
Scheduling for Real-Time Mobile MapReduce Systems

Adam J. Dou Vana Kalogeraki Dimitrios Gunopulos Taneli Mielikäinen Ville Tuulos
UC Riverside AUEB Univ. of Athens Nokia Research Center

Riverside, CA Athens, Greece Athens, Greece Palo Alto, CA
jdou@cs.ucr.edu vana@aueb.gr dg@di.uoa.gr {taneli.mielikainen,ville.h.tuulos}@nokia.com

ABSTRACT
The popularity of portable electronics such as smartphones,
PDAs and mobile devices and their increasing processing ca-
pabilities has enabled the development of several real-time
mobile applications that require low-latency, high-throughput
response and scalability. Supporting real-time applications
in mobile settings is especially challenging due to limited
resources, mobile device failures and the significant quality
fluctuations of the wireless medium. In this paper we ad-
dress the problem of supporting distributed real-time appli-
cations in a mobile MapReduce framework under the pres-
ence of failures. We present Real-Time Mobile MapReduce
(MiscoRT), our system aimed at supporting the execution
of distributed applications with real-time response require-
ments. We propose a two level scheduling scheme, designed
for the MapReduce programming model, that effectively pre-
dicts application execution times and dynamically schedules
application tasks. We have performed extensive experiments
on a testbed of Nokia N95 8GB smartphones. We demon-
strate that our scheduling system is efficient, has low over-
head and performs up to 32% faster than its competitors.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Design, Experimentation, Reliability

Keywords
Distributed Systems, Mobile Systems, Real-Time, MapRe-
duce

1. INTRODUCTION
In the last few years we have witnessed a significant growth

of location-based systems where the physical location of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’11, July 11–15, 2011, New York, New York, USA.
Copyright 2011 ACM 978-1-4503-0423-8/11/07 ...$10.00.

users is utilized to deliver information of interest, to en-
courage sharing of location-based information or to adapt
the services in order to improve the level of service pro-
vided to the users. A number of location-based systems
have emerged. Examples include traffic monitoring systems
for real-time delay estimation and congestion detection [42],
personalized weather information, location-based games or
receiving spatial alarms upon the arrival to a reference time
point [9], as well as social networking applications for sharing
photos and personal data with family and friends [35]. In the
search for economic power, companies are building these ser-
vices over portable electronics such as smartphones, PDAs
and mobile devices. These devices have significant process-
ing and networking capabilities and are outfitted with a
wide array of sensing capabilities such as GPS, WiFi, micro-
phones, cameras and accelerometers, which have introduced
new and more efficient ways of communication. However,
this new application development brings new challenges to
the design of system software. More specifically, providing
real-time, low-latency and scalable execution for these ap-
plications presents three important challenges that need to
be addressed:

1. we need to understand how the mobile setting affects
the development of distributed applications over net-
works of smartphones and address the implications;

2. we need to provide a flexible and efficient way to pro-
gram, develop and deploy the applications on the phones
that is portability across multiple devices.

3. we need to be able to simplify programmability by hid-
ing the difficult issues of distribution, real-time schedul-
ing, device failures and connectivity issues from the
application developer.

Application development over networks of smart-
phones. Several applications have been and are being de-
veloped for mobile platforms. Some applications focus on
making the users daily lives easier by providing GPS guid-
ance such as traffic congestion detection and delay estimates
[42] and spacial alarm applications [9] which alert a user
when they are a close by another user or a pre-designated
area. Other applications help users stay connected. As peo-
ple are expanding their use of social networking sites such
as Facebook and Myspace, mobile applications are allowing
them to view and modify their information in real-time from
anywhere. The popularity of these real-time social sharing
applications is evidenced by recent application compaigns [1]
emphasizing these features. The usability of these systems is

347

highly dependent on them running in a timely fashion when
providing notifications and feedback. One challenge today
is that there are still many problems which hinder the devel-
opment of distributed applications on them. Mobile devices
are not easy to develop for. There are many specialized lan-
guages and proprietary systems which have steep learning
curves. With relatively limited resources compared to desk-
top and servers, memory management and application flow
is different from traditional programming forcing new soft-
ware paradigms, leading to many software defects. The main
problem however is that distributed applications involving
mobile devices exacerbate the problem by introducing sev-
eral concurrency issues to consider. For example, because
of user mobility and spotty connection coverage, network
connectivity is often degraded or even lost.
Application Programmability. The second challenge is
that several location-based applications, require the involve-
ment of multiple users in the process of sensing and data
processing, in order to achieve a task. These are deemed
participatory sensing applications. For example, the Metro-
Track system [3] is a mobile event tracking system capable
of tracking mobile targets through collaboration among lo-
cal sensing devices that track and predict the future loca-
tion of a target. How to efficiently schedule work across a
set of collaborating devices to accomplish a task is not an
easy process. Recently, the MapReduce framework [14] was
introduced to provide a highly scalable, distributed com-
puting environment for conducting data processing compu-
tations. MapReduce has been successfully deployed in tra-
ditional server based environments [13] [43], specialized en-
vironments [25] [40], as well as in a variety of applications
by many prominent companies such as Google, Yahoo, Face-
book and IBM. The MapReduce framework’s support for the
weak connectivity model of computations across open net-
works, makes it very appropriate for a mobile network set-
ting. It is important to note though, that, although we chose
the MapReduce framework for our system, we do not tar-
get the same types of applications as traditional data ware-
house based MapReduce systems, as the limited resources
available on the mobile systems makes them unsuitable for
any multi-petabyte data processing. Instead, our goal is to
explore the use of the framework for participatory sensing
applications such as monitoring and social networking ap-
plications and gain further insights into the possibilities of
using the MapReduce framework for the next-generation of
location-based applications over networks of smartphones.
Achieving Real-Time Response. The third challenge
is how to support the execution of distributed applications
with real-time response requirements on a network of smart-
phones. While the MapReduce framework provides the pro-
gramming interfaces for developing mobile applications, all
the low-level details of the real-time execution, fault tol-
erance and wireless network communication are not han-
dled by the framework. Thus, the key question of how to
provide support for applications with real-time response re-
quirements, still remains. To date, most of the work on pro-
viding real-time application execution are either based on
the deployment of static sensor networks (such as [33] and
[26]), or are integrated within specific MAC or network lay-
ers [27] [18] to encapsulate application-specific tradeoffs in
terms of resource constraints, shared wireless medium, lossy
communication, and highly dynamic traffic or are restricted
to a single node movement [30]. Supporting real-time mobile

applications such as distributed mobile sensing is an impor-
tant step for the wider adoption of the devices and to create
opportunities for building new kinds of mobile application
services. However, timely execution is a challenging prob-
lem in these settings due to highly dynamic topology, device
unavailability and fluctuations in network quality and chan-
nel capacity. This makes it extremely difficult to estimate
execution times and provide end-to-end real-time support
to distributed applications. Unlike traditional cluster envi-
ronments, mobile systems cannot rely on a static infrastruc-
ture and do not have control over the individual nodes. The
problem is further exacerbated by failures of mobile devices.
Permanent and transient failures such as battery depletion
and user mobility can greatly affect the timeliness of dis-
tributed applications by reducing the processing power of
the system, causing large delays and energy wastage.

