

Maxwell – a 64 FPGA Supercomputer

Rob Baxter1, Stephen Booth,
Mark Bull, Geoff Cawood,
James Perry, Mark Parsons,
Alan Simpson, Arthur Trew

EPCC and FHPCA

Andrew McCormick,
Graham Smart,
Ronnie Smart

Alpha Data ltd and FPHCA

Allan Cantle,
Richard Chamberlain,

Gildas Genest

Nallatech ltd and FHPCA

1 communicating author: r.baxter@epcc.ed.ac.uk; 0131 651 3579;
 University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Edinburgh EH9 3JZ

Abstract
We present the initial results from the FHPCA
Supercomputer project at the University of Edinburgh.
The project has successfully built a general-purpose 64
FPGA computer and ported to it three demonstration
applications from the oil, medical and finance sectors.
This paper describes in brief the machine itself –
Maxwell – its hardware and software environment and
presents very early benchmark results from runs of the
demonstrators.

1. Introduction

Against the background of possibilities in the

emerging area of high-performance reconfigurable
computing [1]the FHPCA was founded in early 2005 to
take forward the ideas of an FPGA-based supercomputer.

The FPGA High Performance Computing Alliance
(FHPCA [2]) is focused on the development of
computing solutions using FPGAs to deliver new levels
of performance. It will enable a range of applications to
be able to exploit the benefits that such an approach will
deliver.

This will be achieved through the implementation of a
large scale demonstrator or ‘supercomputer’ – Maxwell –
and supported by a structured programme of knowledge
diffusion designed to raise industry awareness, interest
and create commercial advantage.

The Alliance builds on Scotland’s world-class
reputation in the field of reconfigurable computing. The
first commercial reconfigurable computer was created by
a Scottish company in the early 1990s and Scottish
companies and scientists have since been instrumental in
developing and advancing the technology.

The alliance partners are Algotronix, Alpha Data,
EPCC, the Institute for System Level Integration,
Nallatech and Xilinx.

The project has been facilitated and part funded by the
Scottish Enterprise Industries team.

This paper is structured as follows. Section 2
describes the basic design goals behind Maxwell. Section
3 delves into the details of the machine’s hardware while
Section 4 describes the software environment and
programming methodology used in porting a number of
demonstration applications. Section 5 discusses three key
demonstration applications from the fields of financial
services, medical imaging and oil and gas exploration.,
and Section 6 presents early performance results from
these applications on Maxwell. Finally Section 7 offers
thoughts for the future.

2. Design goals

Maxwell is designed as a proof-of-concept general-

purpose FPGA supercomputer. Given the specialized
nature of hardware acceleration the very concept of
‘general-purpose’ for HPRC is worth investigating in its
own right. Can a machine built to be as broadly
applicable as possible deliver enough FPGA performance
to be worth the cost?

2.1 Target application requirements

FPGA computers generally, and Maxwell specifically,

will not be good at everything. The fairly extreme nature
of hardware acceleration means that certain applications
will be more suited to it than others. We note here a
number of these features which the Maxwell (and similar)
FPGA-based system places on applications.

Significant runtime in computational kernels. The
use of FPGA acceleration is an extreme optimisation
technique similar to the use of hand-coded assembly
language. It requires the replacement of sections of a
program (computational kernels) with new optimised
versions. For this to be economic the effort required to
develop the replacement versions must be justified by the

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

reduction in overall runtime of the application. As only
the performance of the optimised routines is improved
this in turn requires that a significant amount of the
application runtime should take place in a small number
of computational kernels that are amenable to FPGA
optimisation.

Computational kernels are small. FPGA
acceleration builds accelerated versions of key
computational kernels out of FPGA resources. These
FPGA resources are limited which in turn limits the
complexity of the kernels that can be implemented.
Though the size of FPGAs will increase over time it will
always be advantageous to have small computational
kernels, as this will increase the scope for parallel
processing within the accelerated kernel.

