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Abstract—Heterogeneous or co-processor architectures are
becoming an important component of high productivity com-
puting systems (HPCS). In this work the performance of
a GPU based HPCS is compared with the performance of
a commercially available FPGA based HPC. Contrary to
previous approaches that focussed on specific examples, a
broader analysis is performed by considering processes at an
architectural level. A set of benchmarks is employed that use
different process architectures in order to exploit the benefits
of each technology. These include the asynchronous pipelines
common to “map” tasks, a partially synchronous tree common
to “reduce” tasks and a fully synchronous, fully connected
mesh. We show that the GPU is more productive than the
FPGA architecture for most of the benchmarks and conclude
that FPGA-based HPCS is being marginalised by GPUs.
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I. INTRODUCTION

High-performance computing (HPC) is the use of parallel
processing for the fast execution of advanced application
programs. In 2004, DARPA replaced “performance” with
“productivity” and formed the high-productivity computing
system (HPCS) [1]. Instead of comparing solutions with
their different execution times, they proposed using “time
to solution”, a measure that includes the time to develop the
solution as well as the time to execute it. Factors important
to HPCS include how scalable, portable and reusable the
solution is. Another important factor is at what programming
level effective solutions can be developed.

FPGAs have been shown to effectively accelerate certain
types of computation useful for research and modelling
[2], [3], [4]. However their utilization has been restricted
by the development time and complexity for fine-grained
implementations. A study of the HPCS jobs performed
by the San Diego Supercomputing Centre between 2003
and 2006 showed that the longest job required 24 days to
execute but the average job length was three hours [5]. Thus
developing custom firmware or hardware will severely limit
the productivity of most HPCS tasks.

Another restriction on the effective use of FPGAs as
HPCS is that there is little open-source, portable firmware
for FPGA HPCS. This is due to the fact that no standardised
protocols, interfaces or coarse-grain architectures exist. The
OpenFPGA [6] standard seeks to correct this, however their
API is still in draft form (v0.4 since 2008) and not all FPGA-
based HPCS suppliers are members of the alliance.
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In 2007 Nvidia made the Compute Unified Device Archi-
tecture (CUDAT™M) available for the development of graph-
ics processing units (GPU) based HPCS platforms. CUDA
made it simple to develop distributed code for a pervasive
and standardised coarse-grain platform. The question this
paper addresses is whether GPUs are now an effective
alternative to FPGA based HPCS systems.

To do this we compare the productivity of two commer-
cially available HPCS platforms from the point of view of
a HPCS developer: an Nvidia GPU and a multiple-FPGA
supercomputer developed by Convey Computer and released
in 2009 [7]. This is the first published evaluation of this
HPCS platform.

The objective is to compare the productivity of each
platform for a broad range of tasks. This is addressed by
selecting benchmarks with different process architectures
classified by their algorithmic skeletons [8]. Algorithmic
skeletons are tools for the classification of distributed pro-
grams according to their synchronisation and communica-
tion requirements. Goodeve [9] suggested two skeletons for
classifying interdependent threads:

« Tree computations are performed using the application
of recursive functions that form the nodes of a branch
and leaf process architecture. Examples include “farm”
and “reduce” operations.

Crowd computations are performed with a set of
independent but co-operating processes that communi-
cate and synchronise with each other. A typical crowd
computation follows some regular graph such as a ring
or mesh.

We add to this list independent threads, each of which forms
an asynchronous pipeline for performing some calculation.

In order to best compare the productivity of each plat-
form we consider algorithms from each category. Another
consideration is whether our benchmarks are necessarily
an optimum implementation for each platform. Thus where
possible we use library functions or custom firmware that
have been optimised by Nvidia and Convey. The benchmarks
we have chosen that satisfy these criteria are:

1) Batch generation of pseudo-random numbers.

2) Dense square matrix multiplication.

3) Sum of large vectors of random numbers.

4) Second order N-body simulation.

Table I compares their different process architectures and

IEEE
computer
® psouety



Benchmarks
Process Architecture 1 (2 |3 |4
Asynchronous Pipeline X | X
Tree computation X
Crowd computation X
GPU Process implementation
Optimised software X | X | X
FPGA Process implementation
Optimised software X | X
Application-specific firmware X

Table T
BENCHMARKS AND THE CORRESPONDING PROCESS ARCHITECTURES

System Form (#) Technology Performance

Nallertech BenNuey | PCle Card | (1) Virtex-II 12 GFlop/s [10]

SRC-7 MAPstation 2U Rack (6) Stratix-II 24 GFlop/s [11]

Cray XDl1 2U Rack (6) Virtex-1I 58 GFlop/s [12]

Convey HC-1 2U Rack (4) Virtex-5 65 GFlop/s [13]
Table 1T

COMMERCIALLY AVAILABLE FPGA-BASED HPCS SYSTEMS

their different implementations.

