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Abstract—Reconfigurable computing in the cloud helps to
solve many practical problems relating to scaling out data-
centers where computation is limited by energy consumption
or latency. However, for reconfigurable computing in the cloud
to become practical several research challenges have to be
addressed. This paper identifies some of the perquisites for
reconfigurable computing systems in the cloud and picks out
several scenarios made possible with immense cloud-based
computing capability.
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I. INTRODUCTION

Reconfigurable computing for some time has had the
potential to make a huge impact on mainstream high per-
formance computing. We now have very large capacity FP-
GAs which contain many highly parallel fine grain parallel
processing power, and the ability to define high bandwidth
custom memory hierarchies offers a compelling combination
of flexibility and performance. However, mainstream adop-
tion of reconfigurable computing has been hampered by the
need to use and maintain specialized FPGA-based boards
and clusters and the lack of programming models that make
this technology accessible to regular programmers. FPGAs
do not enjoy first class operating system support and lack the
application binary interfaces (ABIs) and abstraction layers
that other co-processing technologies enjoy (most notably
GPUs).

We believe it is time to place FPGAs on the same blades
as GPUs and CPUs in the cloud and offer them as a
managed service with a high-level programming interface.
We see a new dawn for reconfigurable computing that makes
this exciting technology available to millions of developers
without taking on the burden of maintaining specialized
hardware, and without having to invest in complex tool-
chains and programming models based on the low-level
details of circuit design. This paper explores cloud-based
heterogeneous computing and identifies some requirements
needed to make it a reality for a wider class of developers.

The major limitation on the growth potential of data-
centres is now energy consumption, and it is here that
specialised computing resources like FPGAs can have sig-
nificant impact: allowing us to scale cloud operations to an
extent which inefficient using just conventional processors.

The availability of very large scale reconfigurable computing
devices enables the deployment of this flexible technology
in contexts where in the past capacity limitations have
prevented their use as a generalized, shared and virtualized
resource.

A. Cloud Computing

Just a decade ago, it was common practise to purchase
physical machines and place them with a hosting company.
As the Internet’s popularity grew, their reliability and avail-
ability requirements also grew beyond a single data-center.
Sites such as Google and Amazon started building huge silos
in the USA and Europe, with correspondingly larger energy
demands. These providers had to provision for their peak
load, and had much idle capacity at other times.

At the same time, researchers were examining the pos-
sibility of dividing up commodity hardware into isolated
chunks of computation and storage, which could be rented
on-demand. The Xen hypervisor was developed as an open-
source solution to partition multiple untrusted operating
systems [1], and subsequently adopted by Amazon to un-
derpin its Elastic Computing service. It became the first
commercial provider of “cloud computing”—renting a slice
of a data-center to provide on-demand resources that can be
dynamically scaled up and down according to demand.

Cloud computing brought reconfigurable computing to the
software arena. Hardware resources are now dynamic, and
so sudden surges in load can be adapted to by adding more
virtual machines to a server pool until it subsides. This
resulted in a surge of new datacenter components designed
to scale across machines, ranging from storage systems like
Dynamo [2] to distributed computation with MapReduce [3].

B. Where are the Hardware Clouds?

Data-centers encourage horizontal scaling by increasing
the number of hosts. The vertical scaling model (more
powerful individual machines) is difficult due to the shift
to multi-core CPUs with fairly constant clock speed. IBM
notes that with “data-centers using 10–30 times more energy
per square foot than office space, energy use doubling every
5 years, and [..] delayed capital investments in new power
plants”, something must change [4]. The growth potential of



Figure 1. Split-trust devices on virtualised platforms have a management
domain that partitions physical resources, allocates portions to guests, and
enforces access rights. The details of the management policy is specific to
the type of resource, such as storage or networking.

these data-centers is now energy limited, and the inefficiency
of the software stack is beginning to take its toll.

II. RESEARCH DIRECTIONS

Cloud computing is quite new and evolving. We now look
at some of the major interest areas from that community, and
examine how reconfigurable FPGAs could help.