Computational kernel data can be made private.
Maxwell has dedicated memory banks connected to the
FPGAs. To achieve reasonable performance the kernels
need to access the majority of their data from these
dedicated memory banks. Before an application can be
ported to the FPGA prototype it must be refactored1 so
that the majority of the data accesses made by the kernel
routines are to data structures that are only accessed by
the kernel routines and explicit copy-in copy-out
operations. These ‘private’ data structures can then be
implemented using the FPGA memory banks as part of
the optimisation process.

This effectively requires that application porters utilise
an object-oriented style of programming at the bottom
layers of the application.

Data transfers between kernel-private and other
data must be minimal. In the prototype system the
FPGA memory banks are accessed from the host system
via a PCI bus. This has relatively low bandwidth
compared to normal memory speeds and large amounts of
data transfers between the FPGA memory banks and the
host memory could be detrimental to performance.

To keep these transfers to a minimum we require that
either (a) the work implemented by a single kernel
invocation is sufficiently large to amortize the cost of
copying the data to and from the FPGA memory banks, or
(b) that data can be left resident on the FPGA memory
banks between kernel calls without the host program
needing to access it.

Restricted workspace is required for computational
kernels. Only limited memory is available in the memory
banks directly attached to the FPGAs (between 0.5 and 1
GB per FPGA). This gives a total space for FPGA
memory of 48GB. The inner working set of the
application therefore needs to fit in this space.

1 Refactoring refers to the practice of restructuring and
rewriting lines of program code while not changing
external program functionality.

Parallel computational kernels should be compute
bound rather than memory bound. Though the
directly connected memory banks on the FPGA modules
provide reasonable memory bandwidth the total memory
bandwidth available in the prototype system is not
significantly different from that available in more
conventional compute clusters. As a result of this any
application that is predominantly memory bound will not
perform significantly better on the prototype system than
on a conventional cluster.

Parallel decomposition must be compatible with a
2D torus. Maxwell is constructed as a two-dimensional
torus of FPGA nodes connected by Rocket-IO channels.
This provides very good communication performance for
this particular network topology. However we do not
have any general purpose communication IP available in
this project so any communication patterns that are not
sub-sets of the 2D torus must be either constructed
explicitly using virtual links overlaid on top of the
physical 2D torus or routed through the host processors
and their attached network.

3. Hardware overview

3.1 Physical view

Physically, Maxwell comprises two 19-inch racks and

five IBM BladeCentre chassis. Four of the BladeCentres
have seven IBM Intel Xeon blades and the fifth has four.

Each blade, a diskless 2.8 GHz Intel Xeon with 1 GB
main memory, hosts two FPGAs through a PCI-X
expansion module. The FPGAs are mounted on two
different PCI-X card types – Nallatech HR101s and
Alpha Data ADM-XRC-4FXs. This provides an
interesting mixed architecture and an environment in
which to experiment with vendor-neutral programming
models.

The FPGAs have between 512 and 1,024 MB external
memory and four MGT Rocket IO connectors, each of
which is capable of shunting data at 3.125 Gb/s. All 64
FPGAs are wired together directly in a two-dimensional
torus. This direct connection is what makes Maxwell
such an interesting system to program, allowing for full
distributed-memory parallel programming purely on the
FPGAs. The CPUs are also connected over gigabit
Ethernet through a single 32-way switch.

There is also a single login-node (a simple Dell server)
with a host-bus adapter connection to the University’s
research computing SAN.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

3.2 Logical view

Logically we regard Maxwell as a collection of 64

nodes. A node is defined as a software process running
on a host machine, together with some FPGA acceleration
hardware, as shown in Figure 1. In full operation each
blade CPU thus hosts two software processes, each of
which ‘manages’ one FPGA during runtime.

The combination of CPU-to-CPU Ethernet
connections and FPGA-to-FPGA Rocket IO channels
gives Maxwell two independent comms networks. The
general approach is to use the Ethernet network purely as
a control network and to perform parallel

communications over Rocket IO. The Ethernet is also
used for any explicit MPI calls that remain in the
application – for instance for start-up data distribution or
finalizing data marshalling on completion.

The FPGA connections are purely point-to-point – we
do not implement routing logic in the FPGA devices.
This makes the Rocket IO network highly suitable for
nearest-neighbour communication patterns but less than
ideal for reduction operations such as global sums. For
these, applications call back to the host CPUs for MPI
reduction operations to be performed over Ethernet.

