Low-complex dynamic programming algorithm for hardware/software partitioning

> Divya Ramachandran Palak Shah

Low-complex dynamic programming algorithm for hardware/software partitioning Wu Jigang, Thambipillai Srikanthan School of Computer Engineering, Nanyang Technological University, Singapore

639798 Received 17 February 2005; received in revised form 1 December 2005; accepted 7 December 2005 Available online 17 January 2006

• The circuit part commonly acts as a coprocessor for the microprocessor

4 / 20

What is the paper about

- An algorithm for partitioning
- Improvement upon an existing algorithm PACE
- Using the concept of dynamic programming :
 - Solving a complex problem by breaking it down into a collection of simpler sub problems and remembering and reusing the earlier solutions

Reference: http://faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-3-2005.html

Approaches

 Everything in hardware
 → Move parts to software as long as performance constraints fulfilled

 Everything in software → Move parts to hardware as long as time constraint is fulfilled

CDFG

- A CDFG is a set of nodes and directed edges (N, E) where an edge e_{i,j} = (n_i,n_j) from n_i ∈ N to n_j E N, i ≠ j, indicates that n_j depends on n_i Because of data dependencies and/or control dependencies
- Divided into basic scheduling code fragments/blocks movable into hardware or software
- Application = $B_1 + B_2 + B_3 B_n$
- The corresponding hardware area, hardware execution time, software execution time and intercommunication delays for each block are provided in advance by a synthesis system

PACE

- Proposed by Knudsen and Madsen
- Employed in the LYCOS co-synthesis system for partitioning control data flow graphs (CDFG)
- Time complexity is O(n² · A) and the space complexity is O(n · A) for n code fragments and the available hardware area A

- Hardware blocks and software blocks cannot execute in parallel
- Assumed that the adjacent hardware blocks are able to communicate the read/write variables they have in common directly between them without involving the software side
- Objective is to find the optimal partition to realize the best possible speedup on a given hardware area *A*
- Problem considered in paper is NP-hard

PACE Notations

S _{i,j} where $j \ge I \ge 1$ Bi $i = \dots Bj$	G_{j} is defined as { $S_{1,j}$, $S_{2,j}$,, $S_{j,j}$ }, which is called the <i>j</i> th group of the sequence G_{o} → empty set
Area penalty $a_{i,j}$ of moving $S_{i,j}$ to hardware = sum of the individual block areas, i.e., $a_{i,j} = \sum_{k=i}^{j} a_{k}$	$Speedup(S_{i,j},a)$ denotes the inherent speedup of moving $S_{i,j}$ to hardware with available area a
Bestsp (G_{j} , a) denotes the best speedup achievable by first moving a sequence from G_{j} to hardware of area a , and then in the remaining area moving a sequence from one of the previous groups, $G_{j-1}, G_{j-2},, G_{1}$, to hardware $Bestsp(G_{j}, a)$ is set to 0	Bestsp($G_1G_2 \cdots G_j$, a) denotes the best speedup achievable by moving sequences from G_1, G_2, \ldots , or G_j to hardware of area a
for $G = \emptyset$ or $a \le 0$	10/20

PACE

$$(A) \begin{cases} Bestsp(G_j, a) = 0 & \text{for } j = 0 \text{ or } a \leq 0; \\ speedup(S_{i,j}, a) = \begin{cases} 0 & \text{for } a < a_{i,j}; \\ \sum_{k=i}^{j} s_k + \sum_{k=i}^{j-1} e_k \\ \text{for } a \geq a_{i,j}; \end{cases} \\ Bestsp(G_j, a) = \max_{1 \leq i \leq j} \{speedup(S_{i,j}, a) \\ + Bestsp(G_{i-1}, a - a_{i,j})\}; \\ Bestsp(G_1G_2 \cdots G_j, a) \\ = \max\{Bestsp(G_j, a), Bestsp(G_1G_2 \cdots G_{j-1}, a)\}; \\ i \leq j, j = 1, 2, \dots, n. \end{cases}$$

- Get partitions for different area values
- We check all parameters for each value
- Time complexity = O(n²A) if area granularity is $1_{11/2}$

SPACE (Simplified PACE)

 Unlike PACE, which relies on a sequence of blocks for computation, SPACE is based on the assignments of only one current block at a time

HW/SW partitioning for $B_1, B_2, \ldots, B_{k-1}$ is computed for area less than "*a*"

Put Bk in Software

Put Bk in Hardware

SPACE Notations

Bsp(k, a)

• Best speedup achievable by moving some or all the blocks from *B*₁, *B*₂, . . . , *Bk* to hardware of size *a*

 $Bsp_sw(k, a)$

Best speedup achievable by keeping *Bk* in software and moving some or all the blocks *B*₁, *B*₂, ..., *Bk*-1 to hardware of size *a*. It is clear that *Bsp_sw(k, a) = Bsp(k - 1, a)*

 $Bsp_hw(k, a)$

• Best speedup achievable by moving *Bk* to hardware and then moving some or all blocks from *B*₁,*B*₂, . . . , *Bk*-1 to area *a* – *ak*

