
Comparing Performance and Energy Efficiency of
FPGAs and GPUs for High Productivity Computing

Brahim Betkaoui, David B. Thomas, Wayne Luk

Department of Computing, Imperial College London
London, United Kingdom

{bb105,dt10,wl}@imperial.ac.uk

Abstract—This paper provides the first comparison of per-
formance and energy efficiency of high productivity computing
systems based on FPGA (Field-Programmable Gate Array) and
GPU (Graphics Processing Unit) technologies. The search for
higher performance compute solutions has recently led to great
interest in heterogeneous systems containing FPGA and GPU
accelerators. While these accelerators can provide significant
performance improvements, they can also require much more
design effort than a pure software solution, reducing programmer
productivity. The CUDA system has provided a high productivity
approach for programming GPUs. This paper evaluates the
High-Productivity Reconfigurable Computer (HPRC) approach
to FPGA programming, where a commodity CPU instruction
set architecture is augmented with instructions which execute
on a specialised FPGA co-processor, allowing the CPU and
FPGA to co-operate closely while providing a programming
model similar to that of traditional software. To compare the
GPU and FPGA approaches, we select a set of established
benchmarks with different memory access characteristics, and
compare their performance and energy efficiency on an FPGA-
based Hybrid-Core system with a GPU-based system. Our results
show that while GPUs excel at streaming applications, high-
productivity reconfigurable computing systems outperform GPUs
in applications with poor locality characteristics and low memory
bandwidth requirements.

I. INTRODUCTION

In recent years clusters built from commodity processors

have been a common choice for High Performance Computing

(HPC), as they are cheap to purchase and operate. However,

HPC systems constructed from conventional microprocessors

now face two key problems: the reduction in year-on-year

performance gains for CPUs, and the increasing cost of power

supply and cooling as clusters grow larger.

One way of addressing this problem is to use a heteroge-

neous computer system, where commodity processors are aug-

mented with specialized hardware that can accelerate specific

kernels. Examples of specialized hardware include Graphics

Processing Units (GPUs) and Field Programmable Gate Ar-

rays (FPGAs). Such hardware accelerators can offer higher

performance and energy efficiency compared to commodity

processors. However, programming these co-processing archi-

tectures, in particular FPGAs, requires software developers to

learn a whole new set of skills and hardware design concepts,

and accelerated application development takes more time than

producing a pure software version.

One potential solution to the problem of programming

FPGA-based accelerated systems is High Productivity Recon-

figurable Computing (HPRC). We define a HPRC system as

a high performance computing system that relies on recon-

figurable hardware to boost the performance of commodity

general-purpose processors, while providing a programming

model similar to that of traditional software. In a HPRC

system, problems are described using a more familiar high-

level language, which allows software developers to quickly

improve the performance of their applications using reconfig-

urable hardware. Our main contributions are:

• Performance evaluation of benchmarks with different

memory characteristics on two high-productivity plat-

forms: an FPGA-based Hybrid-Core system, and a GPU-

based system.

• Energy efficiency comparison of these two platforms

based on actual power measurements.

• A discussion of the advantages and disadvantages of

using FPGAs and GPUs for high-productivity computing.

II. RELATED WORK

Several researchers have explored ways to make FPGA

programming easier by giving developers a more familiar C-

style language instead of hardware description languages [1],

[2]. However, these languages require a significant proportion

of an existing application to be rewritten using a programming

model specific to the accelerator, which is problematic in an

environment where large amounts of legacy code must be

maintained.

There is previous work on comparing the performance of

FPGAs and GPUs. For example, it is reported that while

FPGA and GPU implementations for real-time optical flow

have similar performance, the FPGA implementation takes 12

times longer to develop [3]. Another study shows that FPGA

can be 15 times faster and 61 times more energy efficient than

GPU for uniform random number generation [4]. A third study

shows that for many-body simulation, a GPU implementation

is 11 times faster than an FPGA implementation, but the FPGA

is 15 times better than the GPU in terms of performance per

Watt [5].

Prior work on comparing FPGAs and GPUs for high pro-

ductivity computing used a set of non-standard benchmarks

that target different process architectures [6] such as asyn-

chronous pipeline and partially synchronous tree. Using the

benchmarks in [6] results in analysis that considers processes

at architectural level. However, these benchmarks do not cover

978-1-4244-8983-1/10/$26.00 ©2010 IEEE

applications with different memory access characteristics, and

they do not address the performance of GPUs for non-

streaming applications in comparison to a HPRC system. In

our work, we take a different approach by selecting specific

benchmarks with different memory locality characteristics.