Figure 1. Abstraction of a node on Maxwell.

3.3 Public/private collaborative success

Maxwell has been an excellent example of university/

business collaboration here in Scotland. While
development support was provided by Scottish
Enterprise, the hardware for the machine itself has all
been donated by the partners.

The IBM BladeCentres, bladeservers and cables were
provided by EPCC. The 64 Virtex-4 devices were
donated by Xilinx; the 32 HR101 cards were provided by
Nallatech and the 32 ADM-XRC-4FX cards by Alpha
Data. Without such genuine commitment from all the
project partners this machine would not have been built.

4. Software environment

Our aim with the environment on Maxwell was to

make it as ‘HPC-system-like’ as possible. Uptake of
FPGA and related technologies in HPC will be hindered

if the machines require a whole different approach to that
of ‘mainstream’ HPC.

In the early days of parallel computing every vendor
had their own way of doing things and progress for
application developers was slow. One vendor’s
communication protocols did not map onto another’s and
machine environments were very different. Today,
parallel environments are much more standardized and
there is a lot of ‘legacy’ software built using libraries like
MPI, BLAS and SCALAPACK. Machines requiring
significantly different approaches will not find much
traction.

Thus Maxwell looks very much like any other parallel
cluster. It runs the Linux variant CentOS and all standard
Gnu/Linux tools. It offers Sun Grid Engine as a batch
scheduling system and MPI for inter-process
communication.

The one novel innovation is the Parallel Toolkit
(PTK). The PTK has been developed as part of the
overall design of Maxwell and provides an attempt to
enforce top-down standardization on application codes

Node

Accelerator

Dedicated
Data-path

Application Process
(Software on Host)

Control Network

Parallel Toolkit (PTK)

Function on FPGA
logic blocks

Function on FPGA
logic blocks

Memory Function on
PowerPC

External
comms to
neighbour

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

across the different ‘flavours’ of hardware. The PTK is
described in detail elsewhere, but suffice to say that it is a
set of practices and infrastructure intended to address key
issues in hardware acceleration e.g.
• associating processes with FPGA resources;
• associating FPGAs with bitstreams;
• managing contention for FPGA resources within a

process;
• managing code dependencies to facilitate re-use.

5. Demonstration applications

There is little point in building any kind of computer

unless it has something to do. As part of the overall
project we also ported three demonstration applications to
run on Maxwell.

Two criteria were used to select these applications.
Firstly they were chosen from the application areas of
financial engineering, medical imaging and oil and gas,
three areas judged generally to have most to gain from
hardware acceleration solutions of one form or another.
Secondly they were chosen to illustrate progressively
more complex parallel application features, from trivial
parallelism and simple data requirements to full-scale
distributed-memory parallelism.

In all three cases we adopted the methodology of the
PTK: identify the application hotspot; define an abstract
object-oriented interface that encapsulates the hotspot;
refactor the code against this interface; generate
accelerated versions of the hotspot code underneath the
interface. In each case we also produced a ‘pure
software’ version of the hotspot against the same PTK
interface, providing a direct point of comparison for both
testing and benchmarking purposes.

5.1 Monte Carlo option pricing

Financial engineering is a mathematical branch of

economics that deals with the modeling of asset prices
and their associated derivatives. One of the cornerstones
of financial engineering is the Black-Schole model of
prices [3], essentially a recasting of the equations of
physical heat diffusion and Brownian motion.

The assumptions of the Black-Scholes model imply
that for a given stock price at time t, simulated changes in
the stock price at a future time t + dt can be generated by
the following formula:

dS = S rc dt + S σ ε √dt
where S is the current stock price, dS is the change in the
stock price, rc

is the continuously compounded risk-free
interest rate, σ is the volatility of the stock, dt is the
length of the time interval over which the stock price
change occurs and ε is a random number generated from a
standard Gaussian probability distribution.

