, 2005, pp.80-84 (in
Chinese).

[7] A. Kalavade, P.A. Subrahmanyam, Hardware/software partitioning for
multifunction systems, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 17, 1998, pp.819-837.

[8] Y. Zou, Z. Zhuang, H. Chen, HW–SW partitioning based on genetic
algorithm, in: Proceedings of the CEC’04, 2004, pp.628-633.

[9] Yiguo Zhang, Wenjian Luo, Zeming Zhang, Bin Li, Xufa Wang, A
hardware/software partitioning algorithm based on artificial immune
principles, Applied Soft Computing (Elsevier), January, 2008, 8(1):
pp.383-391.

[10] Y. Zou, Z.-Q. Zhang, J.-A. Yang, HW–SW partitioning based on
genetic algorithms, J. Univ. Sci. Technol. China 34, 2004, pp.724-731
(in Chinese).

[11] B. Luc, A. Michel, G. Guy, et al., A path analysis based partitioning for
time constrained embedded systems, in: Proceedings of the
CODES/CASHE’98, 1998, pp.85-89.

[12] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task graphs for free.
Proc. Int. Workshop Hardware/Software Codesign, 1998, pp.97-101.

8686