Our benchmark results lead us to a different conclusion

from the one reported in [6] about HPRC systems being

marginalised by GPUs. Moreover, we also provide comparison

of energy efficiency for FPGA and GPU technologies.

III. CHARACTERISING PRODUCTIVITY AND LOCALITY

Creating a meaningful productivity measure which can be

applied to programming models and architectures would re-

quire the aggregation of results from many individual projects,

and is outside the scope of this paper. Instead we restrict our

productivity study to the idea that if the same programmer

effort is applied to two systems, then the system providing

the highest performance solution is the most productive. This

stems from the following equation that was developed in [7]:

Productivity =
Relative Speedup

Relative Effort
(1)

So in our work, we will restrict our productivity comparison

to using a common programming model based on familiar

high-level programming languages and development tools. The

benchmarks are developed using the C language plus platform

specific extensions, using comparable development efforts in

terms of design time and programmer training. In other words,

productivity will be dictated by the relative speedup achieved

by a platform:

Productivity(GPU)
Productivity(FPGA)

=
Relative Speedup(GPU)

Relative Speedup(FPGA)
(2)

In contrast to previous work [6], we select a number of

established benchmarks based on the HPC Challenge (HPCC)

Benchmark Suite [8] and the Berkeley technical report on Par-

allel Computing Research [9] to measure the relative speedup

for each platform. Four benchmark programs are used:

• The STREAM benchmark.

• Dense matrix multiplication.

• Fast Fourier Transform (FFT).

• Monte-Carlo methods for pricing Asian options.

The authors in [9] identify the main performance limiting

factor for these benchmarks, shown in Table I. Some of

these benchmarks are part of the HPPC benchmarks, which

aim to explore spatial and temporal locality by looking at

streaming and random memory access type benchmarks, as

illustrated in Fig.1. Where possible these benchmark programs

are implemented using vendor libraries, which are optimised

for each platform.

A. STREAM

The STREAM benchmark [8] is a simple synthetic bench-

mark that is used to measure sustained memory bandwidth to

TABLE I
LIMITS TO PERFORMANCE OF BENCHMARKS

Benchmark Program Main performance limiting factor

STREAM Memory Bandwidth limited
Dense matrix multiplication Computationally limited
Fast Fourier Transform Memory Latency limited
Monte-Carlo Methods Parallelism limited

Fig. 1. Benchmark applications as a function of memory access character-
istics

main memory using the following four long vector operations:

COPY : c← a

SCALE : b← αc

ADD : c← a+ b

TRIAD : a← b+ αc

where a, b, c ∈ Rm;α ∈ R
The STREAM benchmark is designed in such a way that data

re-use cannot be achieved. A general rule of this benchmark is

that each vector must have about 4 times the size of all the last-

level caches used in the run. In our work, we used arrays of

32 Million floating-point elements (4 bytes for each element),

which require over 300MB of memory. Each vector kernel is

timed separately and the memory bandwidth is estimated by

dividing the total number of bytes read and written, by the

time it takes to complete the corresponding operation.

B. Dense Matrix Multiplication

Dense floating-point matrix-matrix multiplication is a vital

kernel in many scientific applications. It is one of the most

important kernels in the LINPACK benchmark, as it is the

building block for many higher-level linear algebra kernels.

The importance of this benchmark has led HPC system ven-

dors to both optimize their hardware and provide optimised

libraries for this benchmark. In our work, we used vendor-

provided libraries for the matrix multiplication benchmark, in

order to achieve optimum or near optimal performance results

for each platform.

The SGEMM routine in the BLAS library performs single

precision matrix-matrix multiplication, defined as follows:

c← βC + αAB

where A,B,C ∈ Rn×n;α, β ∈ Rn

C. Fast Fourier Transform

The Discrete Fourier Transform (DFT) plays an impor-

tant role for a variety of areas, such as biomedical engi-

neering, mechanical analysis, analysis of stock market data,

geophysical analysis, and radar communications [10]. The

Fast Fourier Transform [11] is an efficient algorithm for

calculating the DFT and its inverse. In particular, the FFT

requires O(N) memory accesses versus only O(N logN)
floating-point operations, requiring not only high computation

throughput but also high memory bandwidth [12]. In addition,

unlike SGEMM, FFT requires non-unit stride memory access,

and hence exhibits low spacial locality [13].