The pricing of stock options follows the Black-Scholes
model, and simple stock options (so-called ‘European’
options) can be priced with a simple closed-form formula
called, unsurprisingly, the Black-Scholes formula. More
complex options such as those whose final price depends
on a time-average or other path-dependent price
calculations have no closed form and are typically priced
using stochastic or Monte Carlo modeling.

Our first demonstration applications supposes you
wanted to price an ‘Asian’ option, an option in which the
final stock price is replaced with the average price of the
asset over a period of time, computed by collecting the
daily closing price over the life of the option. The price
can be modeled as a series of dSs over the option’s
lifetime (say Ntimesteps). The formula for each dS is based
on the previous day’s closing price, and the average of
the Ntimesteps stock prices would determine the value of the
option at expiration.

The above gives you one possible future for the stock
price; repeating the model Nruns times allows the process
to converge on the ‘right’ option price. Nruns here is of
order 10,000 – 50,000.

Based on the above model, a serial code would be as
follows:

for i = 1, Nruns
 for n = 1, Ntimesteps
 ε = gaussianRandomNumber()
 S[n][i] = S[n-1][i] (1 + rc dt + σ ε √dt)
 endfor n
 Sav[i] = 1/Ntimesteps ∑n S[n][i]
 c[i] = max(Sav[i] – K, 0)
 p[i] = max(K – Sav[i], 0)
endfor i
Sbar = 1/Nruns ∑i Sav[i]
cfinal = 1/Nruns ∑i c[i]
pfinal = 1/Nruns ∑i p[i]

K here is the strike price of the option, the price

defined in the option contract; rc and σ are as defined
above.

Pricing a single Asian option thus requires Nruns ×
Ntimesteps Gaussian random numbers (plus four multiplies
and three adds each).

Our demonstration captures this whole core,
parameterized, on FPGA, and batches similar pricing
calculations for different stocks/assets across the whole
64 FPGAs. In fact the demonstrator core is so compact
that it can be replicated 10 times or more across a single
FPGA device, providing an additional order of magnitude
in possible speedup.

This demonstrator – MCopt – is the simplest of the
three applications, having a simple, compact
computational core and very limited data requirements.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

5.2 Three and four-D facial imaging

 The second demonstration application was produced

in collaboration with Dimensional Imaging 3D ltd, a firm
specializing in three and four-dimensional facial imaging
for medical applications such as maxilo-facial surgery [3].

The principle here is that a digital camera rig is used to
capture pairs of still (for 3D) or video (for 4D) images.
Each stereo pair is then combined to produce a depth map
which contains full three-dimensional information and is
used to create a 3D software model, or a 3D video in the
case of 4D capture.

Image combination is an expensive business and is an
ideal application for FPGA acceleration, playing well to
the devices’ strengths in image processing. Our
demonstrator thus takes a key part of Dimensional
Imaging’s own software and accelerates it using FPGA
hardware. Two versions of the demonstrator were
produced – an embedded version which can connect to a
live camera rig and provide on-the-fly image
combination, and a batch version designed to process
large numbers of image pairs from video frames.

This latter version is designed to run across all 64
FPGAs of Maxwell and provides the next step-up in
complexity. While as trivially parallel as the MCopt
application this demonstrator has real data requirements –
large digital images must be managed and streamed
through the FPGAs in an efficient manner to ensure
overall performance.

5.3 CSEM modeling

Our final demonstrator is another commercial code,

this time in the area of oil and gas exploration. OHM plc
are an Aberdeen-based consultancy offering services to
the oil and gas industry [4]. OHM specializes in a form
of simulation called controlled source electromagnetic
modeling, a technique which uses the conductive
properties of materials to analyse pieces of the seabed in
the search for oil or gas reserves [6].

OHM’s three-dimensional CSEM code provides the
basis for our final demonstrator. Already parallelized
using MPI, this is a ‘classic’ HPC application involving
large data sets representing physical spaces and fields,
double-precision arithmetic and iterative numerical
methods for performing linear algebra operations on large
matrices and vectors.

6. Initial performance results

This section presents our preliminary results from

early tests of the three demonstrator applications on
Maxwell. Unfortunately at the time of writing this

section is only partially complete since the final versions
of the demonstrators are still undergoing test.