In this paper we present MiscoRT, our system aimed at
supporting the execution of real-time application tasks on
mobile MapReduce systems. Our proposal follows a two-
level approach to scheduling distributed real-time mobile
applications. We first develop an analytical model to esti-
mate the execution times of the applications in the presence
of failures. Using this model, we determine the application
urgencies based on our estimates of their execution times
under failures and their timing constraints. Our goal is to
maximize the probability that the end-to-end deadlines of
the applications are met. By incorporating the expected
failure model in the scheduling policy, we can adjust the
fault-tolerance characteristics of the overall system. We see
this as a major motivation for using the MapReduce model
in mobile environments which are typically inherently un-
stable. Furthermore, we envision that methods developed
for heterogeneous and unstable mobile environments of to-
day can be useful in extremely loosely coupled computing
environments of tomorrow which will not be confined to a
single, well-controlled data center. We have built our ap-
proach on Misco [15], our MapReduce system that runs
on mobile phones. We have implemented and tested our
scheduling scheme on a testbed of Nokia’s third generation
NSeries phones [39]. We have built a mobile tourist appli-
cation to evaluate our system. Our extensive experimental
results demonstrate that our approach is efficient, has low
overhead and completes applications up to 32% faster than
its competitors.

2. OBJECTIVES
In this section we summarize the main objectives of our

approach.

Supporting real-time applications: Our first objective
is to support applications with real-time response require-
ments in the form of deadlines. In several applications such
as traffic monitoring for real-time route suggestions and con-
gestion detection, location-based notification of events or
proximity notification for friends, users rely on the collabo-
rative sensing of data from multiple phones and the timely
collection and processing of the data, to generate outputs
of interest and detect important events. However, mobile
devices have limited computation and communication re-
sources. Limited capacity, queuing and channel access de-
lays can greatly affect the timeliness of the applications.
Our approach is to provide real-time response to the ap-
plications, schedule the applications based on their relative

348

urgencies and respond to changing conditions by dynami-
cally scheduling the execution of application tasks to meet
their deadlines. We have to note that the applications we
develop on our system do not have hard real-time response
requirements; rather, we target soft real-time applications
where our goal is to maximize the number of deadlines met,
and missing a deadline is not catastrophic for the system.

Accounting for device failures: We consider mobile node
failures an integral part of mobile environments, thus our
approach is to account for these failures when deriving an
estimate of the execution times of the applications. Device
failures have a major impact on the timeliness of our sys-
tem. These failures are the results of hardware and software
issues, user actions and user mobility. These errors can be
classified as permanent and transient failures.

Permanent failures are failures where the device becomes
unavailable for an extended period of time during which it
is unable to participate in processing results for the system.
Permanent failures can occur from software errors where
critical software has crashed due to software or hardware
faults or when users are shutting off their devices. A per-
manent device failure is equivalent to having less processing
units or power in our system. This results in an overall slow-
ing of the processing rate for our applications and can cause
more deadline misses.

Transient failures are the more interesting failures we deal
with as the device recovers from the failures and continues
to operate normally after a period of downtime. In software
errors, phone self shutdowns [12] and user actions such as
removing the battery from a visually unresponsive device or
manually resetting a device contribute a bit to the rate of
transient errors, the largest factor for mobile devices would
be user mobility [31]. Mobile devices make use of wireless
access points when they are able to, and these APs have a
typical range of less than 100 meters. When a user is outside
of coverage range he/she is unable to communicate with the
server, and during these times, if the device needs to send
results, they are considered to have failed. When the device
regains communication coverage, it resumes processing. We
use these mobility and failure statistics to extract a failure
distribution for our worker devices. [31] reports that the
time spent at any AP or location follows a log-normal dis-
tribution, and that the movement speeds of the users also
follow a log-normal distribution. Based on this result, in our
experiments, we have set the failure rates for our devices to
follow such a distribution.

Devices which display transient failures are still very use-
ful in our system. In our work, we predict the failure rate of
these devices due to their self-similar nature, a device which
fails often is expected to fail often in the future. We can
produce an expected time for different devices to perform
tasks which helps us develop a better schedule for the ap-
plications to meet their deadlines. By selectively replicating
tasks to less failure prone workers and profiling the execution
times of the tasks, we can effectively meet the real-time con-
straints, even under failures. Our focus in this paper is on
device failures; server failures can be addressed with the use
of backup servers and checkpointing techniques that record
the state of the server and transfer it to a backup server in
the event of a failure[19]. In our previous work, we have
studied the problem of fault tolerance for distributed object
systems[34] [38]. However, the issue of server failures is a
research area by itself, and is not considered in this paper.

3. BACKGROUND
In this section we first provide an introduction to the

MapReduce framework. For the baseline MapReduce im-
plementation we have used Misco [15], a distributed mobile
MapReduce platform targeted at any device that supports
Python and network connectivity. This is a porting of the
MapReduce system to run on a network of smartphones.
For completeness, in this section we give a brief description
of the specific implementation of Mapreduce we have devel-
oped to run on the network of smartphones. In the next
sections we describe the current work which is the real-time
model and the scheduling strategy.

3.1 The MapReduce Framework
The MapReduce framework [14] is a flexible, distributed

data processing framework designed as an abstract machine
to automatically parallelize the processing of long running
applications on petabyte sized data in clustered environ-
ments where nodes have high and stable connectivity, rela-
tively low failure rates and a shared file system. The MapRe-
duce programming model provides a simple way to split a
large computation into a number of smaller tasks; these
tasks are independent of each other and can be assigned
on different worker nodes to process different pieces of the
input data in parallel. The main insight of MapReduce is
that the programming model is clean and simple to use, yet
powerful enough to do sophisticated computations in paral-
lel. Due to the independent nature of the tasks, replication
of the tasks due to worker failure is simply a matter of re-
assigning the task at another worker if the server does not
receive a response from the first worker.

MapReduce was inspired by two functional language prim-
itives: map and reduce. The map function is applied on a
set of input data and produces intermediary < key, value >
pairs, these pairs are then grouped into R partitions by ap-
plying some partitioning function (e.g. hash(key) MOD R).
All the pairs in the same partition are passed into a reduce
function which produces the final results. The popularity
of the MapReduce framework is attributed to its simplicity,
portability and powerful functional abstractions. Applica-
tion development is greatly simplified as the user is only
responsible for implementing the map and reduce functions
and the system handles the scheduling, data flow, failures
and parallel execution of the applications.

