
l

ic pro-
thm has
Information Processing Letters 98 (2006) 41–46

www.elsevier.com/locate/ip

Low-complex dynamic programming algorithm
for hardware/software partitioning

Wu Jigang∗, Thambipillai Srikanthan

School of Computer Engineering, Nanyang Technological University, Singapore 639798

Received 17 February 2005; received in revised form 1 December 2005; accepted 7 December 2005

Available online 17 January 2006

Communicated by F.Y.L. Chin

Abstract

A low-complex algorithm is proposed for the hardware/software partitioning. The proposed algorithm employs dynam
gramming principles while accounting for communication delays. It is shown that the time complexity of the latest algori
been reduced from O(n2 ·A) to O(n ·A), without increase in space complexity, forn code fragments and hardware areaA.
 2005 Elsevier B.V. All rights reserved.

Keywords: Dynamic programming; Algorithms; Complexity; Hardware/software partitioning
by
ixed
ch-
to

ng
s a

are
tha

nce
but
Sw
re-

ted.
ra-

ong
ther
start

to
. In
part
can

cts,
2,
ys-

to
ed
u-
se
en-

er
P-

, de-
on
1. Introduction

Most modern electronic systems are composed
both hardware and software. In the design of such m
hardware/software (Hw/Sw) systems, co-design te
niques play more important role. It dominantly affects
overall system performance [1–5]. Hw/Sw partitioni
has been proposed over the last decade. It transform
application specification into communicating hardw
and software components of an embedded system
exhibit the desired behavior and satisfy the performa
constraints. Software is more flexible and cheaper,
hardware is faster. Thus, efficient techniques for Hw/
partitioning can achieve results superior to softwa
only solution.

Earlier approaches in [6–8] are hardware-orien
They start with a complete hardware solution and ite

* Corresponding author.
E-mail addresses: asjgwu@ntu.edu.sg (J. Wu),

astsrikan@ntu.edu.sg (T. Srikanthan).
0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.12.008
n

t

tively move parts of the system to the software as l
as the performance constraints are fulfilled. On the o
hand, [2,9,10] are software-oriented, because they
with a software program moving pieces to hardware
improve speed until the time constraint is satisfied
these approaches performance satisfiability is not
of the cost function. For this reason, the algorithms
easily be trapped in a local minimum.

Many approaches emphasis the algorithmic aspe
e.g., evolution algorithm [11], integer programming [1
13], simulated annealing algorithm [2,14] and ant s
tem algorithm [15]. These approaches are applied
different architectures and cost functions to provid
sub-optimal solution minimizing the application exec
tion time. It is difficult to name a clear winner becau
there have been no widely accepted benchmarks. G
erally, they require more iterations resulting in long
design cycle times as the partitioning problem is N
complete [16–18].

Despite many heuristics and approaches above
veloping exact algorithms to find an optimal soluti



42 J. Wu, T. Srikanthan / Information Processing Letters 98 (2006) 41–46

sed
S

ow
[19,
ch.

x-
le

e
lgo-
In

ar-
en-

lem
po-
ich

me

ose
ds
de
be
tion

ime
ays
esis
],
n-
an-
cent
rite

em

red
ctly
are.
ze

lock
r

ard
rob-
ions
ers
es
d in

p-

al
of

e.

of

of

ble

v-
ps,

up

ed
is still very important. Knudsen and Madsen propo
an algorithm called PACE employed in the LYCO
co-synthesis system for partitioning control data fl
graphs (CDFG) into hardware and software parts
20]. PACE is the latest dynamic programming approa
Its time complexity is O(n2 ·A) and the space comple
ity is O(n · A) for n code fragments and the availab
hardware areaA.

Unlike most of the previous work, in this paper, w
take a theoretical approach focusing only on the a
rithmic properties of hardware/software partitioning.
particular, we do not aim at partitioning for a given
chitecture, nor do we present a complete co-design
vironment. Rather, we restrict ourselves to the prob
of deciding, based on given cost values, which com
nents of the system to implement in hardware and wh
ones in software. Our contribution is reducing the ti
complexity of PACE from O(n2 ·A) to O(n ·A) without
increasing the space complexity.