D. Monte-Carlo Methods for Asian options

Monte Carlo methods [14] are a class of algorithms that

use psuedo-random numbers to perform simulations, allowing

the approximate solution of problems which have no tractable

closed-form solution. In this work, we examine financial

Monte-Carlo simulations for pricing Asian options. Asian

options are a form of derivative which provides a payoff

related to the arithmetic average of the price of an underlying

asset during the option life-time:

Pcall = max(
1

n+ 1

n∑

i=0

S(ti)−K, 0) (3)

where Pcall is the payoff of the Asian call option, S(ti) is the

asset price at time ti, and K is the strike price.

Unlike European options, which can be priced using the

Black-Scholes equation [15], there is no closed-form solution

for pricing Asian options. Instead, Monte-Carlo methods are

used to calculate the payoff of Asian options. Using Monte-

Carlo methods leads to accurate results at the expense of a

large number of simulations, due to the slow convergence of

this method [16].

We choose Monte Carlo methods as one of the bench-

marks for two reasons. First, they are widely used in many

applications including finance, physics, and biology. Second,

they support highly parallel execution [9] with low memory

bandwidth requirements, which would map well onto FPGAs

and GPUs.

IV. PRODUCTIVE RECONFIGURABLE COMPUTING

A. Convey HC-1 Architecture

Convey’s Hybrid-Core technology is an example of a HPRC

system that achieves a compromise between application-

specific hardware and architectural integration. In the Hybrid-

Core approach, the commodity instruction set, Intel’s x86-

64, is augmented with application-specific instruction sets

(referred to as personalities), which are implemented on an

FPGA-based coprocessor to accelerate HPC applications. A

key feature of this architecture is the support of multiple

instruction sets in a single address space [17]. The Convey

Hybrid-Core server, HC-1, has access to two pools of physical

memory: the host memory pool with up to 128GB of physical

memory located on the x86 motherboard, and the coprocessor

Fig. 2. HC-1 system organisation

memory pool with up to 128GB of memory, located on the

coprocessor board. An overview of the architecture of the HC-

1 is shown in Fig. 2.

The coprocessor contains three main components: the Ap-

plication Engine Hub (AEH), the Memory Controllers (MCs),

and the Application Engines (AEs). The AEH represents the

central hub for the coprocessor. It implements the interface

to the host processor via a Front-Side Bus (FSB) port, an

instruction fetch/decode unit, and a scalar processor to execute

scalar instructions. All extended instructions are passed to

the application engines. The coprocessor has eight memory

controllers that support a total of 16 DDR2 memory channels

offering an aggregate of over 80GB/s of bandwidth to ECC

protected memory. Finally, the AEs implement the extended

instructions that would be responsible for any performance

gains. Each Application Engine is connected to all the eight

memory controllers via a network of point-to-point links to

provide high sustained bandwidth without a cache hierarchy.

The Convey HC-1 used in this work has a single multi-

core Intel Xeon 5138 processor running at 2.13GHz with

8GB of RAM. The HC-1 Coprocessor is configured with

16GB of accelerator-local memory. Its AEs consist of four

Xilinx V5LX330 FPGAs running at 300MHz. The memory

controllers are implemented on eight Xilinx V5LX155 FPGAs,

while the the AEH is implemented on two Xilinx V5LX155

FPGAs [18].

B. HC-1 Development Model

The HC-1 programming model is shown in Fig. 3. A number

of key features distinguish the Convey programming model

from other coprocessor programming models [19]. Applica-

tions are coded in standard C, C++, or Fortran. Performance

can then be improved by adding directives and pragmas to

guide the compiler. In an existing application, a routine or

section of code may be compiled to run on the host processor,

the coprocessor, or both. A unified compiler is used to generate

Fig. 3. Programming model of the Convey Hybrid-Core

both x86 and coprocessor instructions, which are integrated

into a single executable and can execute on both standard x86

nodes and accelerated Hybrid-Core nodes. The coprocessor’s

extended instruction set is defined by the personality specified

when compiling the application.

Porting an application to take advantage of the Convey

coprocessor capabilities can be achieved using one or more

of the following approaches:

• Use the Convey Mathematical Libraries (CML) [20],

which provide a set of functions optimised for the ac-

celerator.