All results quoted in this section were run on Maxwell.
The quoted CPU results are thus for the 2.8 GHz Intel
Xeon processors in the IBM blades. In caption legends
we use the label ‘AD’ to refer to the Alpha Data hosted
FPGAs, and ‘NT’ to refer to the Nallatech hosted devices.

6.1 MCopt

MCopt is the simplest of the demonstrators, a trivially-

parallel engine to explore the parameter space of a typical
option pricing calculation.

Our tests for MCopt aim to explore the five-
dimensional parameter space defined by the variable
input parameters to the Monte Carlo version of the Black-
Scholes model (S, K, rc, σ, Ntimesteps). Our test draws
100,000 data samples from this parameter space; we fix
the number of Monte Carlo iterations, Nruns, to 10,000 for
each sample.

The single-node performance is shown in Figure 2,
and Figure 3 shows MCopt run across 1 to 16 nodes, both
CPU and FPGA

15810

49 145
0

5000

10000

15000

20000

CPU AD NT

Figure 2. Single-node MCopt performance (s).

In Figure 3 the logarithmic scale belies the extreme

scalability of the FPGA versions here: a batch of 100,000
parameters (prices, rates or some combination of these)
that would take over 4 ½ hours on a Xeon blade runs in
less than a minute on one FPGA, or less than 3 seconds
on 16. As might be expected with such a simple
calculation the FPGAs outperform the CPU by over two
orders of magnitude – a factor of 300 in the Alpha Data
case.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

1

10

100

1000

10000

100000

1 2 4 8 16

CPU
AD
NT

Figure 3. MCopt scaling performance on Maxwell

(times in s). Note the scale is logarithmic.

6.2 Facial imaging

The facial imaging demonstrator, while still trivially

parallel in execution, is more challenging than the MCopt
application because of its data requirements.

Our tests here involve the batch processing of 32 pairs
of video still images – 64 in all – each around 150 kB in
size. This represents a little over a second of three-
dimensional video.

The images are read in from networked disk, so this is
also an interesting test of the network and i/o overheads
of the parallel system.

Figure 4 shows the single node performance for these
tests. Note that the FPGA times are at this stage estimates
based on earlier versions of the hardware bitstreams.
These figures suggest a factor of 6 or more speedup per
node for the FPGAs.

Figure 5 plots the runtime for the same test against
increasing numbers of nodes. Initially we show only the
CPU times; hardware timings are not yet available.

The final plot in Figure 6 shows the speedup curve
from the scaling results. Note the falloff towards 16 and
32 processors for the CPU (software-only version) – we
suspect that this is a feature of i/o bandwidth saturation
across the machine.

0

200

400

600

800

1000

CPU AD NT

Figure 4. Single node facial imaging performance

(times in s). The AD and NT times are projected from
earlier hardware versions and are not final.

0
100
200
300
400
500
600
700
800
900

1000

2 4 8 16 32

CPU
AD
NT

Figure 5. Facial imaging scaling performance on

Maxwell (times in s). Note the AD are NT times are not
yet available.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36

linear
CPU
AD
NT

Figure 6. Parallel speedup of the facial imaging code

on Maxwell. AD and NT results not yet available.

6.3 CSEM modeling

The most challenging of the demonstrators is the

CSEM modeling application, a fully-parallelised classic
HPC simulation. Here we used a sample dataset of size
50×45×200 (450,000 points) and ran the solver until it
converged on a solution.

We estimate the single-node performance in Figure 7.
Note that this is an estimate based on component timings
– such are the memory requirements of this code that it is
unable to run on fewer than 4 CPUs.

0
200
400
600
800

1000
1200
1400
1600

CPU AD NT^

Figure 7. CSEM single-node performance in seconds

(estimated). ^ Note that Nallatech figures are
unavailable at time of writing.

Preliminary results suggest the FPGA versions run at

least 5 times faster per node than the pure software
version.

Figure 8 shows a scaling plot against number of nodes.
Here the CPU times are accurately measured but the
FPGA times are either projected (in the case of Alpha
Data, based on our analysis of the single node
performance, and assuming the same scaling as the
software), or not yet available (in the Nallatech case).