3.2 The Misco System
The Misco system is a MapReduce implementation that

runs on mobile phones. Misco comprises a Master Server
and a number of Worker Nodes. The Master Server keeps
track of user applications, while the Worker Nodes are re-
sponsible for performing the map and reduce operations.
The Master server also maintains the input, intermediary
and result data associated with the applications, keeps track
of their progress and determines how application tasks should
be assigned to workers. [15] provides in-depth design and
implementation details of the system. The Misco system is
publicly available at http://www.cs.ucr.edu/∼ jdou/misco/.

The main responsibility of the worker is to process map
and reduce tasks and return the results to the server. When
a worker is free, it will contact the server and request a
task. Each task is characterized by the name of the applica-
tion which the task belongs to, the location of the module
containing the map or reduce operations and the location

349

of the input file. The worker stores locally: its input data,
module and any results it has generated for each task. Fi-
nally, a logger component is used to maintain local statistics
regarding the processing times of the tasks and progress.

The Server is in charge of keeping track of applications
submitted by the user and assigning tasks to workers. The
Server is multi-threaded, spawning a new thread to handle
incoming worker connections. Applications are created and
managed by the user using a browser interface. The server
consists of an Application Repository component that keeps
track of application input and output data, and an HTTP
Server that serves as the main communication between the
workers and the server. It is responsible for receiving re-
quests, displaying application statuses to the user via the
web UI and handling the downloading and uploading of data
files. The UDP Server is used to listen for incoming worker
logs, which it stores in Worker Logs.

The Server also gathers failure and computation time statis-
tics for the workers in the Client Information component.
The success rate of a worker is calculated as the number of
successful results it has returned divided by the total number
of tasks it has been assigned. In cases of transient failures,
if the worker is unable to contact the server when it returns
the results, it will abort the task and enter into idle mode
and poll the server for new tasks.

We have extended the system with a Scheduler component
that implements our scheduling approach (described in the
next sections). We have developed the system in Python and
run it on the Nokia N95 8GB smart-phones [39]. The reason
we use Python is because the Nokia N95 smart-phones sup-
port a beta implementation of Python 2.5.4 called PyS60.
Our design does not use any proprietary or any Python-
specific features, and therefore can be run on any Python
enabled phone or can be ported to different operating or
programming environments.

4. MICRORT SYSTEM MODEL

Figure 1: A simple visual representation of the map
reduce model.

We consider a system that consists of a set of N dis-
tributed applications A = A1, A2, ..., AN running on a set
of M worker nodes (mobile phones) W = W1,W2, ...,WM .
Each distributed application Aj is represented as a flow
graph (shown in Figure 1) that consists of a number of map
tasks (T j

map) and a number of reduce tasks (T j
reduce) execut-

ing in parallel on multiple worker nodes.
Distributed applications are triggered by the user, they

are aperiodic and their arrival times are not known a priori.
Each application Aj is associated with a number of parame-
ters: We call ready time rj the time the application becomes

available in the system. Deadlinej is the time interval, start-
ing at the ready time of the application, within which the
application Aj should be completed. The execution time,
exec timej of the application is the estimated amount of
time required for the application to complete. This is esti-
mated based on previous executions of the applications, by
measuring the difference from the ready time of the applica-
tion until all its map and reduce tasks complete. Thus, the
exec timej of an application depends on (1) the number of
T j
map and T j

reduce tasks, (2) the size of the application input
data, and (3) the number of worker nodes available to run
the tasks. This information is recorded and stored by the
Server for each application run in the system. We associ-
ated with each application a laxity value, which represents
a measure of urgency for the application and is used to order
the execution of the application tasks on the worker nodes.
Laxityj is computed as the difference between the Deadline
of the application and its estimated execution time. The
laxity value is adjusted dynamically based on failures and
queuing delays experienced by the tasks. The advantage
of using the laxity value is that it gives us an indication
of whether the execution of the tasks has delayed and how
close the task is to missing its deadline; the task with the
smallest laxity value has the higher priority, while, when the
laxity value becomes negative the task is estimated to miss
its deadline and thus it can be dropped. Our work targets
soft real-time systems, where missing a deadline is not catas-
trophic for the system. Thus, our goal is to maximize the
number of applications that meet their deadlines.

For each task t of an application Aj we compute: the
processing time τ j

t,k, the time required for the task to exe-
cute locally on worker Wk. This includes the time required
to process input data, upload the results to the server and
clean up any temporary files it generates. These times can
be either provided by the user or obtained easily through
profiling mechanisms with low overhead [29].

Our system schedules map and reduce tasks to execute in
parallel on the worker nodes. Each worker node is able to run
either a map or reduce task at any one time. Tasks cannot
be preempted once they have been assigned to a worker,
however, the execution of tasks from different applications
can interleave. The worker is only responsible for executing
the current task it is assigned, it does not keep track of the
tasks (and from which applications) it has completed as the
server maintains this information. This is possible because
all tasks are independent of each other and the system is
responsible for providing the proper input data for each task.

We are not concerned about the network topology of the
system, similar to other cell phone based systems [36], we
assume that if we have connection to the server, it is over
a one-hop HTTP connection. Any networking overhead is
implicitly accounted for by monitoring worker timings and
gathering statistics.

5. OUR SCHEDULING SCHEME
The main responsibility for our MiscoRT scheduler is to

assign tasks to workers when they make requests. We have
developed a two-level scheduling scheme, as follows (the ar-
chitecture of our system is shown in figure 2):

• The first-level scheduler, the Application Scheduler,
determines the order of execution of the applications
based on their urgencies and timing constraints. It es-

350

timates the execution times of the applications using
an analytical model that also considers mobile node
failures.

• The second-level scheduler, the Task Scheduler, dy-
namically schedules application tasks and uses the mea-
sured laxity values of the tasks to adjust their schedul-
ing order to compensate for queuing delays and worker
node failures.

5.1 Failure Model

Figure 2: Our system architecture.

In this section we present our model to estimate the exe-
cution times of the applications under failures. We assume
that the failures of the worker devices follow a Poisson distri-
bution and that failures are transient. In cases where per-
manent failures occur, the total number of workers would
be reduced as the failed workers cannot make any further
requests for tasks and are, therefore, not assigned any addi-
tional tasks. It has been shown that the time to failure for
systems can be accurately represented using a Poisson dis-
tribution [16]. Assume that λi is the failure arrival rate for
a single worker Wi. When a worker fails, all progress on the
task it was executing is lost, and the worker experiences a
failure downtime following a general distribution with mean
time for recovery μi.