2. Preliminaries

All assumptions in this paper are the same as th
given in [19,20]. In detail, an application correspon
to a CDFG which is divided into basic scheduling co
fragments/blocks (called blocks in short), that may
moved between hardware and software. The applica
is modeled as a sequence of blocksB1,B2, . . . ,Bn. The
corresponding hardware area, hardware execution t
software execution time and intercommunication del
for each block are provided in advance by a synth
system, e.g., LYCOS [20]. Fig. 1, cited from [19,20
shows the computational model for Hw/Sw partitio
ing, in which hardware blocks and software blocks c
not execute in parallel. It is assumed that the adja
hardware blocks are able to communicate the read/w
variables they have in common directly between th
without involving the software side. In Fig. 1,ai denotes
the area penalty of moving blockBi to hardware,si de-
notes the inherent speedup of moving blockBi to hard-
ware, andei denotes the extra speedup which is incur
because of blocks being able to communicate dire
with each other when they are both placed in hardw
The objective is to find the optimal partition to reali
the best possible speedup on a given hardware areaA.

LetA correspond to the knapsack size, and the b
Bi correspond to the itemi of the knapsack problem fo

Fig. 1. Computational model of 4 blocks.
,

1 � i � n. This problem can be reduced to the stand
0–1 knapsack problem, one of the NP-complete p
lems, for the particular case where the communicat
are ignored. It is clear that the problem which consid
communication is more difficult than the one that do
not, and thus the hardness of the problem considere
this paper is also NP-hard.

3. Algorithms

The algorithm PACE is a dynamic programming a
proach. It is based on the fact, thatany possible par-
tition can be thought of as composed of sequences of
blocks [19,20], which leads to the higher computation
complexity. LetSi,j , j � i � 1, denote the sequence
blocks Bi,Bi+1, . . . ,Bj . Gj is defined as{S1,j , S2,j ,

. . . , Sj,j }, which is called thej th group of the sequenc
G0 is defined as an empty set∅. The area penaltyai,j

of moving Si,j to hardware is computed as the sum

the individual block areas, i.e.,ai,j = ∑j
k=i ak . We use

following notations to formulize PACE.

1. speedup(Si,j , a) denotes the inherent speedup
movingSi,j to hardware with available areaa. For
example, in Fig. 1,speedup(S2,3,2) = 14, that is
the sum ofs2, e2 ands3. Whilespeedup(S2,3,1) = 0
because of not enough hardware area forS2,3, i.e.,
a2 + a3 = 2> 1.

2. Bestsp(Gj , a) denotes the best speedup achieva
by first moving a sequence fromGj to hardware
of areaa, and then in the remaining area mo
ing a sequence from one of the previous grou
Gj−1,Gj−2, . . . ,G1, to hardware.Bestsp(Gj , a) is
set to 0 forGj = ∅ or a � 0.

3. Bestsp(G1G2 · · ·Gj,a) denotes the best speed
achievable by moving sequences fromG1,G2, . . . ,
or Gj to hardware of areaa.

The algorithm PACE can be equivalently formuliz
to (A). The operation max over all values ofj returns
the maximum of the corresponding set.

(A)




Bestsp(Gj , a) = 0 for j = 0 ora � 0;

speedup(Si,j , a) =




0 for a < ai,j ;∑j
k=i

sk + ∑j−1
k=i

ek

for a � ai,j ;
Bestsp(Gj , a) = max1�i�j

{
speedup(Si,j , a)

+ Bestsp(Gi−1, a − ai,j )
};

Bestsp(G1G2 · · ·Gj ,a)

= max
{
Bestsp(Gj , a),Bestsp(G1G2 · · ·Gj−1, a)

};

i � j, j = 1,2, . . . , n.



