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Abstract 
We present the initial results from the FHPCA 
Supercomputer project at the University of Edinburgh.  
The project has successfully built a general-purpose 64 
FPGA computer and ported to it three demonstration 
applications from the oil, medical and finance sectors.  
This paper describes in brief  the machine itself – 
Maxwell – its hardware and software environment and 
presents very early benchmark results from runs of the 
demonstrators. 

 
 

1. Introduction 
 
Against the background of possibilities in the 

emerging area of high-performance reconfigurable 
computing [1]the FHPCA was founded in early 2005 to 
take forward the ideas of an FPGA-based supercomputer. 

The FPGA High Performance Computing Alliance 
(FHPCA [2]) is focused on the development of 
computing solutions using FPGAs to deliver new levels 
of performance.  It will enable a range of applications to 
be able to exploit the benefits that such an approach will 
deliver. 

This will be achieved through the implementation of a 
large scale demonstrator or ‘supercomputer’ – Maxwell – 
and supported by a structured programme of knowledge 
diffusion designed to raise industry awareness, interest 
and create commercial advantage.  

The Alliance builds on Scotland’s world-class 
reputation in the field of reconfigurable computing.  The 
first commercial reconfigurable computer was created by 
a Scottish company in the early 1990s and Scottish 
companies and scientists have since been instrumental in 
developing and advancing the technology. 

The alliance partners are Algotronix, Alpha Data, 
EPCC, the Institute for System Level Integration, 
Nallatech and Xilinx.   

The project has been facilitated and part funded by the 
Scottish Enterprise Industries team. 

This paper is structured as follows.  Section 2 
describes the basic design goals behind Maxwell.  Section 
3 delves into the details of the machine’s hardware while 
Section 4 describes the software environment and 
programming methodology used in porting a number of 
demonstration applications.  Section 5 discusses three key 
demonstration applications from the fields of financial 
services, medical imaging and oil and gas exploration., 
and Section 6 presents early performance results from 
these applications on Maxwell.   Finally Section 7 offers 
thoughts for the future. 

 

2. Design goals 
 
Maxwell is designed as a proof-of-concept general-

purpose FPGA supercomputer.  Given the specialized 
nature of hardware acceleration the very concept of 
‘general-purpose’ for HPRC is worth investigating in its 
own right.  Can a machine built to be as broadly 
applicable as possible deliver enough FPGA performance 
to be worth the cost? 

 
2.1 Target application requirements 

 
FPGA computers generally, and Maxwell specifically, 

will not be good at everything.  The fairly extreme nature 
of hardware acceleration means that certain applications 
will be more suited to it than others.  We note here a 
number of these features which the Maxwell (and similar) 
FPGA-based system places on applications. 

Significant runtime in computational kernels.  The 
use of FPGA acceleration is an extreme optimisation 
technique similar to the use of hand-coded assembly 
language.  It requires the replacement of sections of a 
program (computational kernels) with new optimised 
versions. For this to be economic the effort required to 
develop the replacement versions must be justified by the 
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reduction in overall runtime of the application.  As only 
the performance of the optimised routines is improved 
this in turn requires that a significant amount of the 
application runtime should take place in a small number 
of computational kernels that are amenable to FPGA 
optimisation. 

Computational kernels are small.  FPGA 
acceleration builds accelerated versions of key 
computational kernels out of FPGA resources. These 
FPGA resources are limited which in turn limits the 
complexity of the kernels that can be implemented. 
Though the size of FPGAs will increase over time it will 
always be advantageous to have small computational 
kernels, as this will increase the scope for parallel 
processing within the accelerated kernel. 

Computational kernel data can be made private.  
Maxwell has dedicated memory banks connected to the 
FPGAs.  To achieve reasonable performance the kernels 
need to access the majority of their data from these 
dedicated memory banks.  Before an application can be 
ported to the FPGA prototype it must be refactored1 so 
that the majority of the data accesses made by the kernel 
routines are to data structures that are only accessed by 
the kernel routines and explicit copy-in copy-out 
operations.  These ‘private’ data structures can then be 
implemented using the FPGA memory banks as part of 
the optimisation process.  

