Available online at www.sciencedirect.com

st.':lENCE@DIRE(.':TEo Informqtlon
Processing
e Letters
ELSEVIER Information Processing Letters 98 (2006) 4146

www.elsevier.com/locate/ipl

Low-complex dynamic programming algorithm
for hardware/software partitioning

Wu Jigang, Thambipillai Srikanthan

School of Computer Engineering, Nanyang Technological University, Sngapore 639798
Received 17 February 2005; received in revised form 1 December 2005; accepted 7 December 2005
Available online 17 January 2006
Communicated by F.Y.L. Chin

Abstract

A low-complex algorithm is proposed for the hardware/software partitioning. The proposed algorithm employs dynamic pro-
gramming principles while accounting for communication delays. It is shown that the time complexity of the latest algorithm has
been reduced from @2 - A) to O(n - A), without increase in space complexity, focode fragments and hardware aréa
0 2005 Elsevier B.V. All rights reserved.

Keywords: Dynamic programming; Algorithms; Complexity; Hardware/software partitioning

1. Introduction tively move parts of the system to the software as long
as the performance constraints are fulfilled. On the other

Most modern electronic systems are composed by hand, [2,9,10] are software-oriented, because they start
both hardware and software. In the design of such mixed with a software program moving pieces to hardware to
hardware/software (Hw/Sw) systems, co-design tech- improve speed until the time constraint is satisfied. In
nigues play more importantrole. It dominantly affects to these approaches performance satisfiability is not part
overall system performance [1-5]. Hw/Sw partitioning of the cost function. For this reason, the algorithms can
has been proposed over the last decade. It transforms areasily be trapped in a local minimum.
application specification into communicating hardware ~ Many approaches emphasis the algorithmic aspects,
and software components of an embedded system thate.g., evolution algorithm [11], integer programming [12,
exhibit the desired behavior and satisfy the performance 13], simulated annealing algorithm [2,14] and ant sys-
constraints. Software is more flexible and cheaper, but tem algorithm [15]. These approaches are applied to
hardware is faster. Thus, efficient techniques for Hw/Sw different architectures and cost functions to provided
partitioning can achieve results superior to software- sub-optimal solution minimizing the application execu-
only solution. tion time. It is difficult to name a clear winner because

Earlier approaches in [6-8] are hardware-oriented. there have been no widely accepted benchmarks. Gen-
They start with a complete hardware solution and itera- erally, they require more iterations resulting in longer

design cycle times as the partitioning problem is NP-

* Corresponding author. complet_e [16-18]. -

E-mail addresses: asjgwu@ntu.edu.sg (J. Wu), Despite many heuristics and approaches above, de-
astsrikan@ntu.edu.sg (T. Srikanthan). veloping exact algorithms to find an optimal solution

0020-0190/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/}.ipl.2005.12.008

42 J. WU, T. Srikanthan / Information Processing Letters 98 (2006) 41-46

is still very important. Knudsen and Madsen proposed 1< i < n. This problem can be reduced to the standard
an algorithm called PACE employed in the LYCOS 0-1 knapsack problem, one of the NP-complete prob-
co-synthesis system for partitioning control data flow lems, for the particular case where the communications
graphs (CDFG) into hardware and software parts [19, are ignored. It is clear that the problem which considers
20]. PACE is the latest dynamic programming approach. communication is more difficult than the one that does
Its time complexity is @n? - A) and the space complex- not, and thus the hardness of the problem considered in
ity is O(n - A) for n code fragments and the available this paper is also NP-hard.
hardware areal.

Unlike most_ of the previous work, in this paper, we g Algorithms
take a theoretical approach focusing only on the algo-
rithmic properties of hardware/software partitioning. In) . . .
particular, we do not aim at partitioning for a given ar- The alggrlthm PACE is a dynamic programming ap-
chitecture, nor do we present a complete co-design en-Proach. It is based on the fact, thaty possible par-
vironment. Rather, we restrict ourselves to the problem {tion can be thought of as composed of sequences of
of deciding, based on given cost values, which compo- blocks[19,20], which leads to the higher computational

nents of the system to implement in hardware and which COMPIexity. LetS; ;, j >i > 1, denote the sequence of
ones in software. Our contribution is reducing the time PIOCKS Bi, Bit1, ..., Bj. G; is defined ag$y,;, Sz j,

complexity of PACE from @r2- A) to O(r - A) without e ,_Sj,j},_which is called thg'th group of the sequence.
increasing the space complexity. Go is defined as an empty sgt The area penalty; ;

of moving S; ; to hardware is computed as the sum of
2. Preliminaries the individual block areas, i.eq; j = Y/ _; ax. We use

following notations to formulize PACE.

