
Background FT Resource Manager Hardware Scheduler Conclusions

Implementing a Fault Tolerant Real-Time Operating System
EEL 6686: Presentation 2

Chris Morales Kaz Onishi

ECE
University of Florida, Gainesville, Florida

February 19, 2015

1 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Introduction

What is a real-time operating system (RTOS)?

OS that guarantees a certain functionality within specified
time constraints
Link between software and embedded system

Main roles:

Task management - scheduling and priorities
Time management - timing constraints, delays, time outs
Dynamic memory allocation - file creations, protections
Interprocess communication and synchronization - keeps data
intact

RTOS need valid results both in correctness and in specified
amount of time

Incorrect results would result in a failure
Not meeting timing constraints also results in a failure

2 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Specifications

Should be able to react to external stimuli in timely fashion

Emphasize predictability efficiency

Soft deadline

Results in degraded performance if deadline is missed
Result still has utility after deadline
Example: Video streaming, anything with human interactions

Firm deadline

Result has no utility after deadline
Hard deadline if missing deadline causes a catastrophic event
Example: Automation, medical systems

3 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Fault Tolerant RTOS

Some form Fault tolerance is necessary in everyday systems

Problem: Fault tolerance usually comes with overhead
Design a very fault tolerant system?

Less failures in general but for RTOS does it really?
Introduces more timing constraints
For RTOS if deadline is not met considered a failure

No fault tolerance?

Can meet timing constraints much easier
If there is a fault it can also lead to system failure
Faults can cause bad results which cause more timing issues

Need good balance

4 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Fault Mitigation Techniques

Traditional fault tolerant systems include redundancy

Some common ones seen include:
Processor

Triple modular redundancy (TMR)
If one input is wrong, it is masked by voting system

Fault tolerance in algorithms

Error correction codes for data

Timing redundancy for transient errors
Memory

Dynamic storage allocation
Redundancy of disk or error correction codes

Other considerations must be made for operating systems

What are some fault tolerant techniques for RTOS?

5 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Mitigation Techniques for OS (1/2)

Some examples of techniques to make OS more fault tolerant:

Kernel Considerations

Should be able to communicate to supervisor to correct errors
Event logging to determine where error happened
Protection against bad system calls

Interrupt handling

Should be predictable for fault tolerance
All services should be able to save state and execute to
prioritize higher interrupts

Memory management units

Some RTOS disable for higher speed
Everything is run on same address space not recommended

I/O management

Active spares in order to not waste time

6 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Mitigation Techniques for OS (2/2)

Many different ways to make an OS fault tolerant

Cannot implement all techniques due to size/timing constraints
Implementations increase timing, increases chance of failure

What to make redundant?

Options are limited for hard deadlines
Need to pick out critical functions of RTOS
Make only critical functions fault tolerant
What method to use for least timing overhead?

7 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Critical Functionality of RTOS

Scheduling and resource allocation considered important for RTOS

Manage resources efficiently to stay within timing constraints
Scheduling algorithms

Rate monotonic - static scheduling defined in advance
Earliest deadline first - dynamic scheduling
Least laxity first - based on slack (amount of time left)

N-copy scheduler
Copied n times and run simultaneously
Results are voted for at the end
Least amount of timing overhead

Checkpointing
Go back to a previous known state
bad timing overhead
better hardware overhead

Making scheduler and resource allocation fault tolerant can
make sure timing constraints are met

8 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Introduction and Implementation of a fault tolerant
resource manager using ARINC 653 and RTEMS

Process and Tread Management

RTOS should activate a process once and release it once
Each activate and release must start on time and finish before
its deadline
RTOS must guarantee the availability of resources for required
process

9 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Possible fault due to careless management of resources

If tasks behavior are not monitored they may execute
carelessly

Careless or malicious executions could eat up precious
resources

This could exhaust system resources

10 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Example

A fault in an application could create too many tasks

Other tasks fail because of their inability to acquire resources

Fault tolerant RTOS resource manager must exist to prevent
such scenarios

11 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Solution 1:

Determine a process’s maximum allowable resource usage
before execution

Processes are not allowed to use more than their reserved
resources

Processes wanting more than allowed are discarded as error

12 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Solution 2: Fixed -priority systems ARINC 653

Process manager runs partitions or address spaces, according
to a timeline provided by the designer

Each address space is placed into one or more windows of
execution in a hyper period

Tasks within an address space are selected and executed,
while others a rejected

Hard/Critical Processes are guaranteed their required
resources

Soft/normal processes are rejected

13 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

ARINC 653 Architecture 1

Application software layer separates
applications into partitions

Services are routed through the
Application Executive Interface

Containment of faults from each
partition must be ensured by the core
software layer

14 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

ARINC 653 terminology

Spatial Partitioning: ensures one application or partition does
not access anothers memory space

Temporal Partitioning: ensures that the activities of one
partition do not affect the timing of another

15 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

ARINC 653 Implementation using RTEMS

AIR innovation initiative sponsored by ESA creators of the
ARINC 653 architecture based on RTEMS

Current available ARINC 653 implementations are commercial
and very expensive

Example: X-47B unmanned aerial vehicle owner US Air Force

16 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

RTEMS Kernel Architecture 1

Designed to support application with real time requirements
while maintaining a compatible interface with open standards