This effectively requires that application porters utilise 
an object-oriented style of programming at the bottom 
layers of the application. 

Data transfers between kernel-private and other 
data must be minimal.  In the prototype system the 
FPGA memory banks are accessed from the host system 
via a PCI bus.  This has relatively low bandwidth 
compared to normal memory speeds and large amounts of 
data transfers between the FPGA memory banks and the 
host memory could be detrimental to performance.  

To keep these transfers to a minimum we require that 
either (a) the work implemented by a single kernel 
invocation is sufficiently large to amortize the cost of 
copying the data to and from the FPGA memory banks, or 
(b) that data can be left resident on the FPGA memory 
banks between kernel calls without the host program 
needing to access it. 

Restricted workspace is required for computational 
kernels.  Only limited memory is available in the memory 
banks directly attached to the FPGAs (between 0.5 and 1 
GB per FPGA).  This gives a total space for FPGA 
memory of 48GB. The inner working set of the 
application therefore needs to fit in this space. 

                                                           
1 Refactoring refers to the practice of restructuring and 
rewriting lines of program code while not changing 
external program functionality. 

Parallel computational kernels should be compute 
bound rather than memory bound.  Though the 
directly connected memory banks on the FPGA modules 
provide reasonable memory bandwidth the total memory 
bandwidth available in the prototype system is not 
significantly different from that available in more 
conventional compute clusters. As a result of this any 
application that is predominantly memory bound will not 
perform significantly better on the prototype system than 
on a conventional cluster.   

Parallel decomposition must be compatible with a 
2D torus.  Maxwell is constructed as a two-dimensional 
torus of FPGA nodes connected by Rocket-IO channels. 
This provides very good communication performance for 
this particular network topology. However we do not 
have any general purpose communication IP available in 
this project so any communication patterns that are not 
sub-sets of the 2D torus must be either constructed 
explicitly using virtual links overlaid on top of the 
physical 2D torus or routed through the host processors 
and their attached network. 

 

3. Hardware overview 
 

3.1 Physical view 
 
Physically, Maxwell comprises two 19-inch racks and 

five IBM BladeCentre chassis.  Four of the BladeCentres 
have seven IBM Intel Xeon blades and the fifth has four. 

Each blade, a diskless 2.8 GHz Intel Xeon with 1 GB 
main memory, hosts two FPGAs through a PCI-X 
expansion module.  The FPGAs are mounted on two 
different PCI-X card types – Nallatech HR101s and 
Alpha Data ADM-XRC-4FXs.  This provides an 
interesting mixed architecture and an environment in 
which to experiment with vendor-neutral programming 
models. 

The FPGAs have between 512 and 1,024 MB external 
memory and four MGT Rocket IO connectors, each of 
which is capable of shunting data at 3.125 Gb/s.  All 64 
FPGAs are wired together directly in a two-dimensional 
torus.  This direct connection is what makes Maxwell 
such an interesting system to program, allowing for full 
distributed-memory parallel programming purely on the 
FPGAs.  The CPUs are also connected over gigabit 
Ethernet through a single 32-way switch. 

There is also a single login-node (a simple Dell server) 
with a host-bus adapter connection to the University’s 
research computing SAN. 

 
 
 
 
 

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



3.2 Logical view 
 
Logically we regard Maxwell as a collection of 64 

nodes.  A node is defined as a software process running 
on a host machine, together with some FPGA acceleration 
hardware, as shown in Figure 1.  In full operation each 
blade CPU thus hosts two software processes, each of 
which ‘manages’ one FPGA during runtime. 

The combination of CPU-to-CPU Ethernet 
connections and FPGA-to-FPGA Rocket IO channels 
gives Maxwell two independent comms networks.  The 
general approach is to use the Ethernet network purely as 
a control network and to perform parallel 

communications over Rocket IO.  The Ethernet is also 
used for any explicit MPI calls that remain in the 
application – for instance for start-up data distribution or 
finalizing data marshalling on completion. 