0
100
200
300
400
500
600
700
800
900

8 16 32 64

CPU

AD*

NT^

Figure 8. CSEM scaling performance on Maxwell

(times in s). *AD times are estimated; ^NT times are
not yet available.

Figure 9 plots parallel speedup (time on one node

divided by time on N nodes) where the theoretical linear
best case is shown.

0

10

20

30

40

50

60

70

0 16 32 48 64

linear
CPU
AD^
NT^

Figure 9. Parallel speedup of the CSEM code on
Maxwell, rebased to 8 on 8 nodes. ^ AD and NT

results not yet available.

Unfortunately the lack of data at this stage leaves us

conjecturing about the possible parallel performance of
Maxwell. In terms of single-node performance for CSEM

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

we see around a factor of 5 improvement in the FPGA
version over the software. We believe that with further
memory optimizations this could rise to a factor of 8.

In terms of scaling, we anticipate the FPGA versions
will certainly be no worse than the CPU versions, and
could in fact scale better. Our reasoning here is that the
communication patterns of FPGA-to-FPGA data transfer
are very different to the MPI send/receive patterns of
CPU-to-CPU transfer. In software terms, overlapping
useful computation with communication overheads is the
goal of efficient parallel computing but is, in practice,
hard to achieve. It is rare that HPC codes do not follow
the pattern compute–communicate–compute. The CSEM
code is no exception – this is visible in the fall away from
linear scaling as communications overheads begin to
show.

In the FPGA core algorithms communication between
devices occurs through the Rocket IO MGTs. The MGTs
are represented at VHDL level as interfaces in just the
same way as external memory banks are. As far as the
core is concerned, it sees no difference in talking to an
MGT interface as it does to a memory interface. Thus,
provided the FPGA code can be optimized to ensure that
data flow through the interfaces and cores when they are
needed, there is no longer an explicit communications
step. Data flow uninterrupted and the algorithm does not
suffer – at least in theory – from the same
communications overheads as the software version.

Thus, while we are sadly short of hard data at time of
writing, we are optimistic in our expectations of parallel
performance.

7. The future

Maxwell now exists, a 32-way IBM Bladecentre

containing 64 Xilinx Virtex-4s configured in two
flavours. Initial performance results show that it has not
suffered too badly from its ‘general purpose’ nature, and
indeed suggest that ‘general purpose FPGA computer’ is
at least not an oxymoron!

The goals of the FHPC Alliance are now to promote
the machine as a computing resource to both business and
academia. The FHPCA Technology Translator is an
activity coordinated by EPCC to disseminate the results
of the supercomputer project and attract potential new
users to FPGA-based HPRC.

In addition we intend to explore ways to improve the
programmability of Maxwell and FPGA-based systems in
general. While the three demonstrators here show that
FPGAs can deliver genuine performance benefits even
for memory-bound HPC simulation codes, the hardware
accelerations did not write themselves.

Realising significant benefit does still require
collaboration between software and hardware engineers.

The PTK has been a useful development in providing
high-level vendor-neutral application interfaces and
common methods of configuration and job launching but
its standardizing approach does not go deep enough into
the software stack.

The HPRC community needs now to turn its attention
to standards at all levels to help cement FPGAs into the
new fabric of high-performance computing.

8. References

[1] R. Baxter et al, “High-Performance Reconfigurable
Computing – the View from Edinburgh”, Proc. AHS2007 Conf.,
Second NASA/ESA Conference on Adaptive Hardware and
Systems, Edinburgh, 2007.
[2] The FHPCA, www.fhpca.org
[3] F. Black & M. Scholes, “The Pricing of Options and
Corporate Liabilities”, Journal of Political Economy, Vol. 81,
pp. 637-654.
[4] Dimensional Imaging, http://www.di3d.com/
[5] OHM plc, http://www.ohmsurveys.com/
[6] L. MacGregor, D. Andreis, J. Tomlinson & N. Barker,
“Controlled-source electromagnetic imaging on the Nuggets-1
reservoir”, The Leading Edge; August 2006; v. 25; no. 8; pp.
984-992

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

