
1 / 20

Divya Ramachandran

Palak Shah

2 / 20

Low-complex dynamic programming algorithm

for hardware/software partitioning

Wu Jigang, Thambipillai Srikanthan
School of Computer Engineering, Nanyang Technological University, Singapore

639798

Received 17 February 2005; received in revised form 1 December 2005; accepted 7
December 2005

Available online 17 January 2006

3 / 20

What is hardware software
partitioning

 The circuit part commonly acts as a coprocessor for the microprocessor

executes as sequential
instructions on a

microprocessor (the
"software")

runs as parallel circuits on
some IC fabric like an

ASIC or FPGA (the
"hardware")

Optimize

Cost

Performa
nce

Power

4 / 20

Hardware software partitioning
software

hardware

Can compromise
on speed to save

cost Repeated Compute
intensive functions

Frame handling
computations Fast DCT coprocessor

circuit (part of the
compression
application)

Video
compression

Running
calculations on

standard hardware
(Excel)

Calculator with a
hardware block for

every operation

Flexible,
cheap Faster,

costlier

Calculator

5 / 20

What is the paper about
● An algorithm for partitioning
● Improvement upon an existing algorithm PACE
● Using the concept of dynamic programming :

● Solving a complex problem by breaking it down into a collection of
simpler sub problems and remembering and reusing the earlier
solutions

Reference: http://faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-3-
2005.html

6 / 20

Approaches
● Everything in hardware
 Move parts to
software as long as
performance constraints
fulfilled

● Everything in software
Move parts to hardware
as long as time
constraint is fulfilled

Algorithms-

Minimize
execution

time

Evolution

Integer
Programming

System

Simulated
Annealing

7 / 20

CDFG
 A CDFG is a set of nodes and directed edges (N, E) where an

edge ei,j = (ni,nj) from ni ∊ N to nj E N, i ≠ j, indicates that nj
depends on ni Because of data dependencies and/or control
dependencies

 Divided into basic scheduling code fragments/blocks movable
into hardware or software

 Application = B1 + B2 + B3….+Bn

 The corresponding hardware area, hardware execution time,
software execution time and intercommunication delays for
each block are provided in advance by a synthesis system

8 / 20

PACE
• Proposed by Knudsen and Madsen

• Employed in the LYCOS co-synthesis system for
partitioning control data flow graphs (CDFG)

• Time complexity is O(n2 · A) and the space
complexity is O(n · A) for n code fragments and the
available hardware area A

9 / 20

PACE

• Hardware blocks and software blocks cannot execute in parallel

• Assumed that the adjacent hardware blocks are able to
communicate the read/write variables they have in common
directly between them without involving the software side

• Objective is to find the optimal partition to realize the best
possible speedup on a given hardware area A

• Problem considered in paper is NP-hard

area penalty of
moving block to

hardware

inherent speedup of
moving block Bi to

hardware

extra speedup which is
incurred

because of blocks being able to
communicate directly

with each other when they are
both placed in hardware

10 / 20

PACE Notations

Bi … Bj

S i,j where j >= I >= 1

Gj is defined as {S1,j,S2,j,...,Sj,j}, which is

called the jth group of the sequence

G0 empty set

Area penalty ai,j of moving Si,j to

hardware

= sum of the individual block areas,

i.e., ai,j = ak

𝑗
𝑘=𝑖

Speedup(Si,j,a) denotes the inherent

speedup of

moving Si,j to hardware with available area

a
 Bestsp(Gj,a) denotes the best

speedup achievable by first

moving a sequence from Gj to

hardware of area a, and then in

the remaining area moving a

sequence from one of the

previous groups, Gj−1,Gj−2,...,G1 , to

hardware Bestsp(Gj,a) is set to 0

for Gj = ∅ or a <= 0

Bestsp(G1G2 ··· Gj,a) denotes the best

speedup

achievable by moving sequences from

G1,G2,...,

or Gj to hardware of area a

11 / 20

PACE

• Get partitions for different area values

• We check all parameters for each value

• Time complexity = O(n2A) if area granularity is 1

12 / 20

SPACE (Simplified PACE)

 Unlike PACE, which relies on a sequence of blocks for
computation, SPACE is based on the assignments of
only one current block at a time

HW/SW partitioning
for B1,B2, . . . , Bk−1 is

computed for area less
than “a”

Put Bk in Software

Put Bk in Hardware

13 / 20

SPACE Notations

• Best speedup achievable by moving some or all the
blocks from B1,B2, . . . , Bk to hardware of size a Bsp(k, a)

• Best speedup achievable by keeping Bk in software and
moving some or all the blocks B1,B2, . . . , Bk−1 to
hardware of size a. It is clear that Bsp_sw(k, a) = Bsp(k −
1, a)

Bsp_sw(k, a)

• Best speedup achievable by moving Bk to hardware and
then moving some or all blocks from B1,B2, . . . , Bk−1 to
area a − ak

Bsp_hw(k, a)

14 / 20

The best speedup = maximum (Bsp_sw(k, a) , Bsp_hw(k, a))

Algorithm to explain
SPACE

Simplified version of
Above Algorithm

15 / 20

Proposed Theorem

Given n blocks and the list of trial hardware area

 A1,A2, . . . ,Am,

both the time complexity and the space complexity of
SPACE are O(n · m), i.e., O(n · A) for total hardware area
A with granularity of 1

16 / 20

Simulation and Experimental Setup
 Simulation language : C

 Simulation environment : Intel Pentium-4,
 3 GHz,

 1 GB RAM.

 Variables and constants :
 For block Bk, 1 <= k <= n, ak is randomly generated and

satisfies 𝑎𝑘 ≤ 𝐴𝑛
𝑘=1 for a given area A.

 The speedup sk and ek are randomly generated such that:

 sk = [100, 1000]

 ek = [10, 100]

17 / 20

Results – PACE Calculations

18 / 20

Results – SPACE Calculations

 Max function operates on only two (pre-calculated) values

 Simpler and more elegant way to accelerate the solution

19 / 20

Comparisons in execution time
between PACE and SPACE

 O(N2)

 O(N)

20 / 20

Conclusion
 This paper proposed a new dynamic programming

algorithm to accelerate the Hw/Sw partitioning process.

 It is shown that the proposed algorithm is superior to
PACE in terms of time complexity. Simulation results
confirm that it provides for optimal partitioning even
when communication overheads are incorporated.

 It mathematically proves that the time complexity of the
latest algorithm is reduced from O(n2 · A) to O(n ·A),
without increase in space complexity, where n refers to
the number of blocks for hardware area A.