All assumptions in this paper are the same as those
given in [19,20]. In detail, an application corresponds 1. speedup(S; ;,a) denotes the inherent speedup of
to a CDFG which is divided into basic scheduling code moving S; ; to hardware with available area For
fragments/blocks (called blocks in short), that may be example, in Fig. 1speedup(S2 3, 2) = 14, that is
moved between hardware and software. The application the sum of, e andsz. While speedup(S2,3, 1) =0
is modeled as a sequence of blodks By, ..., B,. The because of not enough hardware areastos, i.e.,
corresponding hardware area, hardware execution time, g5 + a3 =2> 1.
software execution time and intercommunication delays 2. Bestsp(G|, a) denotes the best speedup achievable
for each block are provided in advance by a synthesis by first moving a sequence fro; to hardware

system, e.g., LYCOS [20]. Fig. 1, cited from [19,20], of areaa, and then in the remaining area mov-
shows the Computational model for HwW/Sw partition- |ng a sequence from one of the previous groups,
ing, in which hardware blocks and software blocks can- Gj-1,G;-2,...,G1,t0ohardwareBestsp(G ;, a) is

not execute in parallel. It is assumed that the adjacent ggttg 0 forG; =@ ora <0.
hardware blocks are able to communicate the read/write 3 Bestsp(Gle‘mGj,a) denotes the best speedup
variables they have in common directly between them achievable by moving sequences fré, Go, .

without involving the software side. In Fig. &, denotes or G ; to hardware of area.
the area penalty of moving blodk; to hardwares; de- ’
notes the inherent speedup of moving bldgko hard- The algorithm PACE can be equivalently formulized

ware, anc; denotes the extra speedup whichis incurred ;4 (A). The operation max over all values pfreturns
because of blocks being able to communicate directly {ha maximum of the corresponding set.

with each other when they are both placed in hardware.

The objective is to find the optimal partition to realize Bestsp(Gj,a)=0 forj=0o0ra<0;
the best possible speedup on a given hardware.drea 0 fora<a j;
Let .4 correspond to the knapsack size, and the block speedup(S;, j.a) =1 S5 + Zi;il e

B; correspond to the iternof the knapsack problem for

fora > aj,j;
a=1 a»=1 as=1 as=1 (A) Bestsp(G j, @) = maxy ;< j { speedup(s; ;. a)
@ ei=2 ,@ e:=2 fpl es=4 @ +Bestsp(G_1.a —a; j)}:
s1=5 s2=10 §3=2 s4=10 Bestsp(GlG2~--Gj,a)

= max{Bestsp(G j, a), Bestsp(G1G2--- G j_1.a)};

Fig. 1. Computational model of 4 blocks.
g P i<j, j=12....n

J. W, T. Srikanthan / Information Processing Letters 98 (2006) 41-46

Let u be an integer value called the area granular-
ity, then the list of trial area is defined &4, A>, ...,

Ai, ..., An), whereAd; =i - u, and A4,, = A. As the
analysis in [19,20], the time complexity of PACE is
Om? - m). Itis O(n?- A) for = 1.

Unlike PACE, which relies on a sequence of blocks
for computation, the proposed algorithm called SPACE
(Simplified PACE) is based on the assignments of only
the current block at a time. For example, assuming that
the optimal HW/SW partitioning foB1, Bo, ..., Br_1
has been computed where the hardware area utilization
is less thanz, we now consider the method to parti-
tioning the blocksB1, Ba, ..., B within the available
areaa. This is achieved by first arriving at all parti-
tioning possibilities based on representing the current
block By in software or in hardware. The optimal par-
titioning results in the best possible speedupBjfis
implemented in software, the optimal partitioning for
B1, By, ..., B; for the hardware area is identical to
the optimal partitioning forB1, Bo, ..., Bx_1 for hard-
ware areau. If By is moved to hardware, the optimal
partitioning for B1, Bo, ..., Bx can be found by exam-
ining partitioning for the blocksB1, By, ..., Bx—1 for
areaa — ax. We employ the following notations to fur-
ther describe our algorithm.

1. Bsp(k, a) denotes the best speedup achievable by
moving some or all the blocks fromy, Bo, ..., B
to hardware of size. Bsp(k, a) is setto O fork =0
ora=0.