For application Aj and worker Wi, we summarize these
parameters as follows:

• λi - failure arrival rate for worker Wi

• τ j
i - local processing time for task of application Aj on
worker Wi

• μi - mean recovery time from a failure for worker Wi

• wj
i - expected task processing time including failures

5.1.1 Single Task, Single Worker

Our basic unit of work is a single task executing on a sin-
gle worker Wi with processing time, including failures, C
(we omit superscripts and subscript where there is no am-
biguity). The probability of failure during a task processing
is τλ, the corresponding probability of success is 1 − τλ.
Let F be the number of failures before the first success, this
is a geometric series, from probability theory [32], we can
compute the expected number of failures using:

E[F] =
τλ

1− τλ
(1)

We now calculate the amount of time to successfully com-
plete a task. This is comprised of 3 parts: (1) a successful
run, requiring τ time, (2) the sum of all the times wasted
(W) processing a task before failures occur and (3) the sum
of all the downtime (D) in order for the worker to recover
from failures:

C = τ +
∑

W +
∑

D (2)

Since failure arrival follows a Poisson distribution, failures
occur at the workers with an exponential distribution and
tasks are expected to fail halfway through processing, so the
expected wasted processing time is given by:

E[W] =
τ

2
(3)

Let E[D] = μ be the mean recovery time from a failure.
Finally, we can compute the expected processing time for a
task on a node, including failures, as:

w = E[C] = τ +
τ

2
∗ τλ

1− τλ
+ μ ∗ τλ

1− τλ
(4)

5.1.2 Multiple Tasks, Multiple Nodes

We consider T tasks belonging to a single application Aj

and M workers. Each worker Wi can be characterized by a
different failure arrival rate parameter λi and mean failure
downtime μi. The total execution time Cj for all T tasks of
application Aj is the maximum of the individual processing
times for each worker executing tasks for this application.

Since all workers are either processing a task or in a fail-
ure state, we can model this by considering a equal-time
workload for each worker. The rate of work for worker Wi

is the inverse of its expected processing time: 1/wi. For the
workers to finish their tasks at the same time, the number
of tasks ρi assigned to worker Wi (1 ≤ i ≤ M) is:

ρi = � 1/wi∑
k∈M 1/wk

∗ T � (5)

Then, we can compute the expected execution time for the
application as:

exec timej = E[Cj] = maxi∈M(ρi ∗ wi) (6)

5.2 MiscoRT Application Scheduler
Our application scheduler is based on the least-laxity sched-

uler and is used by the server to determine the order of ex-
ecution for the applications in the system. The Least Laxity
First (LLF) scheduling algorithm has been shown to be ef-
fective in distributed real-time systems [29]. In LLF schedul-
ing, each application is associated with a laxity value which
represents its urgency. We compute the laxity value Laxityj
of an application Aj as the difference between its deadline

351

Pseudo Code 1 The MiscoRT Schedulers
MiscoRT Application Scheduler
Input: Set of applications A in system
for all Application Aj in A do

calculate Laxityj of Aj

Order A by Laxityj
Task ← TaskScheduler(Aj with smallest Laxityj)
return Task

MiscoRT Task Scheduler
Input: worker Wk requests a task, job Aj

step 1. if unassigned task T j
i ∈ Aj then return T j

i

step 2. if failed task T j
i ∈ Aj then return T j

i

step 3. T j
i ← slowest task in Aj

if T j
i will complete after deadlinej

and T j
i will complete on Wk before deadlinej then

return T j
i

and our estimate of the execution time of the application
under failures:

Laxityj = Deadlinej − current time− exec timej (7)

where the estimate of the application’s execution time is
computed using formula 6 to include worker node failures.

The laxity value for a distributed application is computed
when the application first enters the system, this is denoted
as the initial laxity. As an application executes, its laxity
value is adjusted to compensate for variations in the process-
ing speeds of the workers, worker node failures and queuing
delays. As workers start to fail and their failure rates change,
we use our analytical model to recalculate the expected ex-
ecution time and laxity. To minimize computational over-
heads, the laxity value for each application is computed only
when a worker makes a request. Applications with negative
laxities are estimated to miss their deadlines and their tasks
should not be scheduled ahead of applications which have
positive laxities. Note that no applications are dropped and
that all applications will complete eventually if at least one
worker remains available.

The advantage of this scheduling scheme is that the sched-
ule is driven by both the timing requirements of the appli-
cations and node failures, while it allows us to dynamically
adapt to changes of resource availability or queuing delays.
If the workers processing the tasks for a certain application
is slower, or exhibit failures, the laxity value of the appli-
cation will decrease and thus its priority will increase. For
applications with the same laxity value, a simple tie breaking
mechanism is used to decide which to schedule first; these
applications are treated in a first-come-first-served order.

5.3 MiscoRT Task Scheduler
The goal of the task scheduler is two-fold: First, to ensure

that all tasks of the application are scheduled for execu-
tion. Second, the task scheduler may dynamically change
the number of workers allocated to the application to com-
pensate for failures or queuing delays. If, however, the ap-
plication completes more quickly than projected, the ex-
cess workers can be used by other applications. When a
worker becomes available, the MiscoRT task scheduler de-
cides which task to run next, following these steps:
Step 1: The application scheduler determines the applica-
tion with the smallest laxity value (i.e., this is the appli-

cation with the highest priority in the system). The task
scheduler first checks whether any of the tasks of the appli-
cation have not been assigned yet. The primary insight of
this is that an application completes when all of its tasks
complete, thus we need to ensure that all of the application
tasks are scheduled for execution. During the execution of
an application, mobile devices may fail or become unavail-
able due to spotty connectivity; this can affect the capabil-
ity of an application to finish within its deadline. In these
cases we need to reinstantiate the tasks (these are called task
replicas) to other mobile devices. To minimize the number
of task replicas, we reassign tasks only if we have speculated
that the workers executing those tasks have failed or if the
task is not progressing as fast as it was estimated, causing
the application to miss its deadline.
Step 2: The next step is to check whether the task failed to
complete because of worker failures. We term that a task has
failed when all of the workers which it was assigned to, are
estimated to have failed. When the task scheduler assigns
a task t to a worker Wi, it records the start timet,i of the
task and the worker id processing the task, so that multiple
workers can be tracked in the case that the same task is later
assigned to other workers. When the task completes, the
task scheduler records the completion timet,i of the task. It
then computes the task processing time, τ j

t,i and averages it
over multiple runs of the task. Note that this time represents
the time required for one successful execution of the task.
Thus, the task scheduler can estimate that a worker has
failed if the time to process the task is significantly higher
than the average processing time τ j

t computed from previous
runs of the task. This information can be obtained at run-
time with low overhead (as we show in our experimental
section), or, in the absence of information about previous
task executions, we can use a user-defined threshold that
can be updated from the current runs.
Step 3: The last step is to check the progress of the as-
signed tasks. Using formula 4 we can estimate the amount
of time required for each task t to complete, as εjt,i = wj

i −
elapsed timet,i. (In the case that a task has been assigned
to multiple workers, the minimum εjt,i is used). We then
consider the task t with the largest remaining execution
time, εjt,i, this is considered as the slowest task and we check
whether this task can complete before its deadline. The idea
is, that, if the completion time of the slowest task is later
than the application’s deadline, then with high probabil-
ity the application is estimated to miss its deadline. This
is achieved by performing an execution time projection to
examine whether the progress of the task will cause the ap-
plication to miss its deadline. The task scheduler will also
evaluate whether allocating the task to the worker will en-
able the task to complete within the application’s deadline.
If this is not possible, then the task scheduler can use the
worker for executing other applications in the system.