The FPGA connections are purely point-to-point – we 
do not implement routing logic in the FPGA devices.  
This makes the Rocket IO network highly suitable for 
nearest-neighbour communication patterns but less than 
ideal for reduction operations such as global sums.  For 
these, applications call back to the host CPUs for MPI 
reduction operations to be performed over Ethernet. 

 

 

 
Figure 1.  Abstraction of a node on Maxwell. 

 
3.3 Public/private collaborative success 

 
Maxwell has been an excellent example of university/ 

business collaboration here in Scotland.  While 
development support was provided by Scottish 
Enterprise, the hardware for the machine itself has all 
been donated by the partners. 

The IBM BladeCentres, bladeservers and cables were 
provided by EPCC.  The 64 Virtex-4 devices were 
donated by Xilinx; the 32 HR101 cards were provided by 
Nallatech and the 32 ADM-XRC-4FX cards by Alpha 
Data.  Without such genuine commitment from all the 
project partners this machine would not have been built. 

 

4. Software environment 
 
Our aim with the environment on Maxwell was to 

make it as ‘HPC-system-like’ as possible.  Uptake of 
FPGA and related technologies in HPC will be hindered 

if the machines require a whole different approach to that 
of ‘mainstream’ HPC. 

In the early days of parallel computing every vendor 
had their own way of doing things and progress for 
application developers was slow.  One vendor’s 
communication protocols did not map onto another’s  and 
machine environments were very different.  Today, 
parallel environments are much more standardized and 
there is a lot of ‘legacy’ software built using libraries like 
MPI, BLAS and SCALAPACK.  Machines requiring 
significantly different approaches will not find much 
traction. 

Thus Maxwell looks very much like any other parallel 
cluster.  It runs the Linux variant CentOS and all standard 
Gnu/Linux tools.  It offers Sun Grid Engine as a batch 
scheduling system and MPI for inter-process 
communication. 

The one novel innovation is the Parallel Toolkit 
(PTK).  The PTK has been developed as part of the 
overall design of Maxwell and provides an attempt to 
enforce top-down standardization on application codes 
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across the different ‘flavours’ of hardware.  The PTK is 
described in detail elsewhere, but suffice to say that it is a 
set of practices and infrastructure intended to address key 
issues in hardware acceleration e.g. 
• associating processes with FPGA resources; 
• associating FPGAs with bitstreams; 
• managing contention for FPGA resources within a 

process; 
• managing code dependencies to facilitate re-use. 

 

5. Demonstration applications 
 
There is little point in building any kind of computer 

unless it has something to do.  As part of the overall 
project we also ported three demonstration applications to 
run on Maxwell. 

Two criteria were used to select these applications.   
Firstly they were chosen from the application areas of 
financial engineering, medical imaging and oil and gas, 
three areas judged generally to have most to gain from 
hardware acceleration solutions of one form or another.  
Secondly they were chosen to illustrate progressively 
more complex parallel application features, from trivial 
parallelism and simple data requirements to full-scale 
distributed-memory parallelism. 

In all three cases we adopted the methodology of the 
PTK: identify the application hotspot; define an abstract 
object-oriented interface that encapsulates the hotspot; 
refactor the code against this interface; generate 
accelerated versions of the hotspot code underneath the 
interface.  In each case we also produced a ‘pure 
software’ version of the hotspot against the same PTK 
interface, providing a direct point of comparison for both 
testing and benchmarking purposes. 

 
5.1 Monte Carlo option pricing 

 
Financial engineering is a mathematical branch of 

economics that deals with the modeling of asset prices 
and their associated derivatives.  One of the cornerstones 
of financial engineering is the Black-Schole model of 
prices [3], essentially a recasting of the equations of 
physical heat diffusion and Brownian motion. 

The assumptions of the Black-Scholes model imply 
that for a given stock price at time t, simulated changes in 
the stock price at a future time t + dt can be generated by 
the following formula:  

dS = S rc  dt + S σ ε √dt 
where S is the current stock price, dS is the change in the 
stock price, rc 

is the continuously compounded risk-free 
interest rate, σ is the volatility of the stock, dt is the 
length of the time interval over which the stock price 
change occurs and ε is a random number generated from a 
standard Gaussian probability distribution.  