• Compile one or more routines with Convey’s compiler.

This can be performed by using the Convey auto-

vectorization tool to automatically select and vectorize

DO/FOR loops for execution on the coprocessor. Direc-

tives and pragmas can also be manually inserted in the

source code, to explicitly indicate which part of a routine

should execute on the coprocessor.

• Hand-code routines in assembly language, using both

standard instructions and personality specific accelerator

instructions. These routines can then be called from C,

C++, or Fortran code.

• Develop a custom personality using Convey’s Personality

Development Kit (PDK).

C. Convey Personalities

A personality groups together a set of instructions designed

for a specific application or class of applications, such as

finance analytics, bio-informatics, or signal processing. Per-

sonalities are stored as pre-compiled FPGA bit files, and the

server dynamically reconfigures between bit-files at run-time

to provide applications with the required personality. Convey

provides a number of personalities optimized for certain types

of algorithms such as floating-point vector personalities, and

Fig. 4. A function pipe in the Convey single-precision personality

a financial analytics personality. In our work, we used three

Convey personalities: the single-precision vector personality,

the double-precision vector personality, and the financial ana-

lytics personality.

D. Optimisation for the 4 benchmarks

The implementation of the STREAM benchmark on the

HC-1 is straight forward, as it only consists of vector op-

erations. For the SGEMM and FFT benchmarks, we use the

Convey Mathematical Libraries (CML) [20]. The CML library

provides a collection of linear algebra and signal processing

routines such as BLAS and FFT. In addition, Convey provides

a single-precision floating-point vector personality which im-

plements the CML libraries, as well as vector operations for

both integer and floating-point data types. This personality is

based on a load-store architecture with modern latency-hiding

features. Fig. 4 shows a diagram of one of the 32 function

pipes that are available in the single precision personality.

The double precision version has only two Fused Multiply-

Add (FMA) units and one adder unit. We can calculate the

peak floating-point performance of the HC-1 for the single

and double precision vector personalities as follows:

FLOPS(peak) = Number of FP units×Clock Frequency

The single precision personality has 32x4 fused multiply-add

units, which means it can perform 32x4x2 floating-point op-

erations per clock cycle. The vector personalities are clocked

at 300 MHz, and so the floating-point peak performance of

the HC-1, when the vector personalities are loaded onto the

coprocessor, is 76.8 GFlops and 38.4 GFlops for single and

double precision respectively.

Finally, the Asian option pricing benchmark contains two

parts: pseudo-random number generation, and Monte-Carlo

based simulation paths. The financial analytics personality

provides custom hardware for generating random numbers

using the Mersenne-Twister algorithm. The second part of the

benchmark contains nested loops that can be vectorised for

efficient execution on the HC-1 coprocessor.

V. GPU-BASED COMPUTING

A. CUDA architecture

A CUDA GPU [21] has a massively-parallel many-core

architecture that supports numerous fine-grained threads, and

has fast shared on-chip memories that allow data exchange

between threads. In this work, we use nVidia’s Tesla C1060

GPU which has 240 streaming processors running at 1.3GHz.

It has a theoretical peak single-precision floating-point perfor-

mance of 933 GFlops. It also has access to 4GB of GDDR3

memory at 800MHz, offering up to 102GB/sec of memory

bandwidth [22].

B. CUDA Development Model

The NVIDA CUDA SDK environment provides software

developers with a set of high-level languages such as C

and Fortran. These programming languages are extended to

support the key abstractions of CUDA such as hierarchical

thread groups, shared memories, and barrier synchronization.

CUDA C extends C by allowing the programmer to implement

kernels as C functions that are executed in parallel by CUDA

threads. These threads can be grouped in thread blocks where

they share the processing and memory resources of the same

processor core. The blocks are organized into a one, two, or

three dimensional grid of thread blocks, with the number of

thread blocks chosen according to the size of the processed

data and the processing resources. The CUDA programming

model assumes that the CUDA threads execute on a physically

separate device, operating as a coprocessor to the host running

the C program. This is the case, for example, when the kernels

execute on a GPU and the rest of the C program executes on

a CPU.