The best speedup = maximum $(Bsp_sw(k, a), Bsp_hw(k, a))_{14 / 20}$

Proposed Theorem

Given n blocks and the list of trial hardware area *A*1,*A*2, . . . ,*Am*,

both the time complexity and the space complexity of SPACE are $O(n \cdot m)$, i.e., $O(n \cdot A)$ for total hardware area A with granularity of 1

Simulation and Experimental Setup

- Simulation language : C
- Simulation environment : Intel Pentium-4,
 - 3 GHz,
 - 1 GB RAM.
- Variables and constants :
 - For block Bk, $1 \le k \le n$, ak is randomly generated and satisfies $\sum_{k=1}^{n} ak \le A$ for a given area A.
 - The speedup sk and ek are randomly generated such that:
 sk = [100, 1000]
 ek = [10, 100]

Results – PACE Calculations

		Area a		
		1	2	3
G_1 S_{11} Bestsp (G_1, a)		5 max{5} = 5	5 max{5} = 5	5 max{5} = 5
<i>G</i> ₂	S ₁₂ S ₂₂	0 10	17 10	17 10
$Bestsp(G_2, a)$ $Bestsp(G_1G_2, a)$		$\max\{0, 10\} = 10$ $\max\{10, 5\} = 10$	$\max\{17, 10+5\} = 17$ $\max\{17, 5\} = 17$	$\max\{17, 10+5\} = 17$ $\max\{17, 5\} = 17$
G3	S ₁₃ S ₂₃ S ₃₃	0 0 2	0 14 2	21 14 2
$Bestsp(G_3, a)$ $Bestsp(G_1G_2G_3, a)$		$\max\{0, 0, 2\} = 2$ $\max\{2, 10\} = 10$	$\max\{0, 14 + 0, 2 + 10\} = 14$ $\max\{14, 17\} = 17$	$\max\{21, 14+5, 2+17\} = 21$ $\max\{21, 17\} = 21$
<i>G</i> ₄	S ₁₄ S ₂₄ S ₃₄ S ₄₄	0 0 0 10	0 0 16 10	0 28 16 10
Bestsp(G Bestsp(G	$G_{4,a}^{G_{4,a}}$ $G_{1}G_{2}G_{3}G_{4,a}^{G_{4,a}}$	$\max\{0, 0, 0, 10\} = 10$ $\max\{10, 10\} = 10$	$\max\{0, 0, 16 + 0, 10 + 10\} = 20$ $\max\{20, 17\} = 20$	$\max\{0, 28 + 0, 16 + 10, 10 + 17\} = 28$ $\max\{28, 21\} = 28$

Fig. 2. Computations of PACE for the example shown in Fig. 1.

Results – SPACE Calculations

	Area a			
	1	2	3	
$Bsp_hw(1, a)$ Bsp(1, a)	$\max\{0+5, -\infty+5+0\} = 5$ $\max\{(0, 5\} = 5$	$\max\{0+5, -\infty+5+0\} = 5$ $\max\{0, 5\} = 5$	$\max\{0+5, -\infty+5+0\} = 5$ $\max\{0, 5\} = 5$	
$Bsp_hw(2, a)$ Bsp(2, a)	$\max\{\underline{0+10}, -\infty + 10 + 2\} = 10$ $\max\{5, 10\} = 10$	$\max\{0+10, 5+10+2\} = 17$ $\max\{5, 17\} = 17$	$\max\{0+10, 5+10+2\} = 17$ $\max\{5, 17\} = 17$	
$Bsp_hw(3, a)$ Bsp(3, a)	$\max\{0+2, -\infty+2+2\} = 2$ $\max\{10, 2\} = 10$	$\max\{5+2, \frac{10+2+2}{10}\} = \frac{14}{17}$	$\max\{5+2, 17+2+2\} = 21$ $\max\{17, 21\} = 21$	
$Bsp_hw(4, a)$ Bsp(4, a)	$\max\{0+10, -\infty + 10 + 4\} = 10$ $\max\{10, 10\} = 10$	$\max\{10+10, 2+10+4\} = 20$ $\max\{17, 20\} = 20$	$\max\{17+10, \underline{14+10+4}\} = \underline{28}$ $\max\{21, \underline{28}\} = \underline{28}$	

Fig. 3. Computations of SPACE for the example shown in Fig. 1.

- Max function operates on only two (pre-calculated) values
- Simpler and more elegant way to accelerate the solution

Comparisons in execution time between PACE and SPACE

Conclusion

- This paper proposed a new dynamic programming algorithm to accelerate the Hw/Sw partitioning process.
- It is shown that the proposed algorithm is superior to PACE in terms of time complexity. Simulation results confirm that it provides for optimal partitioning even when communication overheads are incorporated.
- It mathematically proves that the time complexity of the latest algorithm is reduced from O(n² · A) to O(n · A), without increase in space complexity, where n refers to the number of blocks for hardware area A.