J. Wu, T. Srikanthan / Information Processing Letters 98 (2006) 41–46 43

lar-

is

ks
CE
nly
that

tion
ti-

i-
rent
r-

or

al
-

r-

by

ble
ll

ev-
-

n

ch
Set

n

ely.
zed
-

la

e

e),
at

nd

se-
k
ed

it is
is

he
n

t to

E

C),
m-
n.
Let µ be an integer value called the area granu
ity, then the list of trial area is defined as〈A1,A2, . . . ,

Ai , . . . ,Am〉, whereAi = i · µ, andAm = A. As the
analysis in [19,20], the time complexity of PACE
O(n2 · m). It is O(n2 ·A) for µ = 1.

Unlike PACE, which relies on a sequence of bloc
for computation, the proposed algorithm called SPA
(Simplified PACE) is based on the assignments of o
the current block at a time. For example, assuming
the optimal HW/SW partitioning forB1,B2, . . . ,Bk−1

has been computed where the hardware area utiliza
is less thana, we now consider the method to par
tioning the blocksB1,B2, . . . ,Bk within the available
areaa. This is achieved by first arriving at all part
tioning possibilities based on representing the cur
block Bk in software or in hardware. The optimal pa
titioning results in the best possible speedup. IfBk is
implemented in software, the optimal partitioning f
B1,B2, . . . ,Bk for the hardware areaa is identical to
the optimal partitioning forB1,B2, . . . ,Bk−1 for hard-
ware areaa. If Bk is moved to hardware, the optim
partitioning forB1,B2, . . . ,Bk can be found by exam
ining partitioning for the blocksB1,B2, . . . ,Bk−1 for
areaa − ak . We employ the following notations to fu
ther describe our algorithm.

1. Bsp(k, a) denotes the best speedup achievable
moving some or all the blocks fromB1,B2, . . . ,Bk

to hardware of sizea. Bsp(k, a) is set to 0 fork = 0
or a = 0.

2. Bsp_sw(k, a) denotes the best speedup achieva
by keepingBk in software and moving some or a
the blocksB1,B2, . . . ,Bk−1 to hardware of sizea.
It is clear thatBsp_sw(k, a) = Bsp(k − 1, a) when
the hardware area will not be occupied by blockBk .
SetBsp_sw(k, a) to 0 for k = 0 ora = 0.

3. Bsp_hw(k, a) denotes the best speedup achi
able by movingBk to hardware and then mov
ing some or all blocks fromB1,B2, . . . ,Bk−1 to
areaa − ak . Bsp_hw(k, a) recursively depends o
Bsp_sw(k − 1, a − ak) andBsp_hw(k − 1, a − ak)

becauseBk−1 has two possible assignments, ea
for the case of software and hardware.
Bsp_hw(k, a) to −∞ for k = 0 ora = 0.

The best speedupBsp(k, a) is the maximum betwee
Bsp_sw(k, a) andBsp_hw(k, a) as the blockBk is as-
signed either to software or to hardware, respectiv
Thus, the proposed algorithm SPACE can be formuli
to the following (B).e0 is set to 0 throughout this pa
per.
(B)




Bsp_sw(k, a) = 0, Bsp_hw(k, a) = −∞,

Bsp(k, a) = 0 for k = 0 ora = 0;
Bsp_sw(k, a) = Bsp(k − 1, a);
Bsp_hw(k, a)

=




−∞ for a < ak;
max

{
Bsp_sw(k − 1, a − ak) + sk,

Bsp_hw(k − 1, a − ak) + sk + ek−1

}

for a � ak;
Bsp(k, a) = max

{
Bsp_sw(k, a),Bsp_hw(k, a)

};
k = 1,2, . . . , n.

Furthermore, according toBsp_sw(k, a) = Bsp(k −
1, a), the formula (B) can be simplified to the formu
(C) by replacingBsp_sw with the correspondingBsp.

(C)




Bsp_hw(k, a) = −∞, Bsp(k, a) = 0
for k � 0 ora = 0;

Bsp_hw(k, a)

=




−∞ for a < ak;
max

{
Bsp(k − 2, a − ak) + sk,

Bsp_hw(k − 1, a − ak) + sk + ek−1

}

for a � ak;
Bsp(k, a) = max

{
Bsp(k − 1, a),Bsp_hw(k, a)

};
k = 1,2, . . . , n.