. Bsp_sw(k, a) denotes the best speedup achievable
by keepingB; in software and moving some or all
the blocksBy, B>, ..., Bi_1 to hardware of size.

It is clear thatBsp_sw(k, a) = Bsp(k — 1, a) when
the hardware area will not be occupied by bldk
SetBsp sw(k,a)to 0 fork=0o0ra =0.

. Bsp_hw(k,a) denotes the best speedup achiev-
able by movingB; to hardware and then mov-
ing some or all blocks fronBy, Bo, ..., By—1 t0
areaa — ay. Bsp_hwi(k, a) recursively depends on
Bsp sw(k —1,a — a;) andBsp_hw(k — 1,a — ay)
becauseB;_1 has two possible assignments, each
for the case of software and hardware. Set
Bsp_hw(k, a) to —oo for k =0 ora = 0.

The best speedugsp(k, a) is the maximum between
Bsp_sw(k, a) andBsp_hw(k, a) as the blockB; is as-
signed either to software or to hardware, respectively.
Thus, the proposed algorithm SPACE can be formulized
to the following (B).¢o is set to O throughout this pa-
per.

43
Bsp_sw(k, a) = Bsp_hw(k, a) = —o0
Bsp(k,a) =0 fork=0o0ra=0;
Bsp_sw(k, a) = Bsp(k — 1,a);
Bsp_hw(k, a)
—oo fora <ag;
®) Bsp sw(k —1,a —
= ! max{ B ,a —ag) + Sk,
Bsp_hw(k —1,a —ay) + s¢ + ex—1
fora > ay;
Bsp(k, a) = max{Bsp_sw(k, a), Bsp_hw(k, a) };
k=1,2,...,n
Furthermore, according tBsp_sw(k, a) = Bsp(k —

1, a), the formula (B) can be simplified to the formula
(C) by replacingBsp_sw with the correspondingsp.

Bsp_hw(k, a) = —o0, Bsp(k,a) =0

fork <0ora=0;

Bsp_hw(k, a)
—oo fora <ag;

© _ max{ Bsp(k — 2,a — ay) + s, }
Bsp_hw(k — 1,a —ag) + sp + ex—1
fora > ay;
Bsp(k, a) = max{Bsp(k — 1,a), Bsp_hw(k,a)}:
k=12, ..., n.
Let (x1,x2,...,x,) be a feasible solution of the

partitioning problem, where; € {1,0}. x; =1 (x;
0) indicates B; is assigned to hardware (software),
1 < i < n. Assuming, without loss of generality, that
PACE achieves the optimal solutiamy, xo, ..., xx_1,
1,0,...,0), which implies thatB is the last block mov-
ing to hardware, we show our algorithm SPACE can find
the optimal solution.

In PACE, one block is treated as a special block se-
guence of length 1, e.gB; can be viewed as the block
sequencey k. It is clear that the hardware area required
by By is no larger than the given areabecauseBy, is
assigned to hardware in the optimal solution. Thus, it is
confirmed that, in formula (A), the optimal solution is
produced from the sub-formula

Bestsp(Gy, a) = speedup(S «, a)

+ Bestsp(Gi—1,a — ag k).

It implies that the best speedup B, B>, ..., Bx con-
sists of the speedup df; and the best speedup of the
blocksB1, Bo, ..., Br_1, and this is directly reflected in
the calculation foBsp_hw(k, a) in formula (C). There-
fore, the two algorithms are equivalent with respect to
the ability of achieving the optimal solution.

The following pseudo-code of the algorithm SPACE

is forn blocks and the list of trial aregdy, A», ..., A;,

..., An). The best speeduBsp(k, A;) is calculated
by the nested for-loops according to the formula (C),
followed by backtracking calculations as those em-
ployed in PACE for determining the optimal solution.

44 J. WU, T. Srikanthan / Information Processing Letters 98 (2006) 41-46

In SPACE, the calculations foBsp and Bsp_hw are clear that SPACE is simpler than PACE whereas both
tracked by using the 3-tuple arrayysice andtrace_hw, algorithms produce the same optimal solution.
respectively. For examplé&ace(k, A;) = (Bsp/, k — 1, In Fig. 2, S1» and Sz, (denotespeedup(Sy 2, a) and
Aj) means that théth block is assigned to software gpeedup(S, 5, a), respectively) are calculated in ad-
and the backtracking continuestiace(k — 1, A;), and vance for’Bestsp(Gz,a) and Bestsp(G1Ga, a). The