Note, that, it is possible for the task scheduler to not as-
sign any tasks to the worker even if some tasks are not yet
complete. This occurs when tasks have already been as-
signed to workers and their estimated remaining completion
times εjt,i is smaller than the time it would take the new
worker to complete the task. Assigning an already assigned
task to the new worker will most likely lead to duplicated
work with no benefit to the application’s performance. In
our experiments we show that our scheme manages to min-
imize the duplicate work. Furthermore, note that, under

352

Figure 3: Our testbed of Nokia N95 8GB phones
and a Linksys Router.

high failure rates where multiple nodes have failed and ap-
plications have strict timing constraints, applications can
still miss their deadline. In such unstable environments, it
might not be possible to find enough resources to run all the
applications.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
We have conducted an extensive set of experiments to

evaluate the efficiency and performance of our scheduling
scheme using applications of different sizes and various worker
node failure rates.

Our experimental platforms consists of a testbed of 30
Nokia N95 8GB smart-phones [39]. The Nokia N95 has
ARM 11 dual CPUs at 332 Mhz, supports wireless 802.11b/g
networks, bluetooth and cellular 3g networks, 90 MB of main
memory and 8 GB of local storage. Our server is a commod-
ity computer with a Pentium-4 2Ghz CPU and 640 MB of
main memory. The server has a wired 100 MBit connection
to a Linksys WRT54G2 802.11g router. All of our phones
are connected via 802.11g to this router.

For the experiments, we used a set of 11 applications (mo-
bile tourist application, described below), 8 with 100KB in-
put data and 3 with 1MB input data. We set the deadlines
for the applications such that 5 applications have tight dead-
lines, 2 have medium and 3 have loose deadlines. We derived
these deadlines empirically by running the applications and
observing their runtimes, the deadlines used were between
100 and 550s. The failure of worker nodes follows a Poisson
distribution, as explained in section 5.1; to vary the failure
rates of our workers, we adjust the failure arrival rate, λ.
Each experiment is repeated 5 times.

To provide a fair comparison, we chose to compare our
scheduling scheme with theEarliest Deadline First (EDF)
scheduling policy, which is the most well known and effec-
tive real-time scheduler for single processor environments.
In EDF, applications are ordered based on their deadlines,
the application with the earliest deadline has the highest
priority. We paired the EDF application scheduler with a
sequential task scheduler. The same experimental parame-
ters such as deadline and data input were used for the com-
parisons.

We measure the performance of our MiscoRT scheduling
scheme using the following metrics: (1) Miss Ratio repre-
sents the fraction of applications that miss their deadlines
and (2) End-to-end time measures the time the execution of
the entire application set completes.

6.2 Mobile Tourist Application
We have built a mobile tourist application[4] [20], a location-

based social networking application, to evaluate the perfor-
mance of our approach. In the mobile tourist application,
tourists seek pictures of other tourists and the places where
these were taken in real-time, to identify popular locations
in a given geographical area that they visit. Popular loca-
tions are identified through the number of pictures taken at
these places.

To run the application we have compiled a dataset from
the Flickr photo sharing system. Flickr is an example of
a social application where users can keep photos of places
they have visited. In Flickr each picture is tagged with the
location (Latitude and Longitudes) where it was taken along
with the corresponding dates and times. Our dataset con-
sists of 50,000 image metadata (8.75 MB) taken from pub-
licly available Flickr photos. We queried the initial seed
photos from Santa Barbara and downloaded pictures from
these users, the resulting image locations span the globe.
This application operates on the user tags found in photo
metadata. The application counts the occurrences of each
tag and compiles a list of common tags to identify popular
picture types.

The map function creates key-value pairs where the key
is a tag and the value counts the instances of the key, the
value is initially 1. When there are multiple duplicate keys
from one map task input, they are grouped together and the
values summed before being sent to the server. The reduce
tasks add up all the values from the same key and arrive at
the most popular tags for photos.

This mobile tourist application is an example of a mo-
bile location-based social application that have recently seen
wide adoption and fully exercises all aspects of the system
and demonstrates the timeliness of our scheduler. More com-
plex applications mainly differ in the functions performed in
the map and reduce tasks and not in the system’s execution
sequence.

6.3 Performance of MiscoRT
For our first set of experiments, we have evaluated the per-

formance of our MiscoRT by measuring the deadline misses
and the end-to-end times of the applications. For this set of
experiments, we have set all workers to the same failure rate
and vary this failure rate. The reason we chose these met-
rics is because these are the standard performance metrics in
real-time systems. To further establish our choice, we note
here, that the reason for employing MapReduce is to satisfy
our desiderata, specifically, have a system that offers ease of
programmability and ease of adding and managing new re-
sources. Our goal is not to use the additional resources (ex-
tra smartphones) to do the work faster and increase through-
put, because it is difficult to send data around in a wireless
environment, and there are also privacy constraints. Rather,
the larger system can, easily and transparently to the pro-
grammer, be expanded to handle the additional data that
come from the additional resources (smartphones).

Figure 4 shows the application Miss ratio. As the fig-

353

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
pp

lic
at

io
n

D
ea

dl
in

e
M

is
s

R
at

e

Global Worker Failure Rates

MiscoRT
EDF

Figure 4: Application miss rate for MiscoRT com-
pared to EDF with uniform distribution of worker
failures.

 0

 500

 1000

 1500

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
nd

-t
o-

en
d

T
im

e
(s

)

Global Worker Failure Rates

MiscoRT
EDF

Figure 5: End-to-end times for MiscoRT com-
pared to EDF with uniform distribution of worker
failures.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Set 4Set 3Set 2Set 1

A
pp

lic
at

io
n

D
ea

dl
in

e
S

uc
ce

ss
 R

at
e

Lognormal Worker Failure Rates

MiscoRT
EDF

Figure 6: Application success rates for MiscoRT
compared to EDF with lognormal distribution of
worker failures.