A. Operating Systems

The traditional role of an operating system of partition-
ing physical hardware is quite different when virtualised.
Hypervisors expose simple network and storage interfaces
to virtual machines (VMs), with the actual physical drivers
handled elsewhere [5]. Kernels that only run as VMs need
just a few device drivers to work, and no longer have to
support the full spectrum of devices. Figure 1 illustrates the
difference between managing physical devices and using a
portion of that resource from a virtualised application.

The management APIs in the control domain differ across
resource types. Networking involves bridging and topology
and integration with systems such as OpenFlow [6]. Storage
is concerned with snapshots and de-duplication of common
blocks across VMs [7]. However, the device exposed to the
VMs remains simple; often little more than a shared-memory
page with consumer/producer channel. These devices are
currently used for I/O, but could be extended to actually run
computation over the data, with the same high-throughput
and low-latency requirements. The VM could specify the
computation (e.g. as a DSL), and the management tools in-
terface it with the physical board and manage sharing across
VMs. This is simple from the programmer’s perspective, and
portable across different FPGA boards and tool-chains.

The availability of GPUs and programmable I/O boards
have led to the development of new software architectures.
Helios is a new operating system designed to simplify the
task of writing, deploying and profiling code across hetero-
geneous platforms [8]. It introduces “satellite kernels” that
export a uniform set of OS abstractions, but are independent
tasks that run across different resources.

B. Datacenter Programming

Processing large datasets requires efficiently partition-
ing the computation across many hosts. Distributed data-
flow frameworks such as MapReduce [3], Dryad [9] and
CIEL [10] all expose a simple programming model and
transparently handle the difficult aspects of distribution: fault
tolerance, resource scheduling, synchronization and message
passing.

These frameworks all build Directed Acyclic Graphs
(DAGs), where the nodes represent data and the edges are
computation over the data. The run-time schedules compute
on hosts and iteratively walks the DAG until a result is
obtained. It also prepares the host to ensure required data
is available locally. This preparation step can also include
compilation, and so an FPGA DSL could be transparently
scheduled to hardware (as available) or executed in software
if not available. The main challenge is to track the cost of re-
configuring FPGAs rather than just executing it in software,
but this is made easier since the run-time can inspect the size
of the input data at runtime. Mesos [11] investigates how
to partition physical resources across multiple competing
frameworks operating on the same set of hosts, which is
useful when considering fixed-size FPGA boards.

The recent surge of new components designed specifically
for datacenters also encourages research into new database
models that depart from SQL and traditional ACID models.
Mueller et al. programmed data processing operators on
top of large FPGAs, and concluded that the right com-
putation model is essential (e.g. an asynchronous sorting
network) [12]. Within these constraints however, they had
comparable performance and significantly improved power-
consumption and parallellisation—both areas essential to
successful datacenter databases in the modern world.

A close integration between high-level host languages and
FPGAs will greatly help adoption by mainstream program-
mers. The fact that C and C++ are considered low-level
languages in the cloud, and high-level to FPGA program-
mers is indicative of the cultural difference between the
two communities! There are a number of promising efforts
that embed DSLs in C/C++ code to ease their integration.
MORA is a DSL for streaming vector and matrix operations,
aimed at multimedia applications [13]. Designs can be
compiled into normal executables for functional testing,
before being retargeted at a hardware array. MARC uses
the LLVM compiler infrastructure to convert C/C++ code
to FPGAs [14]. Although performance is still lower than a
manually optimised FPGA implementation, it is significantly
less effort to design and implement portably due to its
higher-level approach. This quicker code/deployment/results
cycle is essential to incrementally get feedback about code
for the more casual programmer, who is using rented cloud
computing resources in order to save time in the first place.

Some languages now separate data-parallel processing



Figure 2. Malicious data can be crafted to exploit memory errors and
execute as code on a CPU (left). With an FPGA interface, it cannot execute
arbitrary code, and the CPU never iterates over the data (right).

explicitly so that they can utilise resources such as GPUs.
Data parallel Haskell integrates the full range of types
available modern languages, and allows sum types, recursive
types, higher-order functions and separate compilation [15].
Accelerator is a library to synthesise data-parallel programs
written in C# directly to FPGAs [16]. A more radical embed-
ding is via multi-stage programming, where programmers
specify abstract algorithms in a high-level language that is
put through a series of translation stages into the desired
architecture [17]. All of these approaches are highly relevant
to reconfigurable FPGA computing in the cloud, as they
extend existing, familiar programming languages with the
constraints required to compile sub-sets into hardware.