Multitasking capabilities
Event-driven, priority-based, preemptive scheduling
comprehensive mechanism for inter-task communication and
synchronization
high degree of user configurability
supports homogeneous and heterogeneous multiprocessor
system architectures

17 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

RTEMS Kernel Architecture 2

RTEMS does not provide all the
required mechanisms for ARINC 653

However, RTEMS does meet the basis
for a deployment of ARINC 653
services

RTEMS resource manager form the
executive interface presented to the
application

18 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

RTEMS Kernel Architecture 3

From the point of view of its internal architecture RTEMS
provides a set of layered components that provide a set of
services to real-time applications

RTEMS is a robust multitasking operating system kernel

RTEMS can support a wide range of processors through an
adaptor layer that is independent of hardware known as a
board support package

19 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

AIR System Architecture 1

The AIR architecture preserves the hardware and and RTOS
independence

AIR adds modules to the RTOS kernel to include spatial and
temporal partitioning which are:

AIR partition scheduler

Determines who owns the resource at a given time, ensures
temporal segregation

AIR partition dispatcher

Saves and restores execution content for the heir partitions
and guarantees spatial segregation

AIR inter-partition communication module

Allow coms between different partitions without violating
spatial segregation

20 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

AIR System Architecture 2

ARINC 653 application executive interface (APEX) furnishes
the following set of services using the AIR architecture

partition management
process management
time management services
inter-partition communication services
intra-partition communication services
Health monitoring

21 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

AIR System Architecture Overview

22 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Hardware Scheduler (Hw-S)(1/2)

Focuses on task management of an RTOS

Hardware implementation to detect faults affecting apps

Aims to detect faults causing:

Sequence errors - scheduling failures
Timing errors

Assumptions for hardware scheduler:

Scheduler is required part that defines when to execute task
Algorithm is deterministic
Tasks implemented by programs stored in specific memory
location
Tasks behavior follows set of time constraints and defined by
external events

23 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Hardware Scheduler (Hw-S)(2/2)

Split into 3 blocks

Task detector

Based on info stored in addr table
Generated during compile time
Identifies tasks in execution
Reads address accessed by microp
Compares with records in addr table

Event and time controller

Defines time limit deadline
Detects events that change exe. time

Fault detector

Implements the scheduling algorithm
Fault detection based on task in exe.

24 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Validation (1/2)

Testing Hw-S developed using FPGA

Comparing detection with RTOS vs Hw-S
2 FPGAs used to gather results
Identifies tasks in execution

Using Xilinx Spartan Model XC3S500E

split into 2 parts

FPGA under test (UT)

Inject faults into this device

FPGA supervisor

Stores results
sets up fault injection campaigns

25 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Validation (2/2)

FPGA UT is Composed of:

Hw-S unit that was developed in this paper
32 bit RISC plasma processor running app.
Unit to decode address associated to task

FPGA supervisor composed of:

Control unit which receives control signals
RAM unit to store execution flows from
Hw-S and RTOS
Write memory units for storing errors
Counter unit to indicate when data is stored

26 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Fault Injection Setup

Two benchmarks were tested with 3 tasks each

Task 1 (T1), Task 2 (T2), and Task 3 (T3) access and update
3 different global values
T1 sends value to queue and T2 reads value and T3 writes
value to global

Fault injection done by applying voltage dips to FPGA UT

Injected with 0.3Mhz frequency

27 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Results(1/2)

Five types of behaviors were reported with fault injections
System works normally
Generates different types of errors which were 100% detected
Generates different types of errors presents different fault
detection capability
Crashes and needs to be reset
FPGA configuration failure

Hw-S was able to detect 100% of transient faults injected for
all benchmarks

(a) (b)

28 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Results (2/2)

After 15% dips in voltage RTOS can no longer detect

Due to loss of information because the voltage dip is too high

Scheduling error most common

Four behaviors were found:

Microp went to wrong task
Remained executing only one task
Same task was repeated
Same task was repeated and next task was skipped

Hw-S performed more robust when exposed to voltage dips

Area overhead was only 10.07%

29 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

Future works

Hw-S

Voltage dips were only form of fault injection
Limited benchmarks

ARINC 653

Health monitor is currently designed to only diagnosis system
malfunctions and requires a ground maintenance crew for
repairs
However, in a space environment the health monitoring
services should have major adaptations and added complexity
as human assistance is probably not available
No test data was presented in the use of AIR with RTEMS to
demonstrate the systems reliability

30 / 31



Background FT Resource Manager Hardware Scheduler Conclusions

References

Rufino, J., Filipe, S., Coutinho, M., Santos, S., and Windsor, J.

ARINC 653 Interface in RTEMS.

In DASIA 2007 - Data Systems In Aerospace (Aug. 2007), vol. 638 of ESA Special Publication,
p. 26.

Tarrillo, J., Bolzani, L., and Vargas, F.

A hardware-scheduler for fault detection in rtos-based embedded systems.

In Digital System Design, Architectures, Methods and Tools, 2009. DSD ’09. 12th Euromicro
Conference on (Aug 2009), pp. 341–347.

31 / 31


	Background
	FT Resource Manager
	Hardware Scheduler
	Conclusions