The pricing of stock options follows the Black-Scholes 
model, and simple stock options (so-called ‘European’ 
options) can be priced with a simple closed-form formula 
called, unsurprisingly, the Black-Scholes formula.  More 
complex options such as those whose final price depends 
on a time-average or other path-dependent price 
calculations have no closed form and are typically priced 
using stochastic or Monte Carlo modeling. 

Our first demonstration applications supposes you 
wanted to price an ‘Asian’ option, an option in which the 
final stock price is replaced with the average price of the 
asset over a period of time, computed by collecting the 
daily closing price over the life of the option.  The price 
can be modeled as a series of dSs over the option’s 
lifetime (say Ntimesteps).  The formula for each dS is based 
on the previous day’s closing price, and the average of 
the Ntimesteps stock prices would determine the value of the 
option at expiration.   

The above gives you one possible future for the stock 
price; repeating the model Nruns times allows the process 
to converge on the ‘right’ option price.  Nruns  here is of 
order 10,000 – 50,000. 

Based on the above model, a serial code would be as 
follows: 

 
for i = 1, Nruns 
  for n = 1, Ntimesteps 
    ε = gaussianRandomNumber() 
    S[n][i] = S[n-1][i] (1 + rc dt + σ ε √dt) 
  endfor n 
  Sav[i] = 1/Ntimesteps ∑n S[n][i]   
  c[i] = max(Sav[i] – K, 0) 
  p[i] = max(K – Sav[i], 0) 
endfor i 
Sbar = 1/Nruns ∑i Sav[i] 
cfinal = 1/Nruns ∑i c[i] 
pfinal = 1/Nruns ∑i p[i] 

 
K here is the strike price of the option, the price 

defined in the option contract; rc and σ are as defined 
above. 

Pricing a single Asian option thus requires Nruns × 
Ntimesteps Gaussian random numbers (plus four multiplies 
and three adds each). 

Our demonstration captures this whole core, 
parameterized, on FPGA, and batches similar pricing 
calculations for different stocks/assets across the whole 
64 FPGAs.  In fact the demonstrator core is so compact 
that it can be replicated 10 times or more across a single 
FPGA device, providing an additional order of magnitude 
in possible speedup. 

This demonstrator – MCopt – is the simplest of the 
three applications, having a simple, compact 
computational core and very limited data requirements. 
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5.2 Three and four-D facial imaging 
 
 The second demonstration application was produced 

in collaboration with Dimensional Imaging 3D ltd, a firm 
specializing in three and four-dimensional facial imaging 
for medical applications such as maxilo-facial surgery [3]. 

The principle here is that a digital camera rig is used to 
capture pairs of still (for 3D) or video (for 4D) images.  
Each stereo pair is then combined to produce a depth map 
which contains full three-dimensional information and is 
used to create a 3D software model, or a 3D video in the 
case of 4D capture. 

Image combination is an expensive business and is an 
ideal application for FPGA acceleration, playing well to 
the devices’ strengths in image processing.  Our 
demonstrator thus takes a key part of Dimensional 
Imaging’s own software and accelerates it using FPGA 
hardware.  Two versions of the demonstrator were 
produced – an embedded version which can connect to a 
live camera rig and provide on-the-fly image 
combination, and a batch version designed to process 
large numbers of image pairs from video frames. 

This latter version is designed to run across all 64 
FPGAs of Maxwell and provides the next step-up in 
complexity.  While as trivially parallel as the MCopt 
application this demonstrator has real data requirements – 
large digital images must be managed and streamed 
through the FPGAs in an efficient manner to ensure 
overall performance. 

 
5.3 CSEM modeling 

 
Our final demonstrator is another commercial code, 

this time in the area of oil and gas exploration.  OHM plc 
are an Aberdeen-based consultancy offering services to 
the oil and gas industry [4].  OHM specializes in a form 
of simulation called controlled source electromagnetic 
modeling, a technique which uses the conductive 
properties of materials to analyse pieces of the seabed in 
the search for oil or gas reserves [6]. 