C. Information Security

The cloud is often used to outsource processing over
large datasets. The code implementing the batch-processing
is often written in C or Fortran, and a bug in handling
input data can let attackers execute arbitrary code on the
host machine (see Figure 2, left). Although the hypervisor
layer contains the attacker inside the virtual machine, they
still have access to many of the local network resources,
and worse, other (possibly sensitive) datasets. Exploits are
mitigated by using software privilege separation, but this
places trust in the OS kernel layer instead [18].

Data processing on the cloud using reconfigurable FPGAs
offers an exceptional improvement in security by shifting
that trust from software to hardware. Baking algorithm
implementations into FPGAs entirely removes the capability
of attackers to run arbitrary code, thus enforcing strong
privilege separation. The application compiles its algorithms
to an FPGA, and never directly manipulates the data itself
via the CPU. Malicious data never gets the opportunity to
run on the host CPU, and instead only a small channel exists
between the OS and FPGA to communicate results (see
Figure 2, right). The conventional threat model for FPGAs
is that a physical attacker can compromise its hardware
SRAM. When deployed in the cloud, the attacker cannot
gain physical access, leaving few attack vectors.

Moving beyond low-level security, there is also a realisa-
tion that data contents needs protection against untrusted
cloud infrastructure [19]. Encoding data processing tasks

across FPGAs enforces a data-centric view of computation,
distinct from coordinating computation (e.g. load balancing
or fault tolerance, which cannot compromise the contents of
data). Programming language researchers have mechanisms
for encoding information flow constraints [20], and more
recently, statistical privacy properties [21]. These techniques
are often too intrusive to fully integrate into general-purpose
languages, but are ideal for the domain-specific data-flow
languages which provide the interface between general-
purpose and reconfigurable FPGA computing.

Another intriguing development is homomorphic encryp-
tion, which permits computation over encrypted data with-
out being able to ever decrypt the underlying data. The
utility of homomorphic encryption has been recognised
for decades, but has so far been extremely expensive to
implement [22]. Cloud computing revitalises the problem,
as malicious providers might be secretly recording data
or manipulating results. Recently, there have been several
lattice-based cryptography schemes that reduce the complex-
ity cost of homomorphic encryption [23]. Lattice reduction
can be significantly accelerated via FPGAs; Detrey et al.
report a speedup of 2.12 of an FPGA versus a multi-core
CPU of comparable costs [24]. This points to a future
where reconfigurable million-LUT FPGAs could be used
to perform computation where even the cloud vendor is
untrusted!

Reducing the cost of cryptography in the cloud could also
have significant social impact. The Internet has seen large-
scale deployment of anonymity networks such as Tor [25]
and FreeNet for storing data [26]. Due to the encryption
requirements imposed by onion-routing, access to such
networks remains slow and high-latency. There have been
proposals to shift the burden of anonymous routing into
the cloud to fix this, but reducing the cost (financially)
remains one of the key barriers to more widespread adoption
of anonymity [27]. This is symptomatic of the broader
problem of improving networking performance in the cloud.
Central control systems such as OpenFlow are rapidly gain-
ing traction, along with high-performance implementation
in hardware [28]. Virtual networking is reconfigured much
more often than hardware setups (e.g. for load-balancing or
fault tolerance), and services such as Tor further increase the
gate requirements as computation complexity increases [29].

The challenge, then, for integration into the cloud, is how
to unify the demands of data-centric processing, language
integration, network processing into a single infrastructure.
Specific problems that have to be addressed in addition to
those mentioned earlier include:

• The need for better OS integration, device models, and
abstractions (as with split-trust in Xen described earlier)

• Without an ABI or source API, software re-use and
integration is very difficult. How can (for example)
OpenSSL transparently take advantage of an FPGA?