. —_— / .
gl?nccek(li(s’ﬁé;i]é(:?tsop_r\gv;/d’v]f/;rij;nr(;](tar?gzatcr:ll?ttratglgcr:h c:On_operation max works on the set of 2 elements calcu-
9 9 lated byaddition, but the size of the set increases to 4

tinues intrace_hw(k, A;). The arraypartition_list[1 : . A
n] is used to store the solution partitionimgblocks ~ OF BEStSP(G4,). However, the calculations in Fig. 3

within the aread,),. are quite simple. Unlike PACE, the operation max in
SPACE always works on the set of at most two elements
Input: area penalty;;, inherent speedug and calculated byaddition for all Bsp_hw(k,), 1 <k < 4.
extra speedup;, for 1<i < n; This provides for elegant means to accelerating the
trial areaA; for 1 <i <m. computation. The computing trace of the optimal so-
Output: the solutionpartition_list[1: n]. lution is shown by the underlined data.
Algorithm SPACE
begin Theorem 1. Given n blocks and the list of trial hard-
for all a < Ay, andk < n do {/* initializing */ ware area (A1, A, ..., A,), both the time complexity
Bsp_hw(0, a) := Bsp_hwi(k, 0) := —o0; eg := 0; and the space complexity of SPACE are O(n - m), i.e.,
Bsp(—1,a) :=Bp(0, a) :=Bsp(k, 0) := 0; } O(n - A) for total hardware area A with granularity
for k:=1ton do of 1.

for j:=1tom do{
/* computingBsp_hw and makingrace_hw */
if Aj < ay then {
Bsp_hwi(k, A;) := —o0;

Proof. According to the formula (C), SPACE directly
uses the basic information of each block, ie,,s; and

trace_hw(k. A;) := (Bsp/.k — 1. A} ex—1 for block By, k < n, to calculate the current op-
dse{ ‘ timal partition. The operation max works on the set of

templ := Bsp(k — 2, A; — ay) + s¢; only 2 elements produced by at mos@a@ditions per

temp2:=Bsp_hw(k — 1, A; —ag) + s + ex—1; iteration. Hence, the computing time f&sp(k, a) is

if templ > temp2 then { bounded by @1) for the currenk anda. This concludes
Bsp_hw(k, A;) := templ; that the computing time foBsp(n, A,,) is bounded by
trace hw(k, A;) := ('Bsp’,k — 2, A; — ar} O(n - m), which corresponds to the running time of the

else{ nested for-loops in the pseudo-code of SPACE,for

Bsp_hw(k, A;) := temp2;

trace_wik. A;) = (Bsp .k — 1. A; — ap)} blocks and the list of trial aread,, Ay, ..., A,). On

the other hand, the backtracking for finding the optimal

};* computingBsp and makingrace */ Sfolution can pe finished in.((Dwax(n',m)). Hence, the
if Bsp(k — 1, 4;) > Bsp_hwik, A;) time complexity of SPACE is dominated by the nested
then { Bsp(k, A;) := Bsp(k — 1, A;); for-loops of pseudo-code and it is bounded by On).
trace(k, A;) := (Bsp, k — 1, A))}; On the space requirement, SPACE has to keep the
ese{ Bsp(k, A;) :=Bsp_hw(k, A)); values ofBsp(i, j) foralli <n—1andj < m to com-
trace(k, A;) := ('Bsp_hw', k, A;)}; pute Bsp(n, m). That is the characteristic of dynamic
}; 1* end of the two for-loops */ programming algorithms. In the pseudo-co@sp(n,
/* backtracking along the trace for the solution */ m), Bsp_hw(n, m), trace(n, m) andtrace_hw(n, m) are
answ, numb, area) := trace(n, A,); /* initializing */ n x m arrays. This concludes that the space complexity
for i :=1ton do partition_list[i] :="sw’; of SPACE is bounded by @ - m). O

repeat
if answ='Bsp_hw' then {
partition_listinumb] :="hw’;
(answ, numb, area) := trace_hw(numb, area) }

4. Simulations

else (answ, numb, area) := trace(numb, area); To verify above analysis in complexity, SPACE and
until (numb < 1) or (area < 0); PACE are simulated in C on a personal computer—Intel
end. Pentium-4, 3 GHz, 1 GB RAM. For blocB;, 1 <k <

n, ax is randomly generated and satisfley_; ar < A
Intuitively, Figs. 2 and 3 show how PACE and for a given aread. The speedup, ande; are randomly
SPACE execute for the example given in Fig. 1. It is generated if100 1000 and in[10, 100Q], respectively.