C. Development and optimisation of the benchmarks

The STREAM benchmark is implemented as 4 CUDA

kernels, with each kernel being executed by a large number

of threads to achieve optimum performance. The number of

threads is set so that the first vector kernel yields the same

performance as the CUBLAS:sscopy routine. For dense matrix

multiplication we use the CUBLAS library [23], provided

by nVidia for linear algebra kernels. Given the low double-

precision floating-point peak performance (78 GFLOPS) of

the Tesla C1060 compared to its single precision peak perfor-

mance (933 GFLOPS), we only consider the single precision

version (SGEMM). 1

The Asian option pricing application is implemented using

two kernels: a pseudo-random number generator (PRNG), and

a path simulator. The PRNG is implemented using nVidia’s

Mersenne Twister RNG. For the path simulator kernel, each

thread simulates a price movement path and then the results

from each thread are summed in a hierarchical fashion starting

with threads from the same block using shared memory. The

partial results are then stored in the global memory, and final

aggregation takes place for the valuation of the option price.

VI. POWER MEASUREMENT

Full system power is measured using the Olson remote

power monitoring meter [24]. A diagram of the power mea-

surement system is shown in Fig. 5, which consists of

1For double-precision comparison, it would be more appropriate to use
the new Tesla C20x series, which has a double-precision floating-point peak
performance of 515 GFlops, but these cards are still unavailable at the time
of writing.

Fig. 5. Power measurement setup

TABLE II
DYNAMIC POWER MEASUREMENTS

Component SGEMM FFT Monte-Carlo methods

CPU - single-threaded 27W 31W 20W
CPU - multi-threaded 55W 65W 31W
HC-1 Coprocessor 79W 103W 170W
Tesla C1060 71W 85W 138W

three main components: the system under test (SUT), the

remote power meter, and the computer that receives the power

readings over the network. The SUT is connected to the

mains supply via the remote power meter, which captures and

logs the power measurements once every second through an

Ethernet connection. The SUT is either the HC-1 coprocessor,

the CPU (using one or multiple threads), or the Tesla C1060

GPU. Power is measured by calculating the difference between

idle power and active power, so we only measure the dynamic

power. The reason for only measuring dynamic power is

that the GPU and the HC-1 coprocessor have different base

configurations, such as power supplies and CPUs. In addition,

since the resolution of the power meter is one second, we make

sure that each accelerated kernel has a minimum execution

time of 5-10 seconds, so that fluctuations are averaged out.

Table II shows the measured dynamic power of each plat-

form for three benchmarks. The HC-1 coprocessor has the

highest power consumption for all three benchmarks – this is

not unexpected, as the HC-1 coprocessor contains 13 Virtex-

5 FPGAs and 1024 memory banks. Given the average power

consumption and the execution time of a benchmark, we can

calculate its energy efficiency, measured as either the number

of floating-point operations per second per Watt (Flops/Watt),

or the number of Monte-Carlo simulation paths per Joule.

VII. PERFORMANCE AND ENERGY EFFICIENCY

COMPARISON

In the following, the results for performance and energy

efficiency comparison are provided.

A. STREAM

Tables III and IV show the results for the STREAM

benchmark on the HC-1 server and the Tesla C1060 GPU

respectively. The size of the vectors used in our work is 32

million elements. From these results, we can see that the

sequential memory bandwidth sustained by the GPU is about

TABLE III
STREAM BENCHMARK RESULTS FOR HC-1

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 35.82 35.77 35.88
SCALE 35.10 35.06 35.16

ADD 42.09 42.06 42.12
TRIAD 44.75 44.61 44.86

TABLE IV
STREAM BENCHMARK RESULTS FOR TELSA C1060

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 73.84 73.24 74.34
SCALE 74.00 73.52 74.34

ADD 71.14 70.87 71.46
TRIAD 71.23 71.05 71.43

two times larger than that of the HC-1. These figures, when

combined with the peak floating-point performance of GPUs

and the HC-1, suggest that the GPU is likely to outperform

the HC-1 for streaming programs with intensive computation

and bandwidth requirements.

B. Dense Matrix Multiplication

In our work, we use the Intel MKL [25] for software matrix

multiplication. The matrix-matrix multiplication benchmark

results are shown in Fig. 6 and Fig. 7. The GPU is a clear

winner in terms of both performance (up to 370 GFLOPS)

and power efficiency (over 5GFLOPS/Watt). This is expected,

since the performance of the matrix multiplication benchmark

is computation bound, and the Tesla C1060 has over 10

times more floating-point peak performance than the HC-1. In

addition, the HC-1 implementation offers no significant speed-

up over a multi-threaded MKL implementation running on an

Intel Xeon E5420 Quad-Core CPU.