• Debugging and visualization support. General pur-



pose systems provide a hypervisor-kernel-userspace-
language runtime model that gets progressively easier
and higher-level to debug. Abstraction boundaries exist
where they don’t in current FPGAs. Staged program-
ming or functional testing in a general-purpose systems
makes this easier.

• We need to develop a common set of concepts, prin-
ciples and models for application execution on recon-
figurable computing platforms to allow collaboration
between universities and companies and to provide a
solid framework to build new innovations and applica-
tions. This kind of eco-system has been sadly lacking
for reconfigurable systems.

It is encouraging that cloud computing is driven by
fine-grained charging for the computation resources used.
Reconfigurable FPGAs driven down the cost of many types
of computation commonly found on the cloud, and thus a
community-driven deployment of a cloud setup with rentable
hardware would provide a focal point to “fill in the blanks”
for reconfigurable FPGA computing in the cloud.

It is not clear that these goals can be achieved by a
collection of parallel independent university and industry
projects. What is needed is a coordinated research program
involving members of the reconfigurable computing com-
munity working with each other and researchers in cloud
computing to define a new vision of where we would like
to go and then set standards etc. to try and achieve that goal.
For this to happen we will need some kind of wide ranging
joint research project proposal or standardization effort.

III. CONCLUSION

Reconfigurable computing is at the cusp of rising up
from being a niche activity accessible to only a small
group of experts to becoming a mainstream computing
fabric used in concert with other heterogeneous computing
elements like GPUs. For this to become a reality we need
to combine some of the successes in the FPGA-based
research with new thinking about programming models to
create a development environment for ‘civilian program-
mers’. This will require collaboration between researchers
in architecture, CAD tools, programming languages and
types, run-time system development, web services, scripting
and orchestration, re-targetable compilation, instrumentation
and monitoring of heterogeneous systems, and failure man-
agement. Furthermore, the requirements of reconfigurable
computing in a shared cloud service context also places new
requirements on CAD tools and architectures which are at
odds with their current requirements. Today FPGA vendors
produce architectures for use in an embedded context to be
programmed by digital design engineers.

Yesterday’s programmers of reconfigurable systems were
highly trained digital designers using Verilog. Today we are
at the cusp of a revolution which will make tomorrow’s
users of reconfigurable technology from regular software

engineers who map their algorithms onto a heterogeneous
mixture of computing resources to achieve currently un-
achievable levels of performance, management of energy
consumption and the execution of scenarios which promise
an ever more interconnected world. This paper has set out a
vision for a reconfigurable computing system in the cloud,
identified important research challenges and promising re-
search directions and illustrated scenarios that are made
possible by reconfigurable computing in the cloud.
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ing lattice reduction with FPGAs,” in Proceedings of the
First international conference on Progress in cryptology:
cryptology and information security in Latin America, ser.
LATINCRYPT’10. Springer-Verlag, 2010, pp. 124–143.

[25] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the
second-generation onion router,” in Proceedings of the 13th
conference on USENIX Security Symposium, ser. SSYM’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 21–21.

[26] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet:
a distributed anonymous information storage and retrieval
system,” in International workshop on Designing privacy
enhancing technologies: design issues in anonymity and un-
observability. New York, NY, USA: Springer-Verlag New
York, Inc., 2001, pp. 46–66.

[27] R. Mortier, A. Madhavapeddy, T. Hong, D. Murray, and
M. Schwarzkopf, “Using dust clouds to enhance anonymous
communication,” in Eighteenth International Workshop on
Security Protocols, Apr. 2010.

[28] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and
N. McKeown, “Implementing an OpenFlow switch on the
NetFPGA platform,” in Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communi-
cations Systems, ser. ANCS ’08. New York, NY, USA: ACM,
2008, pp. 1–9.

[29] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki,
J. Crenne, L. Gao, and R. Tessier, “Scalable network vir-
tualization using fpgas,” in Proceedings of the 18th an-
nual ACM/SIGDA international symposium on Field pro-
grammable gate arrays, ser. FPGA ’10. New York, NY,
USA: ACM, 2010, pp. 219–228.