Let (x1, x2, . . . , xn) be a feasible solution of th
partitioning problem, wherexi ∈ {1,0}. xi = 1 (xi =
0) indicatesBi is assigned to hardware (softwar
1 � i � n. Assuming, without loss of generality, th
PACE achieves the optimal solution(x1, x2, . . . , xk−1,

1,0, . . . ,0), which implies thatBk is the last block mov-
ing to hardware, we show our algorithm SPACE can fi
the optimal solution.

In PACE, one block is treated as a special block
quence of length 1, e.g.,Bk can be viewed as the bloc
sequenceSk,k . It is clear that the hardware area requir
by Bk is no larger than the given areaa becauseBk is
assigned to hardware in the optimal solution. Thus,
confirmed that, in formula (A), the optimal solution
produced from the sub-formula

Bestsp(Gk, a) = speedup(Sk,k, a)

+ Bestsp(Gk−1, a − ak,k).

It implies that the best speedup inB1,B2, . . . ,Bk con-
sists of the speedup ofBk and the best speedup of t
blocksB1,B2, . . . ,Bk−1, and this is directly reflected i
the calculation forBsp_hw(k, a) in formula (C). There-
fore, the two algorithms are equivalent with respec
the ability of achieving the optimal solution.

The following pseudo-code of the algorithm SPAC
is for n blocks and the list of trial area〈A1,A2, . . . ,Aj ,
. . . ,Am〉. The best speedupBsp(k,Aj ) is calculated
by the nested for-loops according to the formula (
followed by backtracking calculations as those e
ployed in PACE for determining the optimal solutio



44 J. Wu, T. Srikanthan / Information Processing Letters 98 (2006) 41–46

e

on-

d
is

oth
on.

d-

lcu-
4

3
in
nts

the
so-

ly

-
of

he
r

al

ted

the

ic

xity

nd
ntel
In SPACE, the calculations forBsp and Bsp_hw are
tracked by using the 3-tuple arraystrace andtrace_hw,
respectively. For example,trace(k, Aj ) = 〈′Bsp′, k −1,
Aj 〉 means that thekth block is assigned to softwar
and the backtracking continues intrace(k − 1,Aj ), and
trace(k,Aj ) = 〈′Bsp_hw′, k,Aj 〉 means that thekth
block is assigned to hardware and the backtracking c
tinues in trace_hw(k,Aj ). The arraypartition_list[1 :
n] is used to store the solution partitioningn blocks
within the areaAm.

Input: area penaltyai , inherent speedupsi and
extra speedupei , for 1� i � n;
trial areaAj for 1� i � m.

Output: the solutionpartition_list[1 : n].
Algorithm SPACE
begin
for all a �Am andk � n do {/* initializing */

Bsp_hw(0, a) := Bsp_hw(k,0) := −∞; e0 := 0;
Bsp(−1, a) := Bsp(0, a) := Bsp(k,0) := 0; }

for k := 1 to n do
for j := 1 to m do {

/* computingBsp_hw and makingtrace_hw */
if Aj < ak then {

Bsp_hw(k,Aj ) := −∞;
trace_hw(k,Aj ) := 〈′Bsp′, k − 1,Aj 〉}

else {
temp1 := Bsp(k − 2,Aj − ak) + sk ;
temp2 := Bsp_hw(k − 1,Aj − ak) + sk + ek−1;
if temp1> temp2 then {

Bsp_hw(k,Aj ) := temp1;
trace_hw(k,Aj ) := 〈′Bsp′, k − 2,Aj − ak}

else {
Bsp_hw(k,Aj ) := temp2;
trace_hw(k,Aj ) := 〈′Bsp_hw′, k − 1,Aj − ak〉}

};
/* computingBsp and makingtrace */
if Bsp(k − 1,Aj ) > Bsp_hw(k,Aj )

then { Bsp(k,Aj ) := Bsp(k − 1,Aj );
trace(k,Aj ) := 〈′Bsp′, k − 1,Aj 〉};

else { Bsp(k,Aj ) := Bsp_hw(k,Aj );
trace(k,Aj ) := 〈′Bsp_hw′, k,Aj 〉};