The GPU is about 5 times faster than both the CPU and the

Convey Coprocessor. This speed-up decreases to about 2.5 to

4.2 times if we include data transfer from the main memory to

the GPU memory, while the HC-1 coprocessor can be slower

than the CPU when data transfers from the host processor

memory to the coprocessor memory are taken into account.

C. Fast Fourier Transform

In this work, we use the popular FFTW [26] for the CPU

implementation, as FFTW supports multi-threading and is

reported to be more efficient than its Intel MKL counterpart.

Fig. 8 shows the performance of a one-dimensional in-place

single-precision complex-to-complex FFT on the three plat-

forms. The HC-1 outperforms the GPU (CUFFT) by up to a

factor of three for large FFT sizes, and is about 16 times faster

than the single-threaded FFTW, or about 4 times faster than

the multi-threaded version.

The HC-1 implementation of the FFT achieves over 65

GFlops, thanks to its coprocessor memory subsystem that

is optimized for non-unit stride and random memory ac-

cesses [17]. The Tesla C1060 uses GDDR memories which

are optimised for sequential memory access operations and

stream programming for graphics applications. This leads to a

 0

 50

 100

 150

 200

 250

 300

 350

 400

32x32

64x64

128x128

256x256

512x512

1024x1024

2048x2048

4096x4096

8192x8192

M
FL

O
P

S

N

SGEMM

MKL sequential
MKL threaded

CUBLAS
CML

CUBLAS with memory transfer
CML with memory transfer

Fig. 6. SGEMM - floating-point performance

 0

 1000

 2000

 3000

 4000

 5000

 6000
32x32

64x64

128x128

256x256

512x512

1024x1024

2048x2048

4096x4096

8192x8192

M
FL

O
P

S
/W

at
t

N

MKL sequential
MKL threaded

CUBLAS
CML

CUBLAS with memory transfer
CML with memory transfer

Fig. 7. SGEMM - energy efficiency

performance penalty if GPU applications, such as FFT, involve

non-sequential memory accesses [12].

To further investigate the effect of strided memory access

on the performance of the HC-1 and Tesla C1060 GPU, we

conduct the following experiment. We measure the effective

bandwidth that can be achieved with strided memory access,

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

G
FL

O
P

S

FFT size

1-dimensional, in-place FFT

HC-1
HC-1 with memory transfer

CuFFT
CuFFT with memory transfer

FFTW serial
FFTW threaded

Fig. 8. 1-dimensional in-place single-precision complex-to-complex FFT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

32 64 128

256

512

1024

2048

4096

8192

16384

B
an

dw
id

th
(M

B
/s

)

Memory stride

Tesla C1060
HC-1

Fig. 9. Memory bandwidth for stride memory access

and how it compares to a baseline sequential memory access

bandwidth. We used the BLAS routine blas:sscopy available

to each platform. This routine copies a real vector into another

real vector. The increment between two consecutive elements

in each vector can be specified, i.e. the stride parameter. The

results of this experiment for vectors of 32 million elements

are shown in Fig. 9. As the stride parameter gets larger, the

data transfer rate of the GPU becomes slower than that of

HC-1.

However, the floating-point performance of the HC-1 drops

significantly if data transfer times between host memory and

coprocessor memory are taken into account. Fortunately, there

are various applications that execute many FFT operations

between memory transfers from CPU memory to coprocessor

memory. An example of such an application is the protein-

protein docking simulator ZDock [27], which uses a scoring

scheme to determine the best docking positions. At the heart

of ZDock is an FFT used for computing convolutions, and

once the host processor has sent the initial input data, the

coprocessor can perform multiple FFTs without significant

data transfer.

In terms of energy efficiency, the HC-1 generally fares better

than the GPU and the CPU, as shown in Fig. 10. It is twice as

energy efficient as the GPU, and about 6 times more energy

efficient than a multi-threaded CPU implementation for large

FFT sizes.

D. Monte-Carlo Methods: Asian Option Pricing

Table V shows the performance of an HC-1 implementation

of an Asian option pricing application, compared to the

performance of CPU and GPU implementations. For the Asian

option pricing benchmark, we select the same parameters as

in [16], i.e. one million simulations over a time period of 356

steps. We use an Intel Xeon 5138 dual-core processor running

at 2.13GHz with 8GB of memory for the CPU implemen-

tation. We also include performance results of an optimised

FPGA implementation [16] coded in a hardware description

language (HDL) targeting a Xilinx xc5lx330t FPGA clocked

at 200MHz.