J. W, T. Srikanthan / Information Processing Letters 98 (2006) 41-46 45
Areaa
1 2 3

G, S11 5 5 5
Bestsp(G1, a) max{5} =5 max5} =5 max5} =5
G2 S12 0 17 17

S22 10 10 10
Bestsp(Go, a) max{0, 10} = 10 max17,10+ 5} =17 max17,10+ 5} =17
Bestsp(G1G2, a) max10, 5} = 10 max17,5} =17 max17,5} =17
G3 S13 0 0 21

$23 0 14 14

533 2 2 2
Bestsp(G3, a) max0, 0, 2} = 2 max0,14+ 0,2+ 10} =14 max21,14+ 5,2+ 17} =21
Bestsp(G1G2G3, a) max2, 10} =10 max14, 17} =17 max21,17} =21
Gy S14 0 0 0

S24 0 0 28

S34 0 16 16

S44 10 10 10
Bestsp(G4, a) max0, 0,0, 10} = 10 max0, 0,16+ 0,10+ 10} = 20 max0, 28+ 0,16+ 10,10+ 17} = 28
Bestsp(G1G2G3Gg4, a) max{10, 10} = 10 max20,17} = 20 max28, 21} = 28

Fig. 2. Computations of PACE for the example shown in Fig. 1.

Areaa
1 2 3
Bsp_hw(1, a) max0+5,—co+5+0} =5 max0+5, —oo+5+4+0}=5 max0+5, —oo+54+0}=5
Bsp(1, a) max{(0,5} =5 max0, 5} =5 max0, 5} =5
Bsp_hw(2, a) max{0+ 10, —oco + 10+ 2} =10 max{0+ 10,5+ 10+ 2} =17 max{0+ 10,5+ 10+ 2} =17
Bsp(2, a) max{5, 10} = 10 max5, 17} = 17 max5, 17} =17
Bsp_hw(3, a) max{0+2, —co+2+2}=2 max5+2,10+ 242} =14 max{5+2,174+2+2} =21
Bsp(3, a) max{10, 2} =10 max17, 14} =17 max17,21} =21
Bsp_hw(4, a) max{0+ 10, —oco + 10+ 4} =10 max10+ 10,2+ 10+ 4} =20 max17+ 10,14+ 1044} =28
Bsp(4, a) max{10, 10} =10 max17, 20} = 20 max21, 28} =28
Fig. 3. Computations of SPACE for the example shown in Fig. 1.
fggg : —o— A=1200 zj] —o— A=1200 %
1600 | —5—A=2000 : —o— A=2000

@ 400 | —E—A=2800 © 061 _n A-2800 X /A

E 1200 4 X A=8600 A E 054 —x—A=3600 T/A/

‘é 1000 /\/ ‘é 04 < gEs

'-g 800 K % 0.3 /:/—/”/

g 600 N $ 02 e

o 400 w W

200 M 0.1 ,/Z'\://o,
04— - = = . . 0 +—X= . . - - -
100 500 1000 1500 2000 2500 3000 100 500 1000 1500 2000 2500 3000
The number of the blocks The number of the blocks

PACE

SPACE

Fig. 4. Comparisons in execution time between PACE and SPACE.

Fig. 4 shows the simulation results for the execution a given hardware ared. The execution time of SPACE
times of the algorithms SPACE and PACE. It is clearly on the other hand increases only in the order ¢f)O

evident that the execution time of PACE increases with Moreover, the execution time of SPACE is far less than

the number of the blocks:J in the order of @n?) for that of PACE. For example, the execution time of PACE

46 J. WU, T. Srikanthan / Information Processing Letters 98 (2006) 41-46

is about 1000 s while the execution time of SPACE is [8] R.K. Gupta, C. Coelho, G. De Micheli, Synthesis and simula-
only about 0.6 s for the case of 2500 randomly gen- tion of digital systems containing interacting hardware and soft-
erated blocks and area of size 3600 units. Simulation ‘vare components, in: Proc. 29th ACM, IEEE Design Automa-

. tion Confi , 1992, pp. 225-230.
results clearly show that the proposed algorithm SPACE on ~wonjerence, 92, pp : :
. bly f h [9] F. Vahid, D.D. Gajski, J. Gong, A binary-constraint search algo-
is notably faster than PACE. rithm for minimizing hardware during hardware/software parti-

tioning, in: Proc. of IEEE/ACM European Design Automation

5. Conclusions Conference (EDAC), 1994, pp. 214-219.
[10] F. Vahid, D.D. Gajski, Clustering for improved system-level
We have proposed a new dynamic programming al- functional partitioning, in: Proc. 8th IEEE/ACM Internat. Symp.
gorithm to accelerate the Hw/Sw partitioning process. System Synthesis, 1995, pp. 28-33.