We consider two asynchronous pipeline tasks because
Convey supply custom firmware for pseudo-random number
generation but rely on soft cores for matrix multiplication.

II. COMMERCIAL FPGA-BASED HPC

Till recently, Convey, Cray, SRC and Nallertech all made
FPGA-based HPCS. Table II compares their technology and
performance.

We chose to investigate the HC-1 as opposed to the
alternative devices because it is the newest, most powerful
FPGA-based HPCS system that is currently commercially
available.

A. Convey HC-1 Architecture

The HC-1 is a 2U server card that uses four Virtex-
5’s as application engines (AE) to execute the distributed
processes. The HC-1 also uses another Virtex-5 for process
management and eight Stratix-II’s for memory interfaces.
Figure 1 shows their arrangement.

The resulting system has 128GB of DDR2 RAM with
a maximum bandwidth of 80GB/sec. The memory address
space is virtually shared with the host processor, making
memory allocation and management simple.

B. The development model

HC-1 applications can be developed for in C, C++ and
Fortran. The compiler will, where possible, vectorize the
sequential code so that it is executed in parallel on 32
soft core processors implemented across all four AEs and
running at 300MHz. However there are restrictions to what
can be vectorised. These restrictions include intra-loop de-
pendencies and conditional statements.

To take advantage of its reconfigurable architecture Con-
vey sells various “personalities”: firmware optimised for dif-
ferent applications. However these personalities only affect
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Figure 1.  Structure of HC-1

the application engines, not the memory controllers. We
compare the performance of three of these personalities, 32-
bit soft core processors, 64-bit soft core processors and a
collection of functions for financial applications.

The HC-1 also supports the Basic Linear Algebra Sub-
routines (BLAS) libraries, which include functions for ma-
trix and vector algebra. These functions are implemented on
the 32 or 64-bit soft core processors.

Finally the HC-1 can be developed for in Verilog and
VHDL however these are intensive development models. We
understand Convey are also working to build a C-to-HDL
development environment at the moment.

III. GPU-BASED HPC

The GTX285 is a member for the GeForce 200b family of
GPUs made by Nvidia. It has 240 core processors running
at 1.4GHz and supports up to 4GB of external DDR3 RAM
(we use a 1GB version) with a maximum bandwidth of
159GB/sec. Each core is grouped with seven others and
two small but low latency memories: shared memory and a
texture cache. In contrast to the shared memory, the texture
cache is optimised for 2D spatial locality and can access
the global memory directly. Figure 2 shows its component
arrangement and interfaces.

A. The development model

CUDA is a set of extensions for C. Unlike the sequential
development model for the HC-1, a CUDA developer will
write a “kernel” of code that is run by each thread in parallel.
The host program will dispatch these kernels asynchronously
as threads to run on the multiprocessors of the GPU.
Message passing between threads is performed using shared
and texture memories within each multiprocessor, or global
memory when the message must pass between different
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Figure 2.  Structure of GTX285

multiprocessors. Threads can be locally synchronised with
other threads running on the same multiprocessor, however
global synchronisation can only be performed by stopping
and re-dispatching the kernel.

The BLAS libraries have also been ported for GPU
implementation.

A set of bindings for CUDA have been developed to
enable CUDA development in higher-level languages such
as Python (PyCuda, PyCublas), Fortran, Java and Matlab.
These make the development of distributed code simple. For
instance, using PyCublas and the numerical python libraries
two matrices can be declared and multiplied using four lines
of code:

1 include pycublas, numpy

2 A = pycublas.CUBLASMatrix (numpy .
matrix (numpy .random .random
((100,100)) ,dtype=numpy . float32))

3 B = pycublas. CUBLASMatrix (numpy .
matrix (numpy .random . random
((100,100)) ,dtype=numpy . float32))

4+ C = (A%B).np_mat ()

B. Initial comparisons and planned benchmarks

The HC-1 is at a significant disadvantage in terms of
cost, power and floating-point operations per second. The
GTX285 is a significantly less expensive, uses half the power
during operation and can theoretically perform at 1062
GFlop/s. However the GPU has a fixed, 32-bit architecture
and the only way to synchronise all of its threads is by
stopping and restarting its kernel externally. Thus we expect
the GPU to fare worse for 64-bit operations and operations
requiring synchronisation.