OHM’s three-dimensional CSEM code provides the 
basis for our final demonstrator.  Already parallelized 
using MPI, this is a ‘classic’ HPC application involving 
large data sets representing physical spaces and fields, 
double-precision arithmetic and iterative numerical 
methods for performing linear algebra operations on large 
matrices and vectors. 

 

6. Initial performance results 
 
This section presents our preliminary results from 

early tests of the three demonstrator applications on 
Maxwell.  Unfortunately at the time of writing this 

section is only partially complete since the final versions 
of the demonstrators are still undergoing test.   

All results quoted in this section were run on Maxwell.  
The quoted CPU results are thus for the 2.8 GHz Intel 
Xeon processors in the IBM blades.  In caption legends 
we use the label ‘AD’ to refer to the Alpha Data hosted 
FPGAs, and ‘NT’ to refer to the Nallatech hosted devices. 

 
6.1 MCopt 

 
MCopt is the simplest of the demonstrators, a trivially-

parallel engine to explore the parameter space of a typical 
option pricing calculation. 

Our tests for MCopt aim to explore the five-
dimensional parameter space defined by the variable 
input parameters to the Monte Carlo version of the Black-
Scholes model (S, K, rc, σ, Ntimesteps).  Our test draws 
100,000 data samples from this parameter space; we fix 
the number of Monte Carlo iterations, Nruns, to 10,000 for 
each sample. 

The single-node performance is shown in Figure 2, 
and Figure 3 shows MCopt run across 1 to 16 nodes, both 
CPU and FPGA 
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Figure 2.  Single-node MCopt performance (s). 

 
In Figure 3 the logarithmic scale belies the extreme 

scalability of the FPGA versions here: a batch of 100,000 
parameters (prices, rates or some combination of these) 
that would take over 4 ½ hours on a Xeon blade runs in 
less than a minute on one FPGA, or less than 3 seconds 
on 16.  As might be expected with such a simple 
calculation the FPGAs outperform the CPU by over two 
orders of magnitude – a factor of 300 in the Alpha Data 
case. 

 

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



1

10

100

1000

10000

100000

1 2 4 8 16

CPU
AD
NT

 
Figure 3.  MCopt scaling performance on Maxwell 

(times in s).  Note the scale is logarithmic. 
 

6.2 Facial imaging 
 
The facial imaging demonstrator, while still trivially 

parallel in execution, is more challenging than the MCopt 
application because of its data requirements. 

Our tests here involve the batch processing of 32 pairs 
of video still images – 64 in all – each around 150 kB in 
size.  This represents a little over a second of three-
dimensional video. 

The images are read in from networked disk, so this is 
also an interesting test of the network and i/o overheads 
of the parallel system. 

Figure 4 shows the single node performance for these 
tests.  Note that the FPGA times are at this stage estimates 
based on earlier versions of the hardware bitstreams.  
These figures suggest a factor of 6 or more speedup per 
node for the FPGAs. 

Figure 5 plots the runtime for the same test against 
increasing numbers of nodes.  Initially we show only the 
CPU times; hardware timings are not yet available. 

The final plot in Figure 6 shows the speedup curve 
from the scaling results.  Note the falloff towards 16 and 
32 processors for the CPU (software-only version) – we 
suspect that this is a feature of i/o bandwidth saturation 
across the machine. 
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Figure 4.  Single node facial imaging performance 

(times in s).  The AD and NT times are projected from 
earlier hardware versions and are not final. 

 

0
100
200
300
400
500
600
700
800
900

1000

2 4 8 16 32

CPU
AD
NT

 
Figure 5.  Facial imaging scaling performance on 

Maxwell (times in s).  Note the AD are NT times are not 
yet available. 
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Figure 6.  Parallel speedup of the facial imaging code 

on Maxwell.  AD and NT results not yet available. 
 

6.3 CSEM modeling 
 
The most challenging of the demonstrators is the 

CSEM modeling application, a fully-parallelised classic 
HPC simulation.  Here we used a sample dataset of size 
50×45×200 (450,000 points) and ran the solver until it 
converged on a solution. 