It is shown that the proposed algorithm is superior to [11] G. Quan, X. Hu, G.W. Greenwood, Preference-driven hierarchi-
PACE in terms of time complexity Simulation results cal hardware/software partitioning, in: Proc. of IEEE Internat.

. . .) Lo Conf. on Computer Design, 1999, pp. 652-657.
confirm that it provides for optimal partitioning even [12] R. Niemann, P. Marwedel, An algorithm for hardware/software

when communication overheads are incorporated. Fur- partitioning using mixed integer linear programming, in: Design
thermore, it has been verified that the time complexity Automation for Embedded Systems, Special Issue: Partitioning
of the latest algorithm is reduced from(ﬁ? - A) to Methods for Embedded Systems, vol. 2, 1997, pp. 165-193.
O(n - A), without increase in space complexity, where [13] M. Weinhardt, in: Integer Programming for Partitioning in Soft-

ware Oriented Codesign, in: Lecture Notes in Comput. Sci.,
refers to the number of blocks for hardware arka vol. 975, Springer, Berlin, 1995, pp. 227234,

[14] Z. Peng, K. Kuchcinski, An algorithm for partitioning of appli-
cation specific system, in: Proc. IEEE/ACM European Design
Automation Conference (EDAC), 1993, pp. 316-321.

[1] J.I. Hidalgo, J. Lanchares, Functional partitioning for hardware— [15] G. wang, W. Gong, R. Kastner, A new approach for Task level

software codesign using genetic algorithms, in: Proc. of 23rd computational resource bi-partitioning, in: Proc. Internat. Conf.

EUROMICRO Conf. New Frontiers of Information Technology, on Parallel and Distributed Computing and Systems (PDCS),
1997, pp. 631-638. 2003.

[2] R. Ernst, J. Henkel, T. Benner, Hardware—software co-synthesis
for micro-controllers, IEEE Design Test Comput. 10 (1993) 64—
75.

[3] J. Harkin, T.M. McGinnity, L.P. Maguire, Partitioning method-
ology for dynamically reconfigurable embedded systems, IEE
Proc. Comput. Digital Techniques 147 (2000) 391-396.

[4] L. Bianco, M. Auguin, G. Gogniat, A. Pegatoquet, A path analy-
sis based partitioning for time constrained embedded systems,
in: Proc. 6th Internat. Workshop on Hardware/Software Code-

References

[16] S. Jinwoo, K. Dong-In, S.P. Crago, A communication scheduling
algorithm for multi-FPGA systems, in: Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, 2000, pp. 299-
300.

[17] O. Diessel, H. EIGindy, M. Middendorf, H. Schmeck, B.
Schmidt, Dynamic scheduling of tasks on partially reconfig-
urable FPGAs, |IEE Proc. Comput. Digital Techniques 147
(2000) 181-188.

sign (CODES/CASHE), 1998, pp. 85-89. [18] H. Ogdghiri, B Kami_nska, Global weighted scheduling and_ al-
[5] V. Srinivasan, S. Govindarajan, R. Vemuri, Fine-grained and location _algorlthms, in: Proc. of IEEE/ACM European Design

coarse-grained behavioral partitioning with effective utilization Automation Conference, 1992, pp. 491-495.

of memory and design space exploration for multi-FPGA archi- [19] P.V. Knudsen, J. Madsen, PACE: A dynamic programming al-

tectures, IEEE Trans. VLSI Syst. 9 (2001) 140—158. gorithm for hardware/software partitioning, in: Proc. of 4th
[6] R. Niemann, P. Marwedel, Hardware/software partitioning using IEEE/ACM Internat. Workshop Hardware/Software Codesign,

integer programming, in: Proc. of IEEE/ACM European Design 1996, pp. 85-92.

Automation Conference (EDAC), 1996, pp. 473-479. [20] J. Madsen, J. Grode, P.V. Knudsen, M.E. Petersen, A. Hax-
[7] R. Gupta, G.D. Micheli, Hardware—software cosynthesis for dig- thausen, LYCOS: The Lyngby co-synthesis system, Design Au-

ital systems, |IEEE Design Test Comput. 10 (1993) 29-41. tomat. Embedded Syst. 2 (1997) 195-235.