In order to compare the productivity of both platforms
we first developed code for the devices using a development
model common to both platforms. This is the development
of solutions in C using the libraries, firmware and compilers
supplied by the manufacturers. Thus, the development time

121

should be approximately equivalent. Then we benchmarked
the performance of both devices against the performance of
a single core of an Intel 2GHz Quad (Core2) Xeon with
4GB DDR3 RAM.

We see the smaller RAM available to the GPU as a
device-specific limitation not representative of the broader
technology. Thus we only consider benchmarks that can be
executed within the 4GB RAM available to the GTX285.
Also these benchmarks do not consider the time required
to transfer data to and from the devices for the following
reasons:

e Some of the benchmark times are overwhelmed by the
memory transfer rates. This is particularly true for the
smaller problems.

o We consider the tasks as likely components of larger
simulations for which the memory transfer rates are
negligible.

o The GTX285 supports overlapping of data transfers
with kernel executions. That the HC-1 currently does
not is a limitation of the Convey compilers not the
device itself. In order for the benchmarks to best
represent the FPGA family of HPC devices we need
to ignore this software limitation.

o The bandwidth of a PCle2(x16) port and the front side
bus are both approximately 8GB/s, so should not bias
the benchmarks.

IV. RANDOM NUMBER GENERATION

We used a Mersenne twister [14] pseudo-random num-
ber generator (PRNG) to create batches of 32-bit random
numbers. Both Nvidia and Convey provide a Mersenne-
twister as library functions. Whereas the Nvidia PRNG is
implemented as custom software on a fixed architecture,
the Convey PRNG uses a pipeline shift-register architecture
in custom firmware as part of their financial applications
personality.

Figure 3 shows the performance of the Nvidia GTX285
and the Convey HC-1 when generating increasingly large
batches of random numbers. This performance is measured
as an improvement over a single core CPU implementation
of a Mersenne Twister.

The HC-1 performs, on average, 88.9 times better than
the CPU. The GTX285 performs 89.3 times better than the
CPU. However because the GPU uses a batch processing
architecture it is much more sensitive to the size of the batch
than the HC-1’s pipeline architecture. Also the memory
available to the FPGAs on the HC-1 is 128 times greater
than that available to the GTX285, so larger batches can be
generated.

A similar comparison by Tian and Benkrid [15] showed
that an FPGA implementation using on-chip RAM of the
Mersenne Twister algorithm could outperform this GPU
implementation by a factor of ~ 8x. This suggests that
the overhead required for off-chip RAM and host-processor
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Figure 3. Performance of GPU and FPGA architectures generating random
numbers

interfaces are reducing the effective performance of the HC-
1.

V. MATRIX MULTIPLICATION

Here we tested the performance of each architecture when
multiplying two large square matrices. We repeated this
experiment with 32-bit and 64-bit floating-point arithmetic.

We used the BLAS routines blas:sgemm and blas:dgemm
available to each device!. The Nvidia card performed the
calculations on 240 single-precision hardware cores. The
HC-1 used 32 soft cores, however they were optimised
for either 32-bit or 64-bit calculations, depending on the
experiment. Figure 4 shows the performance improvement
over the reference CPU implementation of the same BLAS
routines for 32-bit matrices. Figure 5 shows the performance
improvements for 64-bit matrices.
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Figure 4. Performance of GPU and FPGA architectures calculating product
of two 32-bit matrices

TAll code available at http://cas.ee.ic.ac.uk/people/dhjones
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Multiplying two 64-bit square matrices
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Figure 5. Performance of GPU and FPGA architectures calculating product
of two 64-bit matrices

The HC-1 performs, on average, 48.8 times better than
the CPU on 32-bit matrices and 52.5 times better on 64-bit
matrices. The GPU performs 190.4 times better on 32-bit
matrices and 98.0 times better on 64-bit matrices. The GPU
performance peaks occur when the width of the matrix is a
multiple of the size of the available shared memory (16kb
for every group of eight cores), allowing the use of a more
efficient full tile matrix multiplication function.

Altera benchmarked a Stratix-II with custom firmware for
double precision matrix multiplication [16] and concluded
it could sustain 14.25GFlop/s performance. This compares
to the 66.4GFlop/s (2x> flops for an x by x matrix) aver-
age performance of the GTX285 and 23.4GFLop/s average
performance of the HC-1 for double precision matrix mul-
tiplication.