 0

 100

 200

 300

 400

 500

 600

4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

M
FL

O
P

S
/W

at
t

FFT size

1-D FFT - Energy Efficiency

FFTW threaded
HC-1

HC-1 with memory transfer
CuFFT with memory transfer

CuFFT

Fig. 10. Energy efficiency for 1-dimensional in-place single-precision
complex-to-complex FFT

These results show that using the HC-1 coprocessor yields a

performance improvement of up to 18 times over an optimized

multi-threaded software implementation. The performance of

the HC-1 is about the same as a single precision GPU imple-

mentation, and is twice as fast as the double precision version.

The major reason for this performance improvement is the

vectorization of the FOR loops, which form the bottleneck in

the option pricing benchmark. Moreover, the random number

generator is implemented in the HC-1 as a custom hardware

library, whereas the CUDA GPU must use an instruction based

approach. Note that currently the finance analytics personal-

ity for HC-1 does not support single-precision floating-point

operations, so it cannot be compared directly with a hand-

crafted single-FPGA version in single-precision floating-point

arithmetic [16] also shown in Table V; however, there is

no doubt that the hand-crafted version involves much more

development effort.

In terms of energy efficiency, the GPU and the HC-1

coprocessor are only about 2 to 4 times more energy efficient

than the CPU as shown in Table VI, with the HC-1 about

two times more energy efficient than the GPU. The measured

GPU and HC-1 power consumption is relatively higher than

the other benchmarks. This can be explained by the fact

that Monte-Carlo methods are ‘embarrassingly parallel’, which

leads to near full utilisation of the hardware resources on HC-1

and the GPU.

TABLE V
PERFORMANCE RESULTS FOR ASIAN OPTION PRICING

Implementation Execution time Speed-up
Single Double Single Double

CPU single-threaded 8,333 ms 14,727ms 0.53x 0.57x
CPU multi-threaded 4,446 ms 8,378 ms 1x 1x
Convey HC-1 - 471 ms - 17.8x
Tesla C1060 [16] 440 ms 1,078 ms 10x 7.7x
HDL-coded FPGA [16] 115 ms - 38.6x -

TABLE VI
ENERGY EFFICIENCY FOR ASIAN OPTION PRICING

Implementation Sim. Paths per Joule Comparison vs CPU
Single Double Single Double

CPU single-threaded 6,002 3,396 1x 1x
CPU multi-threaded 7,255 3,886 1.2x 1.14x
Convey HC-1 - 12,489 - 3.7x
Tesla C1060 [16] 16,469 6,722 2.74x 2x

VIII. CONCLUSIONS

This paper provides a comparison of FPGAs and GPUs for

high productivity computing. Using a number of established

benchmarks and a common development model, we evaluate

the performance of a commercially-available high-productivity

reconfigurable computing system (HPRCS), the Convey HC-1

server. We also compare its performance and energy efficiency

to those of a multi-core CPU as well as a GPU-based HPC

system. The selected benchmarks for our work have different

memory access patterns ranging from high locality memory

characteristics to low locality characteristics. The HC-1 and

the GPU outperform the CPU for all of our benchmark

programs. From our results, we can summarize the following

about some of the pros and cons of the HPRCS and the GPU:

• GPUs often perform faster than FPGAs for streaming

applications. GPUs usually enjoy a higher floating-point

performance and memory bandwidth than FPGA-based

HPC systems. The streaming performance of the HC-

1 is often limited by the floating-point computational

performance achieved by FPGAs.

• The HC-1 employs a memory system optimised for non-

sequential memory accesses, which makes them faster

and more energy efficient than GPUs for applications

such as Fast Fourier Transform. GPUs, on the other

hand, use GDDR memories which are optimized for

sequential memory access operations, incurring a higher

performance penalty for non-contiguous memory block

transfers.

• The HC-1 demonstrates superior performance and energy

efficiency for highly parallel applications requiring low

memory bandwidth, as illustrated by the Monte Carlo

benchmark for pricing Asian options.

ACKNOWLEDGEMENT.