}; /* end of the two for-loops */
/* backtracking along the trace for the solution */
〈answ,numb,area〉 := trace(n,Am); /* initializing */
for i := 1 to n do partition_list[i] := ′sw′;
repeat

if answ = ′Bsp_hw′ then {
partition_list[numb] := ′hw′;
〈answ,numb,area〉 := trace_hw(numb,area) }

else 〈answ,numb,area〉 := trace(numb,area);
until (numb < 1) or (area � 0);
end.

Intuitively, Figs. 2 and 3 show how PACE an
SPACE execute for the example given in Fig. 1. It
clear that SPACE is simpler than PACE whereas b
algorithms produce the same optimal soluti
In Fig. 2, S12 and S22 (denotespeedup(S1,2, a) and
speedup(S2,2, a), respectively) are calculated in a
vance for Bestsp(G2, a) and Bestsp(G1G2, a). The
operation max works on the set of 2 elements ca
lated byaddition, but the size of the set increases to
for Bestsp(G4, a). However, the calculations in Fig.
are quite simple. Unlike PACE, the operation max
SPACE always works on the set of at most two eleme
calculated byaddition for all Bsp_hw(k, a), 1� k � 4.
This provides for elegant means to accelerating
computation. The computing trace of the optimal
lution is shown by the underlined data.

Theorem 1. Given n blocks and the list of trial hard-
ware area 〈A1,A2, . . . ,Am〉, both the time complexity
and the space complexity of SPACE are O(n · m), i.e.,
O(n · A) for total hardware area A with granularity
of 1.

Proof. According to the formula (C), SPACE direct
uses the basic information of each block, i.e.,ak , sk and
ek−1 for block Bk , k � n, to calculate the current op
timal partition. The operation max works on the set
only 2 elements produced by at most 3additions per
iteration. Hence, the computing time forBsp(k, a) is
bounded by O(1) for the currentk anda. This concludes
that the computing time forBsp(n,Am) is bounded by
O(n · m), which corresponds to the running time of t
nested for-loops in the pseudo-code of SPACE, fon

blocks and the list of trial area〈A1,A2, . . . ,Am〉. On
the other hand, the backtracking for finding the optim
solution can be finished in O(max(n,m)). Hence, the
time complexity of SPACE is dominated by the nes
for-loops of pseudo-code and it is bounded by O(n ·m).

On the space requirement, SPACE has to keep
values ofBsp(i, j) for all i � n − 1 andj � m to com-
pute Bsp(n,m). That is the characteristic of dynam
programming algorithms. In the pseudo-code,Bsp(n,

m), Bsp_hw(n,m), trace(n,m) andtrace_hw(n,m) are
n × m arrays. This concludes that the space comple
of SPACE is bounded by O(n · m). �
4. Simulations

To verify above analysis in complexity, SPACE a
PACE are simulated in C on a personal computer—I
Pentium-4, 3 GHz, 1 GB RAM. For blockBk , 1� k �
n, ak is randomly generated and satisfies

∑n
k=1 ak � A

for a given areaA. The speedupsk andek are randomly
generated in[100,1000] and in[10,100], respectively.



J. Wu, T. Srikanthan / Information Processing Letters 98 (2006) 41–46 45
Areaa

1 2 3

G1 S11 5 5 5
Bestsp(G1, a) max{5} = 5 max{5} = 5 max{5} = 5

G2 S12 0 17 17
S22 10 10 10

Bestsp(G2, a) max{0,10} = 10 max{17,10+ 5} = 17 max{17,10+ 5} = 17
Bestsp(G1G2, a) max{10,5} = 10 max{17,5} = 17 max{17,5} = 17

G3 S13 0 0 21
S23 0 14 14
S33 2 2 2

Bestsp(G3, a) max{0,0,2} = 2 max{0,14+ 0,2+ 10} = 14 max{21,14+ 5,2+ 17} = 21
Bestsp(G1G2G3, a) max{2,10} = 10 max{14,17} = 17 max{21,17} = 21

G4 S14 0 0 0
S24 0 0 28
S34 0 16 16
S44 10 10 10

Bestsp(G4, a) max{0,0,0,10} = 10 max{0,0,16+ 0,10+ 10} = 20 max{0,28+ 0,16+ 10,10+ 17} = 28
Bestsp(G1G2G3G4, a) max{10,10} = 10 max{20,17} = 20 max{28,21} = 28

Fig. 2. Computations of PACE for the example shown in Fig. 1.