VI. SCALAR SUM OF VECTOR

Determining the scalar sum of a vector is a “reduce”
operation requiring a partially synchronous tree process
architecture (see figure 6).
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Figure 6. Process architecture for a “Reduce” operation

We performed this experiment using the BLAS routines
blas:sasum and blas:dasum. Figure 7 shows the performance
improvement over the reference CPU implementation of the
same BLAS routines for 32-bit vectors. Figure 8 shows the
performance improvements for 64-bit vectors.



Sum of 32-bit vector
400

350
300
250
200 =GPU

==HC1
150

100 '

50

Performance increase over CPU

3.0e6 1.3e7 23e7 3.3e7 4.3e7 5.3e7 6.3e7

Size of vector

Figure 7. Performance of GPU and FPGA architectures calculating sum
of 32-bit Vector
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Figure 8. Performance of GPU and FPGA architectures calculating sum
of 32-bit Vector

The HC-1 performs, on average, 125.62 times faster than
the CPU for 32-bit vectors and 81.1 times better for 64-
bit vectors. The GPU performs on average 306.4 times
better than the CPU for 32-bit vectors and 109.3 times
better than the CPU for 64-bit vectors. Again we see the
predicted performance improvement for 32-bit operations
but here has been no obvious performance reduction due
to the requirement for synchronisation.

VII. N-BODY SIMULATION

As a final benchmark a two-dimensional, second-order
simulation of the gravitational forces between a number of
bodies of different mass was employed. The execution cycle
is:

1) For each body, ¢, calculate the vector gravitational

force, F; j, that is acting on it from every other body,
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J,J # 1 using the following equation:

|z — 75
2) For each body, i, sum the vector gravitational forces,
F; ; acting on it using the blas:sasum routine.

Fi=mGY F; )
J#

Where m is the mass of each body, z is the position
of each body and G is a scaling factor (we use G =
0.001).

3) Synchronise each thread

4) Calculate the new velocities of each body using the
following equation:

_ _ F;
Uiyl = Ut + —t 3

(2

5) Calculate the new positions of each body using the
following equation:

Tip1,i = Ty + Vpg1,5-t 4)

Where t is the unit time, (we use t = 1).

6) Synchronise each thread

7) Repeat to (1) 100 times.

This task has been chosen in part because it is a common
scientific model and in part because it requires a fully
synchronised mesh process architecture. All the calculations
were performed to 32-bit precision. Figure 9 shows the
performance improvement over a reference CPU implemen-
tation.
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Figure 9. Performance of GPU and FPGA architectures doing N-body
simulations

The only way it is possible to globally synchronise
the threads of the GPU was by stopping the kernel and
restarting it. For this benchmark, the performance of the
GPU is on average 43.2 times greater than the CPU. The
cost of completely synchronising the GPU has reduced its
performance relative to the other benchmarks. However,



it still significantly outperforms the HC-1, which ran the
benchmarks on average 1.9 times faster than the CPU. The
improved performance on the GPU of systems between 4800
and 9600 bodies is due to the model using a more efficient
allocation of threads between the 240 cores.

A similar comparison by Tsoi and Luk [17] using cus-
tomised hardware and firmware concluded that an FPGA-
based n-body simulation can run ~ 2x faster than a
GPU. We adapted this simulation to better imitate his work
(simulating 81920 bodies for one iteration in 3D) and re-
ran our simulations. Our GPU simulation ran slightly faster
(7.8s versus 9.2s) and our compiled Convey code ran much
slower than their custom hardware and firmware (37.9s
versus 5.62s). Thus if the development of custom hardware
and firmware do not significantly reduce the productivity of
a simulation, FPGA based HPCS can still outperform (1.4 x
faster) our GPU software.

VIII. CONCLUSIONS

We have evaluated the performance of the Convey HC-1
and the Nvidia GTX285 against a range of tasks common to
HPCS-based scientific research. In all cases, both platforms
outperformed an equivalent CPU implementation. For most
of these the GPU significantly outperformed the FPGA
architecture. The one exception, the generation of pseudo-
random numbers, used closed-source firmware customised
for both the task and the platform. We suggest that without
a standardised FPGA HPCS platform about which open-
source firmware could be developed, the future for FPGA-
based HPCS will be increasingly marginalised to special-
ist applications. Further, the only people both sufficiently
equipped and capable to develop the necessary firmware
for FPGA-based HPCS will be the hardware developers.
Supporting this conclusion is the fact that Cray no longer sell
FPGA-based supercomputers and their latest product line
(CX1) instead uses Nvidia GPUs.
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