The support of Imperial College London Research Excel-

lence Award, the FP7 REFELCT (Rendering FPGAs for Multi-

Core Embedded Computing) Project, the UK Engineering and

Physical Sciences Research Council, HiPEAC, Convey Com-

puter Corporation, and Xilinx, Inc. is gratefully acknowledged.

REFERENCES

[1] J. Xu, N. Subramanian, S. Hauck, and A. Alessio,
“Impulse C vs. VHDL for accelerating tomographic recon-
struction,” 2009, University of Washington. [Online]. Available:
http://ee.washington.edu/faculty/hauck/publications/ImpulsePET.pdf

[2] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and S. J.
Eggers, “CHiMPS: A C-level compilation flow for hybrid CPU-FPGA
architectures,” in FPL’08. IEEE, 2008, pp. 173–178.

[3] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D. Lee, “Real-time optical
flow calculations on FPGA and GPU architectures: A comparison study,”
in 16th International Symposium on Field-Programmable Custom Com-
puting Machines, 2008, pp. 173–182.

[4] D. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs,
FPGAs, and massively parallel processor arrays for random number
generation,” in Proceeding of the ACM/SIGDA international symposium
on field programmable gate arrays. ACM, 2009, pp. 63–72.

[5] T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji, “A comparative study
on ASIC, FPGAs, GPUs and general purpose processors in the O(N2)
gravitational N-body simulation,” NASA/ESA Conference on Adaptive
Hardware and Systems, vol. 0, pp. 447–452, 2009.

[6] D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. Cheung, “GPU versus
FPGA for high productivity computing,” in FPL’10, 2010.

[7] M. V. Zelkowitz, V. R. Basili, S. Asgari, L. Hochstein, J. K.
Hollingsworth, and T. Nakamura, “Measuring productivity on high
performance computers.” in IEEE METRICS. IEEE Computer Society,
2005, pp. 19–22.

[8] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,
J. Kepner, J. Mccalpin, D. Bailey, and D. Takahashi, “Introduction
to the HPC challenge benchmark suite,” Lawrence Berkeley National
Laboratory, Tech. Rep., 2005.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: a view
from Berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[10] M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda, “16.4-
Tflops direct numerical simulation of turbulence by a Fourier spectral
method on the earth simulator,” in SC’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2002, pp. 1–17.

[11] J. Cooley and J. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[12] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth intensive
3-D FFT kernel for GPUs using CUDA,” in SC’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 1–11.

[13] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear
algebra,” in SC’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–11.

[14] N. Meteopolis and S. Ulam, “The Monte Carlo method,” Journal of the
American Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[15] B. Fischer and S. Scholes Myron, “The pricing of options and corporate
liabilities,” Journal of Political Economy, vol. 81, no. 3, pp. 637–54,
May-June 1973.

[16] A. H. Tse, D. B. Thomas, K. Tsoi, and W. Luk, “Efficient reconfigurable
design for pricing Asian options,” in HEART’10, 2010.

[17] Convey Reference Manual, Convey Computer Corporation, 2010.
[18] T. M. Brewer, “Instruction set innovations for the Convey HC-1 com-

puter,” IEEE Micro, vol. 30, pp. 70–79, 2010.
[19] Convey Programmers Guide, Convey Computer Corporation, 2010.
[20] Convey Mathematical Libraries User’s Guide, Convey Computer Cor-

poration, 2010.
[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:

A unified graphics and computing architecture,” IEEE Micro-Institute of
Electrical and Electronics Engineers, vol. 28, no. 2, pp. 39–55, 2008.

[22] NVIDIA CUDA. Compute Unified Device Architecture. [Online].
Available: http://www.developer.nvidia.com/object/cuda.html.

[23] CUDA CUBLAS Library, NVIDIA, 2007.
[24] Olson Electronics Ltd. Olson Remote Power Monitoring. [Online].

Available: http://www.olson.co.uk/remote monitor range.htm
[25] Intel Math Kernel Library (MKL). [Online]. Available:

http://software.intel.com/en-us/intel-mkl/
[26] FFTW, “Fastest Fourier Transform in the West – Homepage,” 2003.

[Online]. Available: http://www.fftw.org/
[27] R. Chen, L. Li, and Z. Weng, “ZDOCK: an initial-stage protein-docking

algorithm,” Proteins: Structure, Function, and Bioinformatics, vol. 52,
no. 1, pp. 80–87, 2003.