Areaa

1 2 3

Bsp_hw(1, a) max{0+ 5,−∞ + 5+ 0} = 5 max{0+ 5,−∞ + 5+ 0} = 5 max{0+ 5,−∞ + 5+ 0} = 5
Bsp(1, a) max{(0,5} = 5 max{0,5} = 5 max{0,5} = 5

Bsp_hw(2, a) max{0+ 10,−∞ + 10+ 2} = 10 max{0+ 10,5+ 10+ 2} = 17 max{0+ 10,5+ 10+ 2} = 17
Bsp(2, a) max{5,10} = 10 max{5,17} = 17 max{5,17} = 17

Bsp_hw(3, a) max{0+ 2,−∞ + 2+ 2} = 2 max{5+ 2,10+ 2+ 2} = 14 max{5+ 2,17+ 2+ 2} = 21
Bsp(3, a) max{10,2} = 10 max{17,14} = 17 max{17,21} = 21

Bsp_hw(4, a) max{0+ 10,−∞ + 10+ 4} = 10 max{10+ 10,2+ 10+ 4} = 20 max{17+ 10,14+ 10+ 4} = 28
Bsp(4, a) max{10,10} = 10 max{17,20} = 20 max{21,28} = 28

Fig. 3. Computations of SPACE for the example shown in Fig. 1.

Fig. 4. Comparisons in execution time between PACE and SPACE.
ion
rly
ith

E

an
CE
Fig. 4 shows the simulation results for the execut
times of the algorithms SPACE and PACE. It is clea
evident that the execution time of PACE increases w
the number of the blocks (n) in the order of O(n2) for
a given hardware areaA. The execution time of SPAC
on the other hand increases only in the order of O(n).
Moreover, the execution time of SPACE is far less th
that of PACE. For example, the execution time of PA



46 J. Wu, T. Srikanthan / Information Processing Letters 98 (2006) 41–46

is
en-
tion
CE

al-
ss.
to

lts
n

Fur-
xity

e

re–
3rd
y,

esis
4–

d-
IEE

ly-
ems,
de-

and
ion
chi-

ing
ign

ig-

la-
oft-
a-

go-
rti-
on

vel
p.

chi-
at.

are
ign
ning
.
ft-
ci.,

li-
ign

vel
nf.
S),

ling
ld-
99–

B.
fig-
47

al-
ign

al-
th
gn,

ax-
Au-
is about 1000 s while the execution time of SPACE
only about 0.6 s for the case of 2500 randomly g
erated blocks and area of size 3600 units. Simula
results clearly show that the proposed algorithm SPA
is notably faster than PACE.

5. Conclusions

We have proposed a new dynamic programming
gorithm to accelerate the Hw/Sw partitioning proce
It is shown that the proposed algorithm is superior
PACE in terms of time complexity. Simulation resu
confirm that it provides for optimal partitioning eve
when communication overheads are incorporated.
thermore, it has been verified that the time comple
of the latest algorithm is reduced from O(n2 · A) to
O(n ·A), without increase in space complexity, whern

refers to the number of blocks for hardware areaA.

References

[1] J.I. Hidalgo, J. Lanchares, Functional partitioning for hardwa
software codesign using genetic algorithms, in: Proc. of 2
EUROMICRO Conf. New Frontiers of Information Technolog
1997, pp. 631–638.

[2] R. Ernst, J. Henkel, T. Benner, Hardware–software co-synth
for micro-controllers, IEEE Design Test Comput. 10 (1993) 6
75.