We estimate the single-node performance in Figure 7.  
Note that this is an estimate based on component timings 
– such are the memory requirements of this code that it is 
unable to run on fewer than 4 CPUs. 
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Figure 7.  CSEM single-node performance in seconds 

(estimated).  ^ Note that Nallatech figures are 
unavailable at time of writing. 

 
Preliminary results suggest the FPGA versions run at 

least 5 times faster per node than the pure software 
version. 

Figure 8 shows a scaling plot against number of nodes.  
Here the CPU times are accurately measured but the 
FPGA times are either projected (in the case of Alpha 
Data, based on our analysis of the single node 
performance, and assuming the same scaling as the 
software), or not yet available (in the Nallatech case). 
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Figure 8.  CSEM scaling performance on Maxwell 

(times in s).  *AD times are estimated; ^NT times are 
not yet available. 

 
Figure 9 plots parallel speedup (time on one node 

divided by time on N nodes) where the theoretical linear 
best case is shown.   
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Figure 9.  Parallel speedup of the CSEM code on 
Maxwell, rebased to 8 on 8 nodes.  ^ AD and NT 

results not yet available. 
 
Unfortunately the lack of data at this stage leaves us 

conjecturing about the possible parallel performance of 
Maxwell.  In terms of single-node performance for CSEM 
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we see around a factor of 5 improvement in the FPGA 
version over the software.  We believe that with further 
memory optimizations this could rise to a factor of 8. 

In terms of scaling, we anticipate the FPGA versions 
will certainly be no worse than the CPU versions, and 
could in fact scale better.  Our reasoning here is that the 
communication patterns of FPGA-to-FPGA data transfer 
are very different to the MPI send/receive patterns of 
CPU-to-CPU transfer.  In software terms, overlapping 
useful computation with communication overheads is the 
goal of efficient parallel computing but is, in practice, 
hard to achieve.  It is rare that HPC codes do not follow 
the pattern compute–communicate–compute.  The CSEM 
code is no exception – this is visible in the fall away from 
linear scaling as communications overheads begin to 
show. 

In the FPGA core algorithms communication between 
devices occurs through the Rocket IO MGTs.  The MGTs 
are represented at VHDL level as interfaces in just the 
same way as external memory banks are.  As far as the 
core is concerned, it sees no difference in talking to an 
MGT interface as it does to a memory interface.  Thus, 
provided the FPGA code can be optimized to ensure that 
data flow through the interfaces and cores when they are 
needed, there is no longer an explicit communications 
step.  Data flow uninterrupted and the algorithm does not 
suffer – at least in theory – from the same 
communications overheads as the software version. 

Thus, while we are sadly short of hard data at time of 
writing, we are optimistic in our expectations of parallel 
performance. 

 

7. The future 
 
Maxwell now exists, a 32-way IBM Bladecentre 

containing 64 Xilinx Virtex-4s configured in two 
flavours.  Initial performance results show that it has not 
suffered too badly from its ‘general purpose’ nature, and 
indeed suggest that ‘general purpose FPGA computer’ is 
at least not an oxymoron! 

The goals of the FHPC Alliance are now to promote 
the machine as a computing resource to both business and 
academia.  The FHPCA Technology Translator is an 
activity coordinated by EPCC to disseminate the results 
of the supercomputer project and attract potential new 
users to FPGA-based HPRC. 

In addition we intend to explore ways to improve the 
programmability of Maxwell and FPGA-based systems in 
general.  While the three demonstrators here show that 
FPGAs can deliver genuine performance benefits even 
for memory-bound HPC simulation codes, the hardware 
accelerations did not write themselves. 

Realising significant benefit does still require 
collaboration between software and hardware engineers.  

The PTK has been a useful development in providing 
high-level vendor-neutral application interfaces and 
common methods of configuration and job launching but 
its standardizing approach does not go deep enough into 
the software stack. 

The HPRC community needs now to turn its attention 
to standards at all levels to help cement FPGAs into the 
new fabric of high-performance computing. 
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