 0

 100

 200

 300

 400

 500

 600

 700

Set 4Set 3Set 2Set 1

E
nd

-t
o-

en
d

T
im

e
(s

)

Lognormal Worker Failure Rates

MiscoRT
EDF

Figure 7: End-to-end times for MiscoRT com-
pared to EDF with lognormal distribution of
worker failures.

ure illustrates, for low worker failures, below 40% in this
case, there is sufficient resources for MiscoRT to schedule
all applications with only a few rare deadline misses. As
the worker failures increase further, both schedulers perform
very poorly, however, this is expected as very few devices are
available to do useful work. The figure shows that at low
failure rates the EDF algorithm causes some applications
to miss their deadlines. The reason this happens even with
small numbers of failures is that with EDF each task takes
approximately 50our algorithm results in a much better per-
formance.

The End-to-end times of the applications are shown in
Figure 5. Our scheduling scheme consistently performs bet-
ter than the EDF scheduler. At low failure rates, EDF ap-
plications complete 47% slower than MiscoRT and as failure
rates increase, EDF continues to perform worse than Mis-
coRT, being 10% slower at 50% failure rates. The reason is
that our task scheduler has the ability to adapt to failures
by selectively providing redundancy even as failure rates be-
come higher. As the failures increase, the end-to-end time
for both schedulers increase exponentially.

In a second set of experiments, we use a log-normal fail-
ure distribution among the workers to simulate the failure
characteristics from user mobility [31]. The 4 sets of failure
rates are shown in table 1. From figures 6 and 7, we see
that MiscoRT has a 30% higher success rate than EDF for
lower levels of failures and maintains a higher success rate
as more failures are introduced. MiscoRT also completes
applications faster than EDF by approximately 20% for all
our failure sets.

Comparison of MiscoRT with different Task Sched-
ulers

To further illustrate the benefit of our MiscoRT task sched-
uler, we performed experiments to show our MiscoRT task
scheduler’s performance compared to alternative task sched-
ulers. We use our MiscoRT application scheduler as the first
level scheduler and use different task schedulers as the sec-
ond level scheduler. We perform the same set of experiments
as in section 6.2, but due to lack of space, we only show the
results for log-normal worker failure rates. In particular, we
used the following task schedulers for comparison:

The random task scheduler is a naive scheduler which

354

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Set 4Set 3Set 2Set 1

A
pp

lic
at

io
n

D
ea

dl
in

e
S

uc
ce

ss
 R

at
e

Lognormal Worker Failure Rates

MiscoRT
Modified Hadoop

Sequential
Random

Figure 8: Application success rates for MiscoRT
compared to other task schedulers. Each task
scheduler was paired with the MiscoRT applica-
tion scheduler

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Set 4Set 3Set 2Set 1

E
nd

-t
o-

en
d

T
im

e
(s

)

Lognormal Worker Failure Rates

MiscoRT
Modified Hadoop

Sequential
Random

Figure 9: End-to-end times for MiscoRT com-
pared to other task schedulers. Each task sched-
uler was paired with the MiscoRT application
scheduler

Table 1: Log-normal Failure Rates for Workers

Worker 1 2 3 4 5 6 7 8 9 10
Set 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5
Set 2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.4 0.8
Set 3 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.8 0.9
Set 4 0.0 0.0 0.0 0.2 0.2 0.4 0.6 0.8 0.9 0.9

picks a random task from the application to execute. The
advantage of the random task scheduler is that it has very
low overhead, it does not have to store any information
about workers, but it wastes computational resources.

The sequential task scheduler is a baseline scheduler
which improves on the random task scheduler by reducing
the number of duplicate task assignments. It picks tasks in
sequential order until they successfully execute. This sched-
uler has low overhead as it does not keep track of statistics,
however, it does not consider worker failures.

The Modified Hadoop task scheduler is based on the
FIFO-based task scheduler used by the popular Hadoop
MapReduce framework [13]. Hadoop is designed for cluster-
based environments where there is constant feedback from
the workers informing the scheduler of their progress on
tasks. Our system, on the other hand, has limited resources
and no fixed infrastructure, thus, implementing such progress
tracking would be infeasible. To provide a fair comparison,
we follow the spirit of the Hadoop scheduler, however, we
attempt to speed up the execution time by re-assigning tasks
only when the previous worker is taking more than the av-
erage amount of time to complete that task.

The Miss Ratio in figure 8 and End-to-end times in
figure 9 demonstrates that our task scheduler consistently
outperforms its competitors. MiscoRT has a 25% to 40%
higher success rate than the other task schedulers. Mis-
coRT has comparable end-to-end application times with the
modified Hadoop scheduler when the failure rates are lower,
but performs better when failure rates are higher.

6.3.1 Model Validation
In our next experiment, we wanted to validate our model

by comparing the predicted execution time for an applica-

tion (using the model described in section 5.1) with actual
measured execution times of the application. For this exper-
iment, we used a single application consisting of 73 tasks.
We also assume that all worker nodes fail with the same
rate, and we varied the failure rate of the nodes. As figure
10 shows, our model is very accurate, as it’s predicted times
are very close to the measured times observed from running
the application in our system, even at high failure rates.

6.3.2 Scalability
We also wanted to measure the scalability on our system.

For this set of experiments, we varied the number of appli-
cations in the system, while the failure rates of the phones
were set to 0. Figure 11 shows the End-to-end times, it
increases linearly with the number of applications, as we ex-
pected, this is due to us having a fixed processing power and
linearly increase the amount of work.

6.3.3 Deadline Sensitivity
In this experiment, our goal was to test the sensitivity of

deadline value on the application miss rate. We have varied
the tightness of the deadlines by a constant factor, ranging
from the original deadlines to 20% of their values, while
leaving the other parameters the same. A tighter deadline
means that the applications have less time to execute. We
report the results when the global worker failure rate was set
to 20%, but we have obtained similar results for other failure
rates. Figure 12 shows that both schedulers perform worse
as the deadlines tighten, but MiscoRT outperforms EDF
consistently. When the deadlines are set very tight, at 0.2
of their original values, all applications miss their deadlines
when using EDF while only 70% miss their deadline using
MiscoRT.

355

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
nd

-t
o-

en
d

tim
e

(s
)

Worker failure rates (all workers)

Predicted
Actual

Figure 10: Model validation over various worker
failure rates.

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16 18 20

E
nd

-t
o-

en
d

tim
e

(s
)

Number of applications

Figure 11: End-to-end time as number of appli-
cations are varied.

6.3.4 Overhead and Resource Usage
In this set of experiments, we measure the overhead and

resource usage of our system. We monitor the CPU, memory
and power consumption using the Nokia Energy Profiler [2].
The MiscoRT system only requires 800KB of memory and
our scheduler does not introduce any additional overhead as
it is very small, requiring only 150 lines of code. This mem-
ory usage is very small compared the 90MB of free RAM
available.

As the application runs, the memory usage is dependent
on the user’s modules and how much of the data is stored
into memory. For our applications, during the map tasks,
we stored mapping key,value pairs in memory and required
slightly more memory than our input data pieces, up to an
additional 300KB. We use larger reduce partitions and our
additional memory requirements there went up to 700KB.