[3] J. Harkin, T.M. McGinnity, L.P. Maguire, Partitioning metho
ology for dynamically reconfigurable embedded systems,
Proc. Comput. Digital Techniques 147 (2000) 391–396.

[4] L. Bianco, M. Auguin, G. Gogniat, A. Pegatoquet, A path ana
sis based partitioning for time constrained embedded syst
in: Proc. 6th Internat. Workshop on Hardware/Software Co
sign (CODES/CASHE), 1998, pp. 85–89.

[5] V. Srinivasan, S. Govindarajan, R. Vemuri, Fine-grained
coarse-grained behavioral partitioning with effective utilizat
of memory and design space exploration for multi-FPGA ar
tectures, IEEE Trans. VLSI Syst. 9 (2001) 140–158.

[6] R. Niemann, P. Marwedel, Hardware/software partitioning us
integer programming, in: Proc. of IEEE/ACM European Des
Automation Conference (EDAC), 1996, pp. 473–479.

[7] R. Gupta, G.D. Micheli, Hardware–software cosynthesis for d
ital systems, IEEE Design Test Comput. 10 (1993) 29–41.
[8] R.K. Gupta, C. Coelho, G. De Micheli, Synthesis and simu
tion of digital systems containing interacting hardware and s
ware components, in: Proc. 29th ACM, IEEE Design Autom
tion Conference, 1992, pp. 225–230.

[9] F. Vahid, D.D. Gajski, J. Gong, A binary-constraint search al
rithm for minimizing hardware during hardware/software pa
tioning, in: Proc. of IEEE/ACM European Design Automati
Conference (EDAC), 1994, pp. 214–219.

[10] F. Vahid, D.D. Gajski, Clustering for improved system-le
functional partitioning, in: Proc. 8th IEEE/ACM Internat. Sym
System Synthesis, 1995, pp. 28–33.

[11] G. Quan, X. Hu, G.W. Greenwood, Preference-driven hierar
cal hardware/software partitioning, in: Proc. of IEEE Intern
Conf. on Computer Design, 1999, pp. 652–657.

[12] R. Niemann, P. Marwedel, An algorithm for hardware/softw
partitioning using mixed integer linear programming, in: Des
Automation for Embedded Systems, Special Issue: Partitio
Methods for Embedded Systems, vol. 2, 1997, pp. 165–193

[13] M. Weinhardt, in: Integer Programming for Partitioning in So
ware Oriented Codesign, in: Lecture Notes in Comput. S
vol. 975, Springer, Berlin, 1995, pp. 227–234.

[14] Z. Peng, K. Kuchcinski, An algorithm for partitioning of app
cation specific system, in: Proc. IEEE/ACM European Des
Automation Conference (EDAC), 1993, pp. 316–321.

[15] G. Wang, W. Gong, R. Kastner, A new approach for Task le
computational resource bi-partitioning, in: Proc. Internat. Co
on Parallel and Distributed Computing and Systems (PDC
2003.

[16] S. Jinwoo, K. Dong-In, S.P. Crago, A communication schedu
algorithm for multi-FPGA systems, in: Proc. IEEE Symp. Fie
Programmable Custom Computing Machines, 2000, pp. 2
300.

[17] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck,
Schmidt, Dynamic scheduling of tasks on partially recon
urable FPGAs, IEE Proc. Comput. Digital Techniques 1
(2000) 181–188.

[18] H. Oudghiri, B. Kaminska, Global weighted scheduling and
location algorithms, in: Proc. of IEEE/ACM European Des
Automation Conference, 1992, pp. 491–495.

[19] P.V. Knudsen, J. Madsen, PACE: A dynamic programming
gorithm for hardware/software partitioning, in: Proc. of 4
IEEE/ACM Internat. Workshop Hardware/Software Codesi
1996, pp. 85–92.

[20] J. Madsen, J. Grode, P.V. Knudsen, M.E. Petersen, A. H
thausen, LYCOS: The Lyngby co-synthesis system, Design
tomat. Embedded Syst. 2 (1997) 195–235.