We also monitored the power usage on the phones. We
found that processing data requires 0.7 watts while network
access requires more than twice that amount of power at
1.6 watts. It is much more energy efficient to process data
locally than to send data over the network. The CPU uti-
lization for tasks is dependent on the application and also
on any other programs or program schedulers running on
the phone. MiscoRT will gladly use any processing power
available to it.

In the last experiment (figure 13) we also measured the
overhead of the Master Server. Note, that, the Master Server
is responsible to keep track of the user applications and
maintain the input, intermediate and result data from each
application submitted in the system. In this experiment, the
workload we used was an application with 1MB input data;
this was split to workers with 100 line pieces for each worker.
The figure shows that the Server manages to keep its load
below 6% at all times. We also measured the memory usage
of the Server. Our measurements indicate that the MiscoRT
Server uses 1,572,369 bytes on an Intel(R) Core(TM)2 Duo
CPU E8200 (running at 2.66GHz) processor.

7. RELATED WORK
Recently, many MapReduce systems have been introduced

[13] [43] [25] [40]. [25] targets graphics processors and [40]
provides MapReduce for multi-core and multiprocessor sys-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
pp

lic
at

io
n

D
ea

dl
in

e
M

is
s

R
at

e

Deadline Strictness

MiscoRT
EDF

Figure 12: Application miss rates as a function
of deadline strictness.

tems while are concerned with mobile devices. Hadoop [13]
is currently one of the most popular MapReduce frame-
works, is targeted at a cluster environment with long run-
ning applications. It offers a Capacity Scheduler which is a
fair scheduler that guarantees a predefined fraction of the
computing capacity to each queue. Disco [43] is another
framework, targeted at the same environment as Hadoop.
Disco provides a single first-come-first-serve scheduler, any
excess capacity in the system is then allocated to subse-
quent applications on the queue. Unlike these works, we
consider the problem of meeting the end-to-end real-time
requirements of the applications in resource restrictive envi-
ronments (mobile systems) and under unstable conditions.
[37] has implemented a MapReduce system on cell phones
and showed that cell phones already provide a significant
source of computational power. However, they do not con-
sider any timing concerns.

In our previous work, we have introduced Misco [15], a
MapReduce framework aimed at mobile phones, in this work,
we have extended the Misco system with a scheduling system
to provide support for applications with timing constraints
in the form of deadlines.

The problem of scheduling in the presence of failures has

356

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

S
er

ve
r

C
P

U
 U

sa
ge

 (
%

)

Time (s)

CPU usage

Figure 13: Master Server workload.

been studied in prior works, primarily in cluster-based and
distributed system settings [7] [44]. The main methods of
dealing with failures are spatial redundancy, temporal re-
dundancy and checkpointing. Spatial redundancy replicates
tasks on multiple nodes so that if any of the nodes fail,
the execution of the task is not interrupted; however, this
scheme requires extra nodes to run the replicas. Temporal
redundancy re-executes tasks after they have failed, this has
the disadvantage of requiring more time but does not re-
quire extra nodes. Checkpointing [19] is used to limit the
amount of work lost when failures occur, but the frequency
of checkpointing is an important consideration. Scheduling
distributed applications in mobile settings with restrictive
resources, frequent failures and network fluctuations, which
is the problem we are dealing with in this work, is not trivial.

Fault tolerant real-time scheduling is explored in [21] [11]
[6] [24] where the goal is to schedule applications to meet
hard real-time deadlines. [11] replicates a task K times
on homogeneous processors, while [24] considers heteroge-
neous processors. [21] tolerates one fault per time interval
by reserving enough slack in the schedule and [6] uses an AI
planner to generate feasible schedules for different possible
faults. In these works, schedules are first constructed offline
and are limited by the number of failures they can tolerate.
Unlike their work, we place no restriction on the number
of failures in our system and we are not considering hard
real-time requirements. [44] mathematically determines the
optimal replication factor for tasks. [17] explores the prob-
lem of placing replicas in a way so that the utility of the
system degrades gracefully when failures do occur. Proba-
bilistic reliability under failures is explored in [10] to provide
the best reliability given a number of resources or find the
minimum number of resources for a desired level of relia-
bility. The imprecise computation model, proposed in [8] is
based on tasks where precision can be exchanged for time-
liness. Our work, on the other hand, provides results based
on user supplied modules.

Middleware architectures for mobile users have also been
proposed [41]. The primary focus is on concerns such as in-
teroperability, context awareness, network connectivity and
server/client APIs. A first come first server scheduling strat-
egy for mobile devices has been proposed in [5]. However,
these systems do not consider real-time or fault-tolerant is-
sues. Fault-tolerant and real-time CORBA is explored in

[28] [23]; unlike our work they propose light weight repli-
cations for task groups on different nodes. [22] proposes
a method to split an application across both servers and
phones to improve its performance, but only deals with sin-
gle phone, server pairings. Our work is to improve the per-
formance of a distributed systems of phones.

Social applications [42] [9] [35] for phones have emerged re-
cently, however these are built over specialized systems. Our
objective is to make distributed mobile applications easier
to develop in order to become widely accessible to users and
application developers.

8. CONCLUSION
In this paper, we presented MiscoRT, a system for sup-

porting the execution of real-time applications on networks
of smartphones. We propose a scheduling system which con-
siders both the timing requirements of the applications and
the failure rates of the worker nodes when scheduling the
tasks. This is the first system, that we know of, that pro-
poses a real-time MapReduce scheduler for mobile environ-
ments. Through an extensive evaluation on our testbed of
Nokia N95 smart-phones, we demonstrate that our system
(1) performs effectively, even under failures, (2) has low over-
head, and (3) consistently outperforms its competitors. For
our future work, we plan to further explore data locality
aspects and consider device heterogeneity issues.

Acknowledgment
This research has been supported by the European Union
through the Marie-Curie RTD (IRG-231038) project, the
SemsorGrid4Env project and the MODAP project, and by
AUEB through a PEVE2 project.

9. REFERENCES
[1] Kin: Its nice to meet you. http://kin.com.

[2] Nokia energy profiler. http://www.forum.nokia.com/
main/ resources/ user experience/ powermanagement/
nokia energy profiler/.

[3] G.-S. Ahn, M. Musolesi, H. Lu, R. Olfati-Saber, and
A. T. Campbell. Metrotrack: Predictive tracking of
mobile events using mobile phones. In IEEE DCOSS,
June 2010.

[4] G. Andrienko, N. Andrienko, P. Bak, S. Kisilevich,
and D. Keim. Analysis of community-contributed
space- and time-referenced data (example of flickr and
panoramio photos). In IEEE Symposium on Visual
Analytics Science and Technology, Atlantic City, NJ,
Oct, 2009.

[5] H. K. Anna and J. Gerda. A robust decentralized job
scheduling approach for mobile peers in ad-hoc grids.
In CCGrid. Rio de Janeiro, Brazil, 5 May 2007.

[6] E. M. Atkins, T. F. Abdelzaher, K. G. Shin, and E. H.
Durfee. Planning and resource allocation for hard
real-time, fault-tolerant plan execution. Autonomous
Agents and Multi-Agent Systems, 4(1-2):57–78, 2001.

[7] H. Aydin. On fault-sensitive feasibility analysis of
real-time task sets. In RTSS, Lisbon, Portugal, pages
426–434, Dec 2004.

[8] H. Aydin, R. Melhem, and D. Mosse. Optimal
scheduling of imprecise computation tasks in the
presence of multiple faults. In RTCSA, South Korea,
Dec 2000.

357

[9] B. Bamba, L. Liu, A. Iyengar, and P. S. Yu.
Distributed processing of spatial alarms: A safe
region-based approach. In ICDCS, pages 207–214,
Washington, DC, USA, 2009.

[10] V. Berten, J. Goossens, and E. Jeannot. A
probabilistic approach for fault tolerant multiprocessor
real-time scheduling. IPDPS, Greece, 0:152, 2006.

[11] J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng.
Real-time task replication for fault tolerance in
identical multiprocessor systems. In RTAS, WA, Apr
2007.

[12] M. Cinque, D. Cotroneo, Z. Kalbarczyk, and R. K.
Iyer. How do mobile phones fail? a failure data
analysis of symbian os smart phones. In DSN, pages
585–594, Washington, DC, USA, 2007.

[13] D. Cutting. Hadoop core.
http://hadoop.apache.org/core/.

[14] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, San
Francisco, CA, USA, pages 137–150, Dec 2004.

[15] A. J. Dou, V. Kalogeraki, D. Gunopulos,
T. Mielikainen, and V. H. Tuulos. Misco: A
mapreduce framework for mobile systems. In PETRA
2010, Samos, Greece, June 2010.

[16] C. Ebeling. An Introduction to Reliability and
Maintainability Engineering. McGraw-Hill, 1997.

[17] P. Emberson and I. Bate. Extending a task allocation
algorithm for graceful degradation of real-time
distributed embedded systems. In RTSS, Barcelona,
Spain, Dec 2008.

[18] T. Facchinetti, L. Almeida, G. Buttazzo, and
C. Marchini. Real-time resource reservation protocol
for wireless mobile ad hoc networks. In RTSS,
Portugal, Dec 2004.

[19] T. H. Feng and E. A. Lee. Real-time distributed
discrete-event execution with fault tolerance. In
RTAS, St. Louis, MO, Apr 2008.

[20] J. Freyne, A. Brennan, B. Smyth, D. Byrne,
A. Smeaton, and G. Jones. Automated murmurns:
The social mobile tourist application. In SMW’09 -
Social Mobile Web 2009, 2009.

[21] S. Ghosh, R. Melhem, and D. Mosse. Enhancing
real-time schedules to tolerate transient faults. In
RTSS, Pisa, Italy, pages 120–129, Dec 1995.

[22] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and
G. Alonso. Calling the cloud: Enabling mobile phones
as interfaces to cloud applications. In Middleware,
November 30 - December 4 2009.

[23] A. S. Gokhale, B. Natarajan, D. C. Schmidt, and
J. K. Cross. Towards real-time fault-tolerant corba
middleware. Cluster Computing, 7(4):331–346, 2004.

[24] S. Gopalakrishnan and M. Caccamo. Task partitioning
with replication upon heterogeneous multiprocessor
systems. RTAS, San Jose, CA, USA, 06.

[25] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a mapreduce framework on graphics
processors. In PACT, ON, Canada, Oct 2008.

[26] T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher.
SPEED: A stateless protocol for real-time
communication in sensor networks. In ICDCS, Tokyo ,
Japan, May May 2003.

[27] P. S. Huan Li and K. Ramamritham. Scheduling
messages with deadlines in multi-hop real-time sensor
networks. In RTAS, pages 415–425, 2005.

[28] H.-M. Huang and C. Gill. Design and performance of
a fault-tolerant real-time corba event service. In
ECRTS, Dresden, Germany, pages 33–42, Aug 2006.

[29] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser.
Dynamic scheduling of distributed method
invocations. RTSS, Orlando, Florida, USA, Nov 2000.

[30] K. Karenos and V. Kalogeraki. Traffic management in
sensor networks with a mobile sink. IEEE TPDS,
21(10):1515 – 1530, 2010.

[31] M. Kim and D. Kotz. Extracting a mobility model
from real user traces. In INFOCOM, 2006.

[32] A. Leon-Garcia. Probability and Random Processes for
Electrical Engineering (2nd Edition). Prentice Hall,
July 1993.

[33] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic,
and T. He. RAP: A real-time communication
architecture for large-scale wireless sensor networks. In
IEEE RTAS, pages 55–66, San Jose, CA, Sep. 2002.

[34] P. Melliar-Smith, L. Moser, V. Kalogeraki, and
P. Narasimhan. The realize middleware for replication
and resource management. In Middleware’98, The
Lake District, England, September 1998.

[35] E. Miluzzo, C. Cornelius, A. Ramaswamy,
T. Choudhury, Z. liu, and A. Campbell. Darwin
phones: the evolution of sensing and inference on
mobile phones. In Mobisys 2010, June 15-18, 2010,
San Fransisco, CA, 2010.

[36] E. Miluzzo, N. D. Lane, K. Fodor, R. A. Peterson,
H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and
A. T. Campbell. Sensing meets mobile social
networks: the design, implementation and evaluation
of the cenceme application. In SenSys, 2008.

[37] S. Mishra, P. Elespuru, and S. Shakya. Mapreduce
system over heterogeneous mobile devices. In SEUS,
Newport Beach, CA, USA, 2009.

[38] L. Moser, P. Melliar-Smith, P. Narasimhan,
L. Tewksbury, and V. Kalogeraki. Eternal: Fault
tolerance and live upgrades for distributed object
systems. In Proceedings of the IEEE Information
Survivability Conference, Hilton Head, SC, Jan 2000.

[39] Nokia. N95 8gb device details.
http://www.forum.nokia.com/devices/N95 8GB.

[40] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. HPCA, 2007.

[41] T. Salminen and J. Riekki. Lightweight middleware
architecture for mobile phones. In PSC, Las Vegas,
NV, Jun 2005.

[42] A. Thiagarajan, L. Ravindranath, K. LaCurts,
S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson. Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones. In
SenSys, USA, 2009. ACM.

[43] V. Tuulos. Disco. http://discoproject.org/.

[44] F. Wang, K. Ramamritham, and J. A. Stankovic.
Determining redundancy levels for fault tolerant
real-time systems. IEEE Trans. Comput.,
44(2):292–301, 1995.

358